用户名: 密码: 验证码:
温度对人红细胞及血红蛋白结构功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度作为血红蛋白和红细胞的一个重要变构因子,其微小变化即可引起从血红蛋白的分子结构、浓度、功能以至红细胞的形态、结构、功能的显著改变。本文采用显微激光共焦拉曼散射技术、动态光散射技术、紫外—可见光谱技术以及多维显微图像分析技术等多种手段,从人体可能发生高温的温度特征及持续时间有时会较长的实际情况出发,从形态、结构及功能三个方面对血红蛋白和红细胞随温度的改变所对应的变化情况进行研究测定。本文发现:
     1.离体血红蛋白在高温(39℃-41℃)或低温(4℃-30℃)情况下,只要达到一定的作用时间,就会发生团聚。39℃-41℃团聚体的粒径在100nm到200nm间,且随温度的升高与作用时间的延长而增大。
     2.离体血红蛋白在39℃-41℃高温作用下,其二级结构、空间结构会发生变化,主要表现在有序结构明显减少,无规卷曲增加、血红蛋白卟啉环丢失或松散、疏水性氨基酸残基暴露在外,血红蛋白的携氧能力也随加热温度的升高和加热时间的延长呈下降趋势。
     3.高温下血红蛋白的团聚及其分子结构与功能的变化是不可逆行为。而低温作用下血红蛋白的团聚是物理团聚,是可逆的过程,且其分子结构以及功能没有发生变化。
     4.高温下孵育的红细胞其形态从正常双凹形转变成棘形,且随加热温度的升高与加热时间的延长红细胞的畸变率升高;且胞内血红蛋白分子结构与功能也相应发生了变化。
     本文的研究填补了有关温度对红细胞及其血红蛋白结构和功能的影响作用随作用时间的变化关系,对于阐明红细胞及血红蛋白在有关生理、病理状态下的结构与功能的变化,以及其临床表现与有关防治对策都有重要的指导意义。
As a significant factor, temperature would affect the structures and functions of humanerythrocyte and hemoglobin. Because of the fact that human may have fever and sometimes itwould keep on a long time, so in this thesis, the effect of temperature on the structure andfunction of erythrocyte and hemoglobin was studied by using some advanced techniques likeConfocal laser Raman microscopy, dynamic light scattering, ultraviolet-visible absorptionspectrum, and multi-dimensional micro-imaging. According to the experimental results, we havethe following conclusion:
     1. Ex vivo hemoglobin would aggregate at the higher temperature (from 39 degree to 41degree) or lower temperature (from 4 degree to 30 degree) than the normal bodytemperature. It is found that the diameter of the aggregation would increase from100nm to 200nm when the temperature rises from 39 degree to 41 degree.
     2. The protein structure of the ex vivo hemoglobin would change by the action of highertemperature, and exhibits obvious decrease in its nonrandom structure, increase withandom coil, loosened porphyrin in the hemoglobin, exposure of the hydrophobic aminoacid. In addition, the oxygen carrying capacity of the red blood cell decreases withincreasing temperature and warm-up time.
     3. It is found that at higher temperature, once upon the aggregates are formed; it wouldnot disaggregate to normal tetramer by lower down temperature. However, theaggregates formed at lower temperature would disaggregate when they are put back tothe normal body temperature. In addition, the protein's structure and function are notinfluenced.
     4. Red blood cell would change its shape from biconcave disc to echinocyte at highertemperature. The distortion rate of the erythrocyte at higher temperature increase withtemperature and the warm-up time, and the molecular structure and function of theintercellular hemoglobin are also changed.
     This work not only reveals the effect of temperature on the structure and functions oferythrocyte and ex vivo hemoglobin, as a function of the warm-up time, but also elucidates the possible variation of the erythrocyte and hemoglobin under different pathologic states, isbelieved to be significant for the prevention and treatment of some diseases.
引文
[1] LI Jing, HUANG Yao2xiong(李晶,黄耀熊). Study on multi—parameter dynamic measurement of the elastic c properties of red blood cell membrane based on image analyzing technique. Acta Biophysica Sinica (生物物理学报), 2002,18 (3): 350
    [2] 胡翊群.临床血液学检验.北京:中国医药科技出版社.2004年
    [3] M.M. Vidal, M. H. Gil, I. Delgadillo, J. Alonso, Study of the thermal stability and enzymatic activity of an immobilised enzymatic system for the bilirubin oxidation, Biomaterials 20 (1999) 757-763.
    [4] P. Suryaprakash, R. P. Kumar, V. Prakash, Thermodynamic of interaction of caffeic acid and quinic acid with multisubunit proteins, Int. J. Biol. Macromol. 27 (2000) 219-228
    [5] K. C. Cho, C. L. Choy, Thermal stability of haemoglobin and myoglobin. Effect of spin states, Biochim. Biophys. Acta 622 (1980) 320-330
    [6] Z. Drzazga, A. Michnik, M. Bartoszek, E. Beck, Thermal stability of haemoglobin solutions under DC and AC magnetic field and UV and IR radiation, J. Therm. Anal. Calorim. 65 (2001) 575-582
    [7] R. Di Domenico, R. Laveccha, Thermal stability of human haemoglobin in the presence of sacrosine and sorbitol, Biotechnol. Lett. 22 (2000) 335-339
    [8] R. Sfareni, A. Boffi, V. Quaresima, M. Ferrari. Near infrared absorption spectra of human deoxy- and oxyhaemoglobin in the temperature range 20-40℃. Biochimica et Biophysica Acta 1340(1997): 165-169
    [9] 姚成灿,李校坤,黄耀熊.温度对单个活态人红细胞携氧能力的即时影响.光谱学与光谱分析,2005,25(4):613-616
    [10] Anna Michnik, Zofia Drzazga, Aneta Kluczewska, Katarz6yna Michalik, Differential scanning microcalorimetry study of the thermal denaturation of haemoglobin, Biophysical Chemistry, 118: 93-101 (2005)
    [11] Yan, Y. -B., Wang, Q., He, H.-W., and Zhou, H.-M., Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin, Biophysical Journal, 86: 1682-1690(2004)
    [12] Smith, A. U., Prevention of haemolysis during freezing and thawing of red blood cells, Lancet, 1950, 259: 910-911
    [13] Mollison, P. L. et al., Successful transfusion of previously frozen human red cells, Lancet, 1951, 261: 862-864
    [14] 杨晓顺,王洪强.血细胞低温保存研究进展.L.Clin Transfus LabMed,2004,6(3):236-237
    [15] M eryman HT, Ho rnblow er M. A method fo r freezing and w ash ing red blood cells using a h igh glycero l concent rat ion[J]. Transfusion, 1972, 12(3): 1452156
    [16] 徐国泰.冷冻保存红细胞的研究[J].制冷学报,1982,1(2):74-76
    [17] 肖露露,陈洪涛,赵阳,等.血液深低温保存的研究[J].实用医学杂志,1997,13 (1):324
    [18] 刘毅,吴敏慧,黄兵,等.冰冻保存红细胞的应用研究[J].中国生化药物杂志,2001,22(6):3142315
    [19] 龙桂芳,张俊武.血红蛋白与血红蛋白病.广西:广西科学技术出版社.2003年
    [20] Discher D. E., Mohandas N., Evans E.A., Molecular maps of red cell deformation: hidden elasticity and in-situ connectivity. Science, 1995,266:1032-1035
    [21] Condon M. R., Kim J. E., Deitch E. A., Machiedo G.W., Appearance of an erythrocyte population with deceased deformability and hemoglobin content following sepsis. American Journal of Phsiology, 2003, 284(4): 2177-2184
    [22] Frans L. A. W., Bregt R. S., Yvonne A. M. G., Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood, 2003, 101: 747-751
    [23] Mizuno T., Tsukiya T., Takano H., et al., Ultrastructural alterations in red blood cell membranes exposed to shear stress. Asaio J., 23002, 48(6): 668-670
    [24] M. F. Perutz, H. Muirhead, J. M. Cox, L. C. G. Goaman, Three-Dimensional FourierSynthesis of Horse Oxyhaemoglobinat2.8.4 Resolution: The Atomic Model.Nature, 1968 (219), 131-139
    [25] Guido Guidotti. Studies on the chemistry of hemoglobin Ⅰ The reactive sulfhydryl groups. The journal of Biological Chemistry. 1967. 242(16): 3673-3684
    [26] Guido Guidotti. Studies on the chemistry of hemoglobin Ⅱ The effect of salts on the dissociation of hemoglobin into subunits. The journal of Biological Chemistry. 1967. 242 (16): 3685-3693
    [27] Guido Guidotti. Studies on the chemistry of hemoglobin III The interactions of the α β subunits of hemoglobin. The journal of Biological Chemistry. 1967.242 (16): 3694-3703
    [28] Guido Guidotti. Studies on the chemistry of hemoglobin IV The mechanism of reaction with ligands. The journal of Biological Chemistry. 1967, 242(16):3704-3712
    [29] Perutz M F. Molecular anatomy, physiology , and pathology of hemoglobin. In Stamatoyannopoulos G, Nienhuis A W, et al. The molecular basis of blood disorders. Philadelphia W B Saunders Co, 1987,127
    
    [30] 曾溢滔. 人类血红蛋白. 北京,科学出版社. 2002年
    
    [31] Salhany J.M., Cordes K.A., Sloan R.L., Characterization of the pH dependence hemoglobin binding to band : evidence for a pH-dependent conformational change within the hemoglobin-band complex. Biochem Biophys Acta, 1998,1371:107-113
    [32] Gershfeld, N.L., Murayama, M., Thermal instability of red blood cell membrane bilayers: temperature dependence of thermolysis. J. membr. Biol. 1988. 101, 67-72.
    [33] Gordiyenco, O.I., Gordiyenco, E.A., E.ects of temperature and the ionic strength of the medium on passive permeability of erythrocyte membranes to potassium ions. Biol. Membr. 1986. 3, 869-872
    [34] Lepock, J., Frey, H., Bayne, H., Markus, J., Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochim. Biophys. Acta . 1989. 980, 191-201
    [35] Papahadjopoulos, D., Nir, S., Ohki, S., Permeability properties of phospholipid membranes: E.ect of cholesterol and temperature. Biochim. Biophys. Acta. 1972. 266, 561-583
    [36] F M Conconi, A Bank, P A Marks. Polyibosomes and control of protein synthesis: effects of sodium fluoride and temperature of reticulocytes. J. Mol. Biol. 1966, 19:525-540
    [37] Larry M. Sprechman, Vernon M. Ingram. Hemoglobin synthesis at elevated temperatures. The Journal of Biological Chemistry. 1972, 247(16):5004-5009
    [38] Ivanov, I.T.,. Thermohaemolysis of human erythrocytes in sucrose containing isotonic media. J. Therm. Biol. 1992.17, 375-379.
    [39] Ivanov, I.T., Benov, C, Thermohaemolysis of human erythrocytes in isotonic NaCl/sucrose media during transient heating. J. therm. Biol. 1992. 17, 375-379.
    [40] Ivanov, I.T., Thermohaemolysis of mammalian erythrocytes. J. Therm. Biol. 1993. 18, 177-183.
    [41] Ivanov, I.T., Todorova, R., Zlatanov, I., Microcalorimetric and spectro uorometric study of thermohemolysis related membrane alteration, Int. J.Hyperthermia. 1999. 15, 29-43.
    [42] Ivanov, I.T. Impact of thermohaemolysis-associated membrane alteration on the passive ion permeability and life-span of erythrocytes. J. therm. Biol. 1999. 24:143-150
    [43] Steel B , Bilek M M , Dos Remedios C G et al. Apparatus for exposing cell membranes to rapid temperature transients. Eur. Biophys. J ., 2004 , 33 (2): 117-120
    [44] J I Tao , HUANG Yao2xiong(籍 涛,黄耀熊). Multispectral image analyzing system of single cell gel electrophoresis. Acta Biophysica Sinica (生物物理学报), 2001 , 17 (2): 599.
    [45] R. Di Domenico, R. Laveccha, Stabilisation of human haemoglobin by naturally occurring osmolytes, Biochem. Eng. J. 10 (2002) 27- 30.
    [46] O.A. Amire, J. Masoudy, A. A. Saboury, A. A. Moosavi-Movahedi, Enthalpy change of the alleosteric transition in human haemoglobin A,Thermochim. Acta 303 (1997) 219-224.
    [47] A. Bracht, B.R. Eufinger, H.J. Neumann, G. Niephaus, A. Redhardt, J.Schlitter, Thermal fluctuations of large amplitude in the tertiary structure of methaemoglobin, FEBS Lett. 114 (1980) 157-160.
    [48] R.E. Hirsch, R.C. San George, R.L. Nagel, Intrinsic fluorometric determination of the stable state of aggregation in haemoglobins, Anal. Biochem. 149 (1985) 415- 420.
    [49] X. Yang, J. Chou, G. Sun, H. Yang, T. Lu, Synchronous fluorescence spectra of haemoglobin: a study of aggregation states in aqueous solutions, Microchem. J. 60 (1998) 210-216.
    [50] M.M. Atef, M.S.A. El-Baset, A. El-Kareem, S. Aida, M.A. Fadel, Effect of a static magnetic field on haemoglobin structure and function, Int. J. Biol. Macromol. 17 (1995) 105-111.
    [51] Y. Seto, Stability of blood carbon monoxide and haemoglobins during heating, Forensic. Sci. Int. 121 (2001)144-149
    [52] Adachi, K., and T. Asakura. Aggregation and crystallization of hemoglobins A, S, and C. Probable formation of different nuclei for gelation and crystallization. J. Biol. Chem. 1980. 256: 1824-1830.
    [53] Dong, A., and W. S. Caughey. Infrared methods for study of hemoglobin reactions and structures. Methods Enzymol. 1994. 232: 139-175.
    [54] Noguchi, C. T., and A. N. Schechter. Sickle hemoglobin polymerization in solution and in cells. Annu. Rev, Biophys. Biophys. Chem. 1985.14:239-263.
    [55] Anna Michnik, Zofia Drzazga, Aneta Kluczewska, Katarz6yna Michalik, Differential scanning microcalorimetry study of the thermal denaturation of haemoglobin, Biophysical Chemistry, 2005.118: 93-101
    [56] Yan, Y.-B., Wang, Q., He, H.-W., Zhou, H.-M., Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin, Biophysical Journal, 2004.86:1682-1690
    [57] J. M. Sanchez-Ruiz, J. L. Lopez-Lacomba, M. Cortijo, P.L. Mateo,Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin, Biochemistry.1988. 27: 1648-1652.
    [58] J. M. Sanchez-Ruiz, Theoretical analysis of Lumry- Eyring models in differential scanning calorimetry, Biophys. J. 1992. 61:921-935.
    [59] B. I. Kurganov, A. E. Lyubarev, J.M. Sanchez-Ruiz, V. L. Shnyrov, Analysis of differential scanning calorimetry data for proteins. Criteria of validity of one-step mechanism of irreversible protein denaturation, Biophys. Chem. 1997.69: 125-135.
    [60] D. Milardi, C. La Rosa, D. Grasso, Theoretical basis for differential scanning calorimetric analysis of multimeric proteins, Biophys. Chem1996.. 62: 95-108.
    [61] D. Milardi, C. La Rosa, D. Grasso, Extended theoretical analysis of irreversible protein thermal unfolding, Biophys. Chem. 1994.52: 183-189.
    [62] D. Grasso, C. La Rosa, D. Milardi, S. Fasone, The effect of scan rate and protein concentration on DSC thermograms of bovine superoxide dismutase, Thermochim. Acta. 1995. 265: 163-175.
    [63] R. Lumry, H. Eyring, Conformational changes of protein, J. Phys. Chem. 1954.58: 110-120.
    [64] A. E. Lyubarev, B. I. Kurganov, A.A. Burlakova, V.N. Orlov, Irreversible thermal denaturation of uridine phosphorylase from Escherichia coli K-12, Biophys. Chem. 1998. 70: 247-257.
    [65] Tsai, A. M., J. H. van Zanten, and M. J. Betenbaugh. Study of protein aggregation due to heat denaturation: a structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering. Biotechnol. Bioeng. 1998. 59: 273-280.
    [66] Paquet, M. -J., M. Laviolette, M. Pezolet, and M. Auger. Twodimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. Biophys. J. 2001. 81: 305-312.
    [67] Yan, Y.-B., Q. Wang, H.-W. He, X.-Y. Hu, R.-Q. Zhang, and H.-M. Zhou. Two-dimensional infrared correlation spectroscopy study of sequential events in the heat-induced unfolding and aggregation process of myoglobin. Biophys. J. 2003. 85: 1959-1967.
    [68] Yan, Y.-B., R.-Q. Zhang, and H.-M. Zhou. Biphasic reductive unfolding of ribonuclease A is temperature dependent. Eur. J. Biochem. 2002. 269: 5314-5322.
    [69] Mazur P. Equilibrium quasi2equilibrium and nonequilibrium of freezing of mammalian embryos[J]. Cell Biophys, 1990, 17: 53
    [70] Muldrew K, McGann L E. The osmotic rupture hypothesis of intracellular freezing injury[J]. Biophys, 1994, 66: 532.
    [71] Mazur P, Leibo SP, Chu EHY. A two-factor hypothesis of freezing injury[J]. Exp Cell Res, 1972, 71: 345.
    [72] 王沛涛,何立群,舒志全,赵刚,李强.细胞低温生物学研究进展.齐鲁医学杂志.2005.20(1):1-4
    [73] Broekhuyse RM. Long-term storage of erythrocytes for quantitative analyses of lipids. Clin Chim Acta 1974; 52: 53.
    [74] Otto S J, Foreman-v. Drougelen MMHP, Houwelingen AC v, Hornstra G. Effects of storage on venous and capillary blood samples: the influence of deferoxamine and butylated hydroxytoluene on the fatty acid alterations in red blood cell phospholipids. Eur J Clin Chem Clin Biochem 1997; 35:907.
    [75] L. Di Marino, A. Maffettone, P. Cipriano E. Celentano, R. Galasso, C. Iovine, F. Berrino, S. Panico. Assay of erythrocyte membrane fatty acids. Effects of storage time at low temperature. Int J Clin Lab Res. 2000.30:197-202
    [76] Sansan L in, Eungyeong Yang, Huestis WH. Relationship of phospholipid distribution to shape change in Ca2+ 2crenated and recovered human erythrocytes. Biochemistry, 1994, 33: 7337
    [77] 冯成德,胡新珉,陈继镛,李峻.35℃保存人血血红蛋白氧化变性的ESR研究.华西医大学报.1997.28(3):325-328
    [78] 冯成德,胡新珉,陈继镛,李峻.20℃保存人血血红蛋白氧化变性的ESR研究.华西医大学报.2000.3 1(3):405-407
    [79] Beak B., Britt D., Sperry J. F., Uv-Exited resonance Raman spectra of heat denatured lysozyme and staphylococcus epidermidis. Appl. Spectrosc. 1988, 42(7), 1321-1314.
    [80] Feofanov A. V., Grichine A. I., Shitova L. A., Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes. Eur. Biophys. J. 2000, 78, 499-512
    [81] Berhe, B. J., R. Pecora.. Dynamic light scattering with applications to Chemistry, Biology, and Physics. R. E. Kreiger, Melbourne, FL. 1990
    [82] Huglin, M. B. Light scattering from polymer solutions. Academic Press, New York, NY. 1972
    [83] Robin W. Briehl, Helen M. Rammey. Ultraviolet difference spectra in human hemoglobin. The Journal of Biological Chemistry. 1970. 245(3): 555-558
    [84] 陶慰孙、李惟、姜涌明编,《蛋白质分子基础》,第二版,高等教育出版社,1995
    [85] Nowakowski R., Luckhan p., Winlove R, Imaging erythrocytes under Physiological condtions by atomic force microscopy. Bioch. et. Biophy. Acta, 2001, 1514:170-176.
    [86] Huang, YX, A novel multi-dimensional microscope and its applications to nano-material measurements. Curr. Appl. Phys. 2005, 5 (5): 553-556
    [87] Adachi, K., T. Asakura. Aggregation and crystallization of hemoglobin A, S, and C. Probable formation of different nuclei for gelation and crystallization. J. Biol. Chem. 1980. 256:1824-1830
    [88] 许以明,拉曼光谱及其在结构生物学中的应用,化学工业出版社.2005,
    [89] Bayden R Wood, Brian Tait, Donald Mcnaughton. Micro-Raman characterization of the R to T state transition of haemoglobin within a single living erythrocyte. Biochimica et Biophysica Acta. 2001.1539:58-70
    [90] 闫循领,董瑞新,王秋国,人血单个红细胞的共振拉曼光谱研究,光谱学与光谱分析, 2004, 24(5): 576-578.
    [91] Frans L A W, Bregt R S, Yvonne A M G et al. Hemoglobin loss from erythrocytes in vivo results from spleen facilitated vesiculation. Blood, 2003,101: 747.
    [92] Farahani K, Saxton R E, Yoon H C et al. MRI OF THERMALLY DENATURED BLOOD: METHEMOGLOBIN FORMATION AND RELAXATION EFFECTS Magnetic Resonance Imaging, 1999,17: 1489.
    [93] A. E. Lyubarev, B. I. Kurganov, V.N. Orlov, H. M. Zhou. Two-state irreversible thermal denaturation of muscte creatine kinase. Chem. 1999. 79199-204.
    [94] 姚成灿,姚平,黄耀熊.环境温度对人红细胞膜形态和表面电荷的即时影响.暨南大学学报(自然科学版),2005,26(5):689-693.
    [95] Salhany J M, Cordes K A, Sloan R L. Characterization of the pH dependence of hemoglobin binding to band 3: evidence for a pH-dependent conformational change within the hemoglobin-band 3 complex. Biochim Biophys Acta, 1998, 1371: 107~11
    [96] Gimsa J, Ried C. Do band 3 protein conformational changes mediate shape changes of human erythrocytes. Mol Membr Biol, 1995, 12:247~254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700