用户名: 密码: 验证码:
硬化治疗血管瘤用平阳霉素原位凝胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管瘤的药物治疗主要是硬化剂注射治疗,其中平阳霉素(Pingyangmycin,PYM)是目前临床上应用最为广泛的一种硬化剂。但从文献报道中可以发现,平阳霉素作为硬化剂治疗海绵状血管瘤(临床上最为常见的血管畸形)时,治愈率并不高。本课题以平阳霉素作为模型药物,以原位凝胶作为药物的载体,对一种用于硬化治疗血管瘤的新型药物传递系统进行了研究。
     经单因素考察和正交实验,确定了原位凝胶的主要基质——玉米醇溶蛋白(Zein)的精制工艺。十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)结果表明,精制所得的产品仅含有19 kDa和22 kDa两个分子量的条带。通过对有机溶剂、活性炭以及超临界萃取等脱色工艺的研究,确定了玉米醇溶蛋白的脱色工艺。
     考察了该制剂体外栓塞效果的影响因素,将240.0 mg·mL~(-1)定为该制剂的玉米醇溶蛋白浓度;将拟栓塞血管瘤的最大引流血管口径定为2 mm;最为有效的栓塞部位是引流管口附近;适量的蔗糖醋酸异丁酯(sucrose acetate isobutyrate,SAIB)或PEG6000的加入对该制剂的栓塞效果无显著影响。
     凝胶相转变过程的流变学研究表明,在与生理盐水接触之后的几十秒内,原位凝胶溶液的G′、G″、η急剧增加(约两个数量级),而δ则急剧减小直至48-57°之间。说明在注入生理盐水之后,原位凝胶溶液与之接触的部分发生了从溶液向凝胶的相转变。SAIB的加入使平阳霉素原位凝胶的相角增大,从而调整其相转变行为,获得理想的栓塞和缓释效果。
     体外释放的研究表明,释放面积、凝胶量、震荡速度、温度等因素的均会影响平阳霉素原位凝胶的释放行为。PEG6000的加入可使药物释放加快,适当量的SAIB的加入会减小药物的突释,延长药物释放的时间;载药量加大可使药物释放加快,突释加大,释放时间缩短,释放得更加完全;释放介质中加入胰蛋白酶,可使药物的释放加快。
     应用小角X射线衍射(Small Angle X-ray Scattering,SAXS)技术对玉米醇溶蛋白在甲醛缩甘油中的三维结构进行了研究,测得其Rg和Rc分别为4.15±0.04 nm和1.78±0.03 nm,从而推断它在甲醛缩甘油中是以三维为13.0 nm×5.4 nm×3.0 nm的五聚体形式存在的。分别通过光学显微镜、扫描电镜和原子力显微镜(Atomic Force Microscope,AFM)对平阳霉素原位凝胶的结构进行观察,对平阳霉素原位凝胶形成及药物释放的机理进行了深入的探讨。
     采用微渗析取样技术测定了平阳霉素在家兔和家犬体外的血浆蛋白结合率,并应用一般血样取样法和微渗析取样法同时监测了平阳霉素在家兔体内的经时过程,计算得到了平阳霉素在家兔体内的血浆蛋白结合率为31.96±7.51%,与体外测得结果无显著性差异(P>0.05)。
     平阳霉素原位凝胶在血管瘤模型中释放的研究表明,平阳霉素原位凝胶可明显的延长平阳霉素在局部的滞留时间,SAIB可以明显减少平阳霉素原位凝胶早期的突释,并使其后期的释放保持一定速度,使药物释放时间长达4天,局部药物浓度保持在10μg·mL~(-1)左右。
     通过观察细胞形态学变化、绘制细胞生长曲线以及MTT法,研究了平阳霉素及其原位凝胶对人脐静脉内皮细胞ECV304的抑制作用,结果表明平阳霉素对ECV304细胞的抑制作用具有明显的时间和浓度依赖性,作用24、48、72h后的IC_(50)分别为16.05±1.21、1.99±0.56和0.29±0.18μg·mL~(-1)。应用分子生物学技术,研究了平阳霉素作用后的ECV304细胞DNA含量变化,对平阳霉素抑制ECV304细胞生长的机理进行初步探讨,发现此作用是通过诱导细胞凋亡和造成细胞坏死两条途径实现的。平阳霉素原位凝胶对ECV304细胞抑制作用的研究表明,该原位凝胶有明显的缓释作用。
     以家兔耳缘静脉系统为血管畸形模型,研究了应用平阳霉素溶液、空白原位凝胶、PYM-Zein原位凝胶及PYM-Zein-SAIB原位凝胶后耳缘静脉的形态学及组织学的变化,结果表明,PYM-Zein-SAIB原位凝胶能有效地栓塞家兔的耳缘静脉并使之闭锁,且炎性反应较PYM-Zein原位凝胶小,疗效明显优于平阳霉素溶液、空白原位凝胶和PYM-Zein原位凝胶。PYM-Zein-SAIB原位凝胶是较为理想的治疗血管瘤的药物传递系统。
Sclerotherapy was frequently used for complicated haemangioma, and Pingyangmycin (PYM) was the most promising sclerosing agent. However, according to the reports, the cure rate of PYM to cavernous hemangioma, the most epidemic vascular malformation, was not satisfying. A new drug delivery system, Pingyangmycin in situ gel, was designed in this study to get better curative effect of haemangioma and vascular malformation.
     The refining process of zein, the main matrix of Pingyangmycin in situ gel, was decided according to orthogonal experiment. The result of SDS-PAGE showed that the refined zein contained two compositions, and their molecular weight were 19 kDa and 22 kDa, respectively. The decolorized zein was produced with optimized decolorizing process.
     Factors which could influence the in vitro embolizing effect of Pingyangmycin in situ gel were studied, and the proper concentration of zein was 240.0 mg·mL~(-1). The maximum caliber of the draining blood vessel for treated haemangioma and vascular malformation was 2 mm., and moreover the most effective embolizing site was around the orifice of the draining blood vessel. A certain amount of sucrose acetate isobutyrate or PEG 6000 would not influence obviously the embolizing effect.
     Rheology study of in situ gel showed that G′, G″,ηincreased andδdecreased sharply when it contacted with normal sodium. These phenomena indicated that in situ gel solution contacting with NS changed into gel. SAIB could increaseδof PYM in situ gel, modulate its phase transition and improve the embolizing effect and delayed release.
     In vitro release study revealed that release area, in situ get amount, shake rate and temperature would affect drug release; PEG 6000 would quicken drug release, and proper amount of SAIB would significantly cut down the initial burst of PYM from the in situ gels; the increase of drug loaded would result in faster release, higher initial burst, shorter release period and higher accumulated release of PYM; trypsin would enhance drug release.
     Small Angle X-ray Scattering (SAXS) was applied to study the three diamensions structure of zein in glycerol formal. Its Rg and Rc were 4.15±0.04 nm and 1.78±0.03 nm, respectively. It was ratiocinated that zein existed in glycerol formal as a pentamer with 3D of 13.0 nm×5.4 nm×3.0 nm. According to the result of light microscope, SEM and atomic force microscope (AFM), the mechanism of gel formation and drug release for PYM in situ gel was further discussed.
     In vitro PYM plasma protein binding fractions in rabbit and canis familiaris blood were evaluated with microdialysis sampling technique. And the blood concentration of PYM in rabbits was studied with traditional blood sampling and microdialysis sampling simultaneously. The in vivo PYM plasma protein binding fraction in rabbits was 31.96+7.51%, which was similar with the in vitro one. The drug release of PYM in situ gel in the animal model of venous malformation was investigated in conscious rabbits. Compared with the PYM solution, the in situ gel could sustain the release of PYM and prolong its local retention. In vivo releases of the in situ gels of PYM-Zein and PYM-Zein-SAIB were up to 3 days and 4days, respectively. SAIB could significantly cut down the initial burst of PYM and prolong drug release.
     The result of inhibitory effect of PYM and PYM in stiu gel on ECV304 cell presented that the inhibitory effect had time and concentration dependent. IC_(50) for 24h, 48h and 72h were 16.05±1.21, 1.99±0.56 and 0.29±0.18μg·mL~(-1), respectively. PYM in situ gel could sustain the release of PYM. Molecular biological study found that inhibition of PYM on ECV304 cell was achieved by two ways, apoptosis and necrosis.
     Pharmacodynamics of PYM in situ gel was studied with rabbit ear venous system. The results showed that PYM-Zcin-SAIB in situ gel could cmbolizc rabbit car venous and sclerize it. Its inflammatory reaction was slighter than PYM-Zcin in situ gel. Its therapeutic effect was better than PYM solution, blank in situ gel and PYM-Zein in situ gel. These results suggested considerable potential for use of PYG-loadcd injectable Zcin-SAIB-based in situ gels for sclcrotherapy of venous malformations.
引文
[1] Drolet BA, Esterly NB, Frieden IJ. Hemangiomas in children. N Engl J Med, 1999,341:173-181.
    [2] Brown TJ, Friedman J, Levy ML. The diagnosis and treatment of common birthmarks. Clin Plast Surg, 1998, 25: 509-525.
    [3] Cheung DS, Warman ML, MullikenJB. Hemangioma in twins. Ann Plast Surg, 1997,38: 269-274.
    [4] Jackson LT, Sosa J. Excision of nasal tip hemangioma via open rhino plasty: a skin sparing technique. Eur J Plast Surg, 1998,21: 265-268.
    [5] Enjolras O, Gelbert F. Superficial hemangiomas: associations and management. Pediatr Dermatol, 1997, 14: 173-179.
    [6] Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in fants and children: A classification based on endothelial characteristics. Plast Reconstr Surg, 1982, 69: 412-420.
    [7] Puig S, Aref H, Chigot V, Bonin B, Brunelle F. Classification of venous malformations in children and implications for sclerotherapy. Pediatr Radiol, 2003,33: 99-103.
    [8] Jackson R. The natural history of strawberry naevi. J Cutan Med Surg, 1998,2:187-189.
    [9] SadanN, Wolach B. Treatment of hemangiomas of infants with high doses of prednisone . J Pediatr, 1996,128: 141-146.
    [10] Fledelius HC, Ilium N, Jensen H, Prause JU. Interferon alfa treatment of facial infantile haemangiomas: with emphasis on the sight threatening varieties. A clinical series. Acta Ophthalmol Scand, 2001, 79: 370-373.
    [11] Tamayo L, Ortiz DM, Orozco-Covarrubias L, Duran-Mckinster C, Mora MA, Avila E, Teixeira F, Ruiz-Maldonado R. Therapeutic efficacy of interferon alfa-2b in infants with life-threatening giant hemangiomas. Arch Dermatol, 1997,133:1567-1571.
    [12] Chang E, Boyd A, Nelson CC, Crowley D, Law T, Keough KM, Folkman J, Ezekowitz RAB, Castle VP.. Successful treatment of infantile hemangiomas with interferon alpha-2b. J Pediatr Hematol Oncol, 1997, 19:237-244.
    [13] 赵怡芳.血管瘤与脉管畸形的药物治疗.口腔颌面外科杂志,2003,13:153-155.
    [14] 郑勤田,伍连康,容文星,赵荣大,李维光.平阳霉素局部注射治疗小儿血管瘤.中华外科杂志,1991,29:290-291.
    [15] 刘学键,秦中平,李克雷.平阳霉素治疗口腔颌面部血管瘤的远期疗效及适应证探讨.上海口腔医学,2001。10:295-298.
    
    [16] 寿卫东,叶炳飞,寿柏泉,徐明跃,孟昭业,杨震.平阳霉素治疗颌面部筹血管瘤520例临床分析.实用口腔医学杂志,2001,17:312-313.
    [17] 王昌美,高庆红,付风华,温玉明,代晓明,龚浩,陆笑.平阳霉素局部注射治疗口腔颌面血管瘤.华西口腔医学杂志,2000,18:317-319.
    [18] 郑家伟,陈传俊,张志愿.平阳霉素瘤内注射治疗口腔颌面部血管瘤血管畸形的系统评价.中国口腔颌面外科杂志,2003,1:102-105.
    [19] 寿柏泉,杨震,孟昭业,南福清,郑葆春.平阳霉素治疗颌面部草莓状和混合性血管瘤225例的临床总结.华西口腔医学杂志.1995,13:198-200.
    [20] 李铎贤,彭中辉.硬化疗法加颈外动脉结扎在鼻窦颌面巨大血管瘤治疗中的应用.中国基层医学,1998,5:506.
    [21] 杨建斌,苏春芝,徐素华.5%鱼肝油酸钠加地塞米松瘤腔注射治疗口腔颌面部海绵状血管瘤.中原医刊,2001,28:39-40.
    [22] 欧阳天祥,郭恩章,张明利,邢新.无水乙醇治疗海绵状血管瘤.解放军医学杂志,1996。21:225.
    [23] 中华口腔医学会口腔颌面外科专业委员会.2002'全国口腔颌面部血管瘤治疗与研究学术研讨会纪要.上海口腔医学,2002,11:1-2.
    [24] 王昶光,侯世祥,张利.栓塞颌面血管瘤动脉的平阳霉素白蛋白微球的制备.华西药学杂志,2003,18:401-403.
    [25] 郑根建,高庆红,周岚,王晓毅,温玉明,王昌美.平阳霉素白蛋白微球抑制血管内皮细胞生长的实验研究.实用口腔医学杂志,2005,21:248-251.
    [26] 郑根建,高庆红,周岚,王晓毅,温玉明,王昌美.平阳霉素白蛋白微球对血管内皮细胞形态的影响.实用口腔医学杂志,2005,21:511-514.
    [27] 高庆红,郑根建,王晓毅,周岚,董佳增,王昌美,温玉明.平阳霉素白蛋白微球诱导兔耳中央动脉闭锁的实验研究.上海口腔医学,2005,14:42-47.
    [28] 郭军,吴汉江,张胜.外加磁场对平阳霉素磁性微球体内分布影响的实验研究.华西口腔医学杂志,1999,17:218-220,250.
    [29] 郭军,李澄,吴双江.平阳霉素磁性微球靶向治疗口腔颌面部海绵状血管瘤25例临床报告.南京铁道医学院学报,2000,19:112-114.
    [30] 谢春明,胡跃峰,段润卿,刘静维.平阳霉素碘化油混合乳剂动脉栓塞在治疗肝血管瘤中的临床应用.中国介入影像与治疗学,2006,3:329-332.
    [31] 李忱瑞,王涛,畅俊平,郭彦军,姜文浩,史仲华.平阳霉素碘油乳剂治疗肝血管瘤.中国医学影像技术,2004,20:274-276.
    [32] 魏刚,徐晖,郑俊民.原位凝胶的形成机制及在药物控制释放领域的应用.中国药学杂志,2003,38:564-568.
    [33] Anseth KS, Metters AT, Bryant SJ, Matens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release, 2002,78:199-209.
    [34] Ruel-Gartepy E, Leuroux JC. In situ-forming hydrogels-review of temperature-sensitive systems. Eur J Pharm Biopharm, 58: 409-426.
    [35] 张蜀,谭载友,陈济民,黎颍怡,罗衍奇.盐酸多西环素注射用缓释可生物降解凝胶的制备.中国医药工业杂志,2004,35:84-86.
    [36] 魏刚,陆伟跃,郑俊民.温度敏感原位凝胶中药物的扩散行为.药学学报.2004,39:232-235.
    [37] Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm, 2005, 294:103-112.
    [38] 徐晖,王绍宁,周力民,冯彩霞,唐星,郑俊民.丙烯酸—泊洛沙姆407共聚物的合成及其原位胶凝性质.沈阳药科大学学报,2006,23:421-424.
    [39] Poison AM, Southard G, Dunn R Poison A, Healing patterns associated with an ATRISORB barrier in guided tissue regeneration. Compend Contin Educ Dent 1994,14:1162-1172. [40] Bogle G, Garret S, Stoller NH, Swanbom DD, Fulfs JC, Rodgers PW, Whitman S, Dunn RL, Southard GL, Poison AM. Periodontal regeneration in naturally occurring class II furcation defects in beagle dogs after guided tissue regeneration with bioabosorbable barriers. J Periodontol. 1997,68: 536-544. [41] Tipton AJ, Dunn RL. In situ gelling systems. In: Senior JH, Radomsky M (Ed), Sustained-Release Injectable Products. Interpharmm Press, Denver, Colorado, 2000,241-278. [42] Okumu FW, Dao LN, Fielder PJ, Dybdal N, Brooks D, Sane S, Cleland JL. Sustained delivery of human growth hormone from a novel gel system: SABER? Biomaterials, 2002, 23:4353-4358.
    [39] Poison AM, Southard G, Dunn R Poison A, Healing patterns associated with an ATRISORB barrier in guided tissue regeneration. Compend Contin Educ Dent 1994,14:1162-1172.
    [40] Bogle G, Garret S, Stoller NH, Swanbom DD, Fulfs JC, Rodgers PW, Whitman S, Dunn RL, Southard GL, Poison AM. Periodontal regeneration in naturally occurring class II furcation defects in beagle dogs after guided tissue regeneration with bioabosorbable barriers. J Periodontol. 1997,68: 536-544.
    [41] Tipton AJ, Dunn RL. In situ gelling systems. In: Senior JH, Radomsky M (Ed), Sustained-Release Injectable Products. Interpharmm Press, Denver, Colorado, 2000,241-278.
    [42] Okumu FW, Dao LN, Fielder PJ, Dybdal N, Brooks D, Sane S, Cleland JL. Sustained delivery of human growth hormone from a novel gel system: SABER? Biomaterials, 2002, 23:4353-4358.
    [1] Shukla R, Cheryan M. Zein: The Industrial protein from com. Ind Crop Prod, 2001, 131: 171-192.
    [2] Mason ID, Palmer LS. Preparation of white rein from yellow corn. J Biol Chem 1934. 107: 131-132.
    [3] Sessa DJ, Eller FJ, Palmquist DE, Lawton JW. Improved methods for decolorizing corn zein. Ind Crop Prod, 2003, 18: 55-65.
    [4] 陈涛,刘耘,李理,杨晓泉.玉米醇溶蛋白的特性与应用.粮油加工与食品机械,2003,6:50-52.
    [5] Rowe RC,Sheskey PJ,Wdler PJ著.郑俊民等译.药用辅料手册.化学工业出版社,北京,2005.
    [6] Beck MI, Tomka I, Waysek E. Physico-chemical Characterization of Zein as A Film Coating Polymer, A Direct Comparison with Ethyl Cellulose. Int J Pham, 1996, 141: 137-150.
    [7] Hatalampu SG, Sands S, Gross A. Method for Producing an Edible Prolamine Coating from An Aqueous Latex. US Patent 1993, 5182130.
    [8] Gennadios A, Weller CL. Edible Films and Coatings from Wheat and Corn Proteins. J Food Tech, 1990, 44: 63-69.
    [9] Wu PJ, Schwartzberg HG. Popping Behavior and Zein Coating of Popcom. Cereal Chem, 1992, 69: 567-573.
    [10] Starling DS, Pinner SH, Whitehead AD. Decolonization of Zein. GB Patent 1951. No. 651396.
    [11] Favati F, King JW, Friedrich JP, Eskins K. Supercritical CO_2 extraction of carotene and lute in from leaf protein concentrates. J Food Sci, 1988, 53: 1532-1536.
    [12] Cheryan M. Method for Extracting Xanthophylls from Com. US. Patent. 2001, 6169217.
    [1] Kazekawa K, lwata H, Shimozuru T, Sampei K, Sakaki N, Morikawa N, Matsuda S, Ikada Y. Nontoxic embolic liquids for treatment of arteriovenous malformations. J Biomed Mater Res. (Appl. Biomater.), 1997, 38: 79-86.
    [2] Li XW, Liu WG, Ye GX, Zhang BQ, Zhu DW, Yao KD, Liu ZQ, Sheng XZ. Thermosensitive N-isopropylaerylamide-N-propylaerylamide-vinyl pyrrolidone terpolymers: Synthesis, characterization and preliminary application as embolie agents. Biomaterials 2005; 26: 7002-7011.
    [3] Way LW,Doherty GM著.王子明,黎一鸣,李宗芳译.现代外科疾病诊断与治疗.人民卫生出版社,北京,2005.
    [4] Fishman SJ, Mulliken JB. Hemangiomas and vascular malformations of infancy and childhood. Pediatr Clin N Am, 1993, 40: 1177-1200.
    [5] Jackson IT, Carreno R, Potparic Z. Hemangiomas, vascular malformations and lympho-venous malformations: Classification and methods of treatment. Plast Reconstr Surg, 1993, 91: 1216-1230.
    [6] Gorriz E, Carreira JM, Reyes R, Gervas C, Pulido JM, Pardo MD, Maynar M. Intramuscular low flow vascular malformations: treatment by means of direct percutaneous embolization. Eur J Radiol, 1995, 27: 161-165.
    [7] Leo E, Cameroni R, Forni F. Dynamic dialysis for the drug release evaluation from doxorubicin—gelatin nanoparticle conjugates. Int J Pharm, 1999, 180, 23-30.
    [8] Tipton AJ, Dunn RL. In situ gelling systems. In: Senior JH, Radomslcy M(Ed), Sustained-Release Injectable Products. Interpharmm Press, Denver, Colorado, 2000, 241-278.
    [9] 巴勒斯HA,赫顿JH,瓦尔特斯K著.吴大诚,古大治等译.流变学导引.中国石油化工出版社,北京,1992.
    [10] 尼尔生LE著.范庆荣,宋家琪译.聚合物流变学.科学出版社,北京,1983.
    [11] 吴其晔,巫静安.高分子材料流变学.高等教育出版社,北京,2002.
    [12] 沈崇棠,刘鹤年.非牛顿流体力学及其应用.高等教育出版社,北京,1989.
    [13] Ganguly S, Dash A K. A novel in situ gel for sustained drug delivery and targeting. Int J Pharm, 2004, 276: 83-92.
    [14] Kang F, Singh J. In vitro release of insulin and biocompatibility of in situ forming gel systems. Int J Pharm, 2005, 304: 83-90.
    [15] Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm, 2005, 294: 103-112.
    [16] Okumu FW, Dao LN, Fielder PJ, Dybdal N, Brooks D, Sane S, Cleland JL. Sustained delivery of human growth hormone from a novel gel system: SABER~(TM). Biomaterials, 2002, 23: 4353-4358.
    [1] Kratky O, Laggner P. Encyclopedia of Physical Science and Technology(Third Edition). Academic Press, New York, 2002.
    [2] Qiu SQ, Dong JX, Chen GX. Tribological properties of CeF_3 nanoparticles as additives in lubricating oils. Wear, 1999, 230: 35-38.
    [3] Li ZH, Gong Y J, Zhang Y. Study of Mesoporous Silica Materrials by Small Angel X-ray Scattering. Chin Phys, 2001, 10: 12-15.
    [4] Argos O, Pedersen K, Marks MD, Larldns BA. A structural model for maize zein proteins. J Biol Chem, 1982, 257: 9984-9990.
    [5] Garratt R, Oliva G, Caracelli I, Leite A, Arruda P. Studies of the Zein-like α-prolamins based on an analysis of amino acid sequences: implications for their evolution and three-dimensional structure. Proteins Strut Func Genet, 1993, 15: 88-99.
    [6] Matsushima N, Creutz CE, Kretsinger RH. Polyproline, beta-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase Ⅱ, hordein, and gluten. Proteins Struc Func Genet, 1990, 7: 122-155.
    [7] Matsushima N, Danno G, Takezawa H, Izumi Y. Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering. Biochim Biophys Acta, 1997, 1339: 14-22.
    [8] Guinier A, Fournet G. Small-angle scattering of X-rays. John Wiley, New York, 1955.
    [9] Glatter O, Kratky O. Small Angle X-ray Scattering. Academic Press, London, 1982.
    [10] Schrade P, Klein H, Egry I, Ademovic Z, Klee D. Hydrophobic volume effects in albumin solutions. J Colloid Inteff Sci, 2001, 234: 445-447.
    [11] Harpaz Y, Gerstein M, Chothia C. Volume changes on protein folding. Structure, 1994, 2: 641-649.
    [12] 吴家璁.高分子X射线学.科学出版社,北京,2003.
    [13] Jana NR. Shape effect in nanoparticle self-assembly. Angew Chem Int Ed, 2004, 43: 1536-1540.
    [14] Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H, Lopez GP, Breinker CJ. Self-assembly and integration of ordered, robust gold nanocrystal/silica arrays. Science, 2004, 304: 567-571.
    [15] Benjamin C, Tianbo L. Characterization of nanoparticles by scattering techniques. J Nanoparticle Research, 2000, 2: 29-41.
    [16] 庄文昌,陈晓,赵继宽,王庐岩.胶体分散体系与有序分子组合体的小角X线散射研究.化学进展,2005,17:881-888.
    [17] Pedersen K, Devereux J, Wilson DR, Sheldon E, Larkins BA. Cloning and sequence analysis reveal structural variation, among related zein genes in maize. Cell, 1982, 29: 1015-1026.
    [18] Gormer RA, RT MacDonald. Studies. on. the. fractionation, of zein. Cereal Chem, 1944, 21: 324-333.
    [19] Kretschmer CB. Infrared spectroscopy and optical rotary dispersion of zein, wheat gluten, and gliadin. J Phy Chem, 1957, 61: 1627-1631.
    [20] Danzer LA, Ades H, Rees EO. The helical content of zein, a water insoluble protein, in non-aqueous solvents. Biochim Biophys Acta, 1975, 386: 26-31.
    [21] Wu YV, Paulis JW, Sexson KR, Wall JS. Conformation of corn zein and. glutelin fractions with unusual amino acid sequence. Cereal Chem, 1983, 60: 342-344.
    [22] Tatham AS, Field JM, Morals VJ, I'Anson KJ, Carrie L, Dufton MJ, Shewry PR. Solution conformational analysis of the alpha-zein proteins of maize. J Biol Chem, 1993, 268: 26253-26259.
    [23] Watson CC, Arrhenius S, Williams JW. Physical chemistry of zein. Nature, 1936, 137: 322-323.
    [24] Williams JW, Watson CC. The physical chemistry of. the prolamins. Cold Spring Harbor Syrup Quant Biol, 1938, 6:. 208-214.
    [25] Elliott MA, Williams JW. The dielectric behavior of solutions of the protein zein. J Am Chem. Soc, 1939, 61: 718-725.
    [26] Foster JF, Edsall JT. Studies on double refraction of flow Ⅱ. The molecular dimensions of zeins. J Am Chem. Soc, 1945, 61: 617-625.
    [27] Oncley JL, Jensen CC, Gross PM. Dielectric constant studies of zein solutions. J Phys Chem, 1949, 53: 162-174.
    [28] Okumu FW, Dao LN, Fielder PJ, Dybdal N, Brooks D, Sane S, Cleland JL. Sustained delivery of human growth hormone from a novel gel system: SABERTM. Biomaterials, 2002, 23: 4353-435g.
    [29] Binning G, Quate CF, Gerner C. Atomic force microscopy. Phys Rev Lett, 1986, 56: 930-933.
    [30] Hansma HG, Kasuya K, Oroudiev E. Atomic force microscopy imaging and pulling of nucleic acids. Curr Opin Struct Biol, 2004, 14: 380-385.
    [31] Nettikadan SR, Johnson JC, Mosher C, Henderson E. Virus particle detection by solid phase immunocapture and atomic force microscopy. Biochem Biophys Res Commun, 2003, 311: 540-545
    [32] Khurana R, Ionescu-Zanetti C, Pope M, Li J, Nielson L, Ramirez-Alvarado M, Regan L, Fink AL, Carter SA. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys J, 2003, 85, 1135-1144
    [33] Kima SH, Opdahla A, MarmoC, Somorjai GA. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials 2002, 23: 1657-1666.
    [34] Jiang B, Hu L, Gao C, Shen J. Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm, 2005, 304: 220-230.
    [1] Hamherger A, Jacobson I, Nystrom B, Sandberg M.. Microdialysis sampling of the neuronal environment in basic and clinical research. J Intern Med, 1991, 230: 375-377.
    [2] Huang Y, Zhang Z, Zhang D, Lv J. Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug. Talanta, 2001, 53: 835-841.
    [3] Scatchard G. The attractions of proteins for small molecules and ions. Ann NY Acad Sci, 1949, 51: 660-672.
    [4] 丁平田,徐辉,郑俊民.微渗析技术在药代动力学和药物代谢研究中的应用.药学学报,2002,37:316-320.
    [5] Ungerstedt U, Hallstrom A. In vivo microdialysis: a new approach to the analysis of neurotransmitters in the brain. Life Sci, 1987, 41: 861-864.
    [6] Ungerstedt U. Microdialysis—principles and applications for studies in animals and man. J Intern Med. 1991, 230: 365-373.
    [7] Bito L, Davson H, Levin E, Murray M, Snider N. The concentration of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain and blood plasma of the dog. J Neurochem, 1966, 13: 1057-1067.
    [8] Delgado JM, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM. Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther, 1972, 198: 9-21.
    [10] 朱林.微透析取样技术及其在药代动力学中的应用.国外医学药学分册,2002,29:1-6.
    [11] Wang Y, Wong SL, Sawchuk RJ. Microdialysis calibraton using retrodialysis and zer-net flux: application to a study of distribution fo zidovudinge to rabbit cerebrospinal fluid and thalamus. Pharm Res, 1993, 10: 1411-1419.
    [12] Hammarlund-Udenaes M, Paalzow LK, De Large ECM. Pharm Res, 1997, 14: 128-134.
    [13] Muller M, Rohde B, Kovar A, Georgopoulos A, Eeichler HG, Derendorf H. Relationship between serum and free intetstritial concentrations of cefodizime and cefpirome in muscle and subcutaneous adipose tissue of healthy volunteers measured by microdialysis. J Clin Pharmacol, 1997, 37: 1108-1113.
    [14] Muller M, Mader RM, Steiner B, Steger GG, Jansen B, Gnant M, Helbich T, Jakesz R, Eichler HG, Blochl-Daum B. 5-Fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients. Cancer Res, 1997, 57: 2598-2601.
    [15] Rittenhouse KD, Pciffer JRL, Pollack GM. Evaluation of microdialysis sampling in vivo. Pharm Res, 1998, 11: 1631-639
    [16] Scott DO, Luunte CE. In vivo microdialysis sampling in the bile, blood, and liver of rots to study the disposition of phenol, Pharm Res, 1993, 10: 335-342.
    [17] Paez X, Hernandez L. Blood microdialysis in humans: a new method for monitoring plasma compounds, Life Sci, 1997, 61: 847-856.
    [18] Yang H, Wang Q, Elmquist WF. The design and validation of a novel intravenous microdialysis probe: application to fluconazole pharmacokinetics in the freely-moving mt model, Pharm Res, 1997, 14: 1455-1460.
    [19] Evrard PE, Deridder G, Verbeeck RK. Intravenous microdialysis in the mouse and the rat: development and pharmacokinetic application of anew probe, Pharm Res, 1996, 13: 12-17.
    [20] Hsiao JK, Ball BA, Morison PF, Mefford IN, Bungay PM. Effects of different semipermeable membranes onin vitro and in vivo performance of microdialysis probes, J Neurochem, 1990, 54 1449-1452.
    [21] Chen Z, Steger RW. Plasma microdialysis: a technique for continuous plasma sampling in freely moving rats. J Pharmacol Toxicol Methods, 1993, 29: 111-118.
    [22] Larsson CI. The use of an 'internal standard' for the control ofthe recovery in microdialysis, Life Sci. 1991, 49: 73-78.
    [23] Yokel RA, Allen DD, Burgio DE, McNamara PJ. Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis, J Pharmacoi Toxicol Methods, 1992, 27: 135-142.
    [24] Sauembeimer C, Williams KM, Brune K Geisslinger G. Application of microdialysis to the pharmacokinetics of analgesics: problems with reduction of dialysis efficiency in vivo, J Pharmacol Toxicol Methods, 1994, 32: 149-154.
    [25] Stahle L, Segersvard S, Ungerstedt U. A comparison between three methods for estimation of extracellular concentrations of exogenous and endogenous compounds by microdialysis, J Pharmacol Toxicol Methods, 1990, 25: 41-52.
    [26] Evrard PA, Cutups J, Verbeeck RK. Concentration-dependent plasma protein binding of flurbiprofen in the rat: an in vivo microdialysis study, Pharm Res, 1996, 13: 18-22.
    [27] Maia MB, Saivin S, Chatelut E, Malmary MF, Houin G. In vitro and in vivo protein binding of methotrexate assessed by microdialysis, Int J Clin Pharmacol Ther, 1996, 34: 335-341.
    [28] Nakashima M, Takeuchi N, Hamada M, Matsuyama K., Lchikawa M, Goto S. In vivo microdialysis for pharmacokinetic investigations: a plasma protein binding study ofvalproate inrabbits, Biol Pharm Bull, 1994, 17: 1630-1634.
    [29] Verbeeck RK. Blood microdialysis in pharmacokinetic and drug metabolism. Adv Drug Deliv Rev, 2000, 45: 217-228.
    [30] Fishman SJ, Mulliken JB. Hemangiomas and vascular malformations of infancy and childhood. Pediatr Clin North Am 1993; 40: 1177—1200.
    [31] Jackson IT, Carreno R, Potparic Z. Hemangiomas. vascular malformations and lympho-venous malformations: Classification and methods of treatment. Plast Reconstr Surg, 1993, 91: 1216-1230.
    [32] 郭军,吴双江.海绵状血管瘤硬化治疗药物对兔耳静脉硬化作用比较的实验研究.华西口腔医学杂志,2001,19:256-259.
    [33] 郭军,吴双江,张胜,李澄,徐亮.平阳霉素磁性缓释微球对兔耳静脉作用的实验研究.江苏临床医学杂志,1998,2:455-460.
    [33] 张胜,吴双江,凌天牖.平阳霉素磁性微球治疗海绵状血管瘤的实验研究.湖南医科大学学报,2003,28:23-25.
    [1] 郑家伟,陈传俊,张志愿.平阳霉素瘤内注射治疗口腔颌面部血管瘤、血管畸形的系统评价.中国口腔颌面外科杂志,2003,1:102-105.
    [2] 寿柏泉,杨震,孟昭业,南福清,郑葆春.平阳霉素治疗颌面部草莓状和混合性血管瘤225例的临床总结.华西口腔医学杂志.1995,13:198-200.
    [3] 刘学键,秦中平,李克雷.平阳霉素治疗口腔颌面部血管瘤的远期疗效及适应症探讨.上海口腔医学.2001,10:295-298.
    [4] 高庆红,王昌美,温玉明,肖邦良,程微菠.平阳霉素对血管内皮细胞急性损伤后酶活性变化的实验研究.华西口腔医学杂志.2001,19:188-190.
    [5] 郭军,吴汉江.多种药物对体外培养的血管内皮细胞损伤作用比较的研究.华西口腔医学杂志.2000,18:310-313.
    [6] 孔伟东,李彦毫,曾庆乐.平阳霉素对血管内皮细胞的生长抑制作用和细胞周期的影响.第一军医大学学报.2003,23:830-836.
    [7] 杨艺,邓长生,彭俊忠.幽门螺杆菌对体外培养的胃上皮细胞增殖与凋亡的影响.中华微生物学和免疫学杂志,2002.22:10-12.
    [8] Kakkar R, Suruchi, Mallika P. QSAR studies on the mechanism of radioprotection by Hoeehst 33258 analogues, J Mol Struct Theochem, 2005, 714: 35-42.
    [9] Li Q, Yu Y, Bischoff J, Mulliken JB, Olsen BR. Differential expression of CD146 in tissues and endothelial cells derived from infantile haemangioma and normal human skin. J Pathol, 2003, 201: 296-302.
    [10] Boye E, Yu Y, Paranya G, Mulliken JB, Olsen BR, Bischoff J. Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest, 2001, 107: 745-752.
    [11] Hagiwara K, Khaskhely NM, Uezato H, Nonaka S. Mast cell "densities" in vascular proliferations: a preliminary study of pyogenic granuloma, portwine stain, cavernous hemangioma, cherry angioma, Kaposi's sarcoma, and malignant hemangioendothelioma. J Dermatol, 1999, 26: 577-586.
    [12] Takahashi K, Sawasaki Y, Hata J, J Hata, K Mukal, T Goto. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol, 1990, 26: 265-274.
    [13] 司徒镇强,吴军正.细胞培养.北京:世界图书出版社.1996.
    [14] Berridge MV, Tan AS, Characterization of cellar reduction of 3-(4, 5-dimethyl-2-Thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide(MTT): subcellar localization, substrate dependence, and involvement of mitoehondrial electry on transport in MTT reduction. Arch Biochem Biophys, 1993, 303: 474-482.
    [15] Meletiadis J, Meis JFGM, Mouton JW, Donnelly JP. Comparison of NCCLS and 3-(4, 5-Dimethyl-2-Thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide(MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. Journal of Clinical Microbiology, 2000, 38: 2949-2954.
    [16] 李学汤,李珮茵,林晨.平阳霉素的体外抗癌谱.中国医学科学院学报,1990,12:182-185.
    [17] 宋根平,李素文.流式细胞术的原理和应用.北京:北京师范大学出版社,1992,140-185.
    [18] Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy, Cancer, 1994, 73: 2013-2026.
    [19] Czene S, Testa E, Nygren J, Belyaev I, Harms-Ringdahla M. DNA fragmentation and morphological changes in apoptotic human lymphocytes. Biochem Biophys Res Commun, 2002, 294: 872-878.
    [20] Hellstrom-Lindberg E, Kanter-Lewensohn L, Ost A. Morphological changes and apoptosis in bone marrowform patiwnts with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin, Leu Res, 1997, 21: 415-425.
    [21] Imajoh M, Sugiura H, Oshima S. Morphological changes contribute to apoptotic cell death and are affected by caspase-3 and caspase-6 inhibitors during red sea bream iridovirus permissive replication. Virology, 2004, 322: 220-223.
    [22] Elstein KH, Thomas DJ, Zucker RM. Factors affecting flow cytometric detection of apoptotic nuclei by DNA analysis. Cytometry, 1995, 21: 170-176.
    [23] Koester SK, Bolton WE. Differentiation and assessment of cell death. Clin Chem Lab Med, 1999, 37: 311-317.
    [24] Pcng LM, Liu JJ. A novel method for quantitative analysis ofapoptosis. Lab Invest, 1997, 77: 547-555.
    [25] Goldberg JE, Sherwood SW, Clayberger C. A novel method for measuring CTL and NK cell-meidated cytotoxicity using anncxin V and two-color flow cytometry. J Immunol Methods, 1999, 224: 1-9.
    [1] Fishman SJ, Mulliken JB. Hemangiomas and vascular malformations of infancy and childhood. Pediatric Clinics of North America 1993, 40: 1177-1200.
    [2] Jackson IT, Carreno R, Potparic Z. Hemangiomas, vascular malformations and lympho-venous malformations: Classification and methods of treatment. Plastic and Reconstructive Surgery, 1993, 91: 1216-1230.
    [3] Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in fants and children: A classification based on endothelial characteristics. Plast Reconstr Surg, 1982, 69: 412-420.
    [4] Enjolras O. Classification and management of the various superficial vascular anomalies: Hemangiomas and vascular malformations. Dermatology, 1997, 24: 701-710.
    [5] Waner M, Suen JY. Management of congential vascular lesions of the head and neck. Oncology, 1995, 9: 989-994, 997.
    [6] Waner M, Suen JY. Hemangiomas and vascular malformations of the ad and neck. Wiley-Liss Inc, NewYork, 1999.
    [7] 赵福运,曾祥辉,孙开华.口腔颌面部血管瘤和血管畸形.中华口腔医学杂志,1994,29:88-90.
    [8] 郭军,吴双江.海绵状血管瘤硬化治疗药物对兔耳静脉硬化作用比较的实验研究.华西口腔医学杂志,2001,19:256-259.
    [9] 郭军,吴双江,张胜,李澄,徐亮.平阳霉素磁性缓释微球对兔耳静脉作用的实验研究.江苏临床医学杂志,1998,2:455-460.
    [10] 张胜,吴双江,凌天牖.平阳霉素磁性微球治疗海绵状血管瘤的实验研究.湖南医科大学学报,2003,28:23-25.
    [11] Blenkinsopp WK. Choice of sclerosant: an experimental study. Angiologica, 1970, 7: 182-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700