用户名: 密码: 验证码:
高超声速飞行器防热壁板气动热弹性耦合建模与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动热弹性耦合分析是高超声速飞行器研制过程中亟待解决的难题,直接服务于飞行器热防护系统的设计,关系到飞行器的控制性和稳定性,影响飞行姿态和弹道,并最终制约着高超声速飞行器的总体性能。由于气动力、气动热和结构等各子学科之间的相互耦合作用突出,气动热弹性不能分割开来进行单独简化求解,已成为高超声速飞行器研究的热点方向。本文以类乘波体高超声速飞行器防热壁板为应用对象,采用分区耦合求解思想,系统开展了气动热弹性耦合建模与分析,取得了相应的研究成果。
     (1)建立了气动热弹性耦合物理模型和求解模型,分析了气动力、气动热、结构之间的耦合机理,提出了分区耦合求解的时域推进算法。
     (2)研究了多场耦合边界的数据接口技术。分析了高精度常体积转换法(CVT)的四面体构造原则,基于点-三角形位置关系提出了一种改进的数据交换算法——内投影常体积转换法(IPCVT),能够很好的抑制边界网格严重重叠或间隙时CVT算法的不稳定,适用于多场耦合中的边界数据交换。
     (3)提出了类乘波体高超声速气动力/热工程计算方法。首先采用片条法将三维类乘波体简化为二维外形,接着基于薄激波层理论计算片条表面气动力和激波形状,然后根据沿流管质量守恒定律得到边界层外缘熵和其他气动参数,最后由气动加热工程计算公式求取壁面气动加热热流密度。上述方法能够考虑熵层对气动力/热的影响,具有较好的精度,适合气动热弹性耦合分析等复杂问题的研究。
     (4)完成了类乘波体复合材料盖板式热防护系统设计。首先为快速热分析建立了具有很好精度和效率的一维热网络模型;接着完成了防热层结构设计、隔热层厚度优化设计;然后对防热盖板的热、力性能进行了校核;最后分析了防热壁板的固有特性,为气动热弹性耦合分析建立了物理、数值模型。
     (5)详细研究了气动热弹性耦合求解技术。首先,基于活塞理论提出了气动力-位移耦合计算方法,确定了近似阶次的选取,分析了壁板法向扰动速度对耦合响应的影响;接着研究了瞬态气动加热-温度场耦合计算策略,提出了耦合参数的计算方法,提高了耦合分析的效率;最后根据温度场-结构位移场耦合作用原理,提出了顺序耦合的求解方法。
     (6)对防热壁板气动热弹性耦合响应进行了深入分析和应用研究。首先在分析气动加热时间步长对耦合响应影响的基础上,提出了气动加热时间步长自适应方法,使气动加热计算的时间点更为合理,提高了计算效率和精度;然后研究了耦合度和刚体气动力时间步长对准静态气热弹耦合响应的影响;最后完成了“双轴”连接件设计,可在防热壁板边缘小变形条件下,显著降低连接孔处局部最大剪切应力,适用于盖板式热防护系统的安装。
     本文工作是高超声速气动热弹性耦合分析技术在类乘波体飞行器上的一次创新性应用,为其他高超声速飞行器气动热弹性问题的研究提供了思路,某些方法、结论可直接应用于其他工程领域中,具有较强的工程实用性与推广性。
The coupled aerothermoelastic analysis is a urgent mission for the thedevelopment of hypersonic vehicle, and directly supports the design of thermalprotection system.Associated with the control and stability, the aerothermoelasticperformance impacts flight attitude and trajectory, and restrict the overallperformance of hypersonic vehicle. Because of the strong interactions amongsub-disciplines, such as aerodynamic pressure, aerodynamic heating and elastic, theaerothermoelastic coupling couldn’t be solved separately, and has become a hotdirection in hypersonic domian. This dissertation, focusing on the thermal protectionpanel of quasi-wavrider hypersonic vehicles, explores coupled aerothermoelasticmodeling and analysis based on the partitioned method. The results attainted are asfollows.
     (1) Based on the establishing of the aerothermoelastic physical model andsolution model, the coupled mechanics among aerodynamic pressure, aerodynamicheating and structure are analysed, and a temporal evolution algorithm is put forwardfor partitioned simulation.
     (2) The data interface for multiphysics is explored. The construction principle oftetrahedron in constant volume transfer(CVT) method is explored. Then based on therelationships between point and triangle, an improved data exchange algorithm,namely Inside Projective Constant-Volume Tetrahedron (IPCVT), is proposed, withwhich the algorithm unstability of CVT is well suppressed at great overlaps or gaps ofboundary meshes. It is manifested that IPCVT is applicable for the boundary dataexchange in multiphysics interaction.
     (3) The engineering calculation method of hypersonic aerodynamic pressure andaerodynamic heating for quasi-wavrider vehicles is put forward. First, the3-Dquasi-wavrider figure is simplified into2-D figure by strip theory, which is followedby calculating the aerodynamic pressure and the shock shape along the strip surfacebased on thin shock layer theory. Then, the entropy and other aerodynamic parameterson the boundary layer edge is achieved according to the mass conservation along theflow pipe. Finally, the aeroheating flow rate is gained by the engineering aerodynamicheating formula. Including the effects of entropy layer, this method has excellentaccuracy, and is appropriate for complex problem such as coupled aerothermoelasticanalysis.
     (4) The composite cover thermal protection system(CCTPS) for quasi-wavrideris designed. First, a accurate and efficient1-D thermal network is established for rapidthermal analysis. Secondly, the structure of thermal protection layer and thickness ofthermal insulation layer are designed. Then, the thermal and mechanical performancesof the CCTPS is checked. Finally, the characters of the thermal protection panel are analysed for the physical and numerical models of coupled aerothermoelasticanalysis.
     (5) The techniques of coupled aerothermoelastic analysis are explored in detail.Firstly, based on the piston theory, a solution method for coupled aerodynamicpressure-displacement is proposed with definite rank of approximate expression, andthe influence of panel normal disturbance velocity on coupled response isinvestigated. Secondly, the strategy of coupled transient aeroheating-temperature fieldis analysed, and a method for coupled parameters is put forward for the efficiency ofcoupled analysis. Finally, according to the interaction principle between temperaturefield and structure displacement field, a sequent coupled solution method is proposed.
     (6) Further analysis and applications of the coupled aerothermoelastic responseare accomplished for the thermal protection panel. First and foremost, based on theinfluence of aeroheating time step on the coupled response, the adaptive aeroheatingtime step method is presented, with which the occasion of aerodheating calculation isso reasonable that the efficiency and accuracy are improved greatly. Besides, how thecoupled degree and rigid body aerodynamic pressure time step affect the coupledresponse of quasi-static aerothermoelastic is discussed. Last but not the least, the“biaxial” connector is designed for releasing the local severe shear stress near theattachment with little panel edge deformation, and can be used to install the CCTPS.
     The research of this dissertation is a innovative application of coupledaerothermoelastic technique on quasi-wavrider hypersonic vehicles, which couldprovide some relative analysis and demonstrating methods for other hypersonicvehicles with severe aerothermoelastic problem. Moreover, some methods andconclusions can be generalized to other fields, with good engineering practicabilityand populazation.
引文
[1]杨炳渊,史晓鸣,梁强.高超声速有翼导弹多场耦合动力学的研究和进展(上)[J].强度与环境,2008,35(5):55-63.
    [2]杨炳渊,史晓鸣,梁强.高超声速有翼导弹多场耦合动力学的研究和进展(下)[J].强度与环境,2008,35(6):55-62.
    [3] Garrick I.E. Prospects for the aerothermoelasticity[J]. Aerospace Engineering,1963,22(1):140~147.
    [4]陈文俊.几种气动热弹性设计方法[J].战术导弹技术,2001,5:31.
    [5] Heeg J, Gilbert M G, Pototzky a S. Static and Dynamic AeroelasticCharacterization of an Gneric Hypersonic Aircraft Configuration[R].1990.
    [6] Noll T E, Doggett R V Jr. Hero-servo-thermo-elasticity-A Review[J]. Presentedat Tenth National Aero-space Plane Technology Symposium. Paper No.104,1991,(4).
    [7] Earl A. Thornton. Application of Integrated Fluid-Thermal-Structure AnalysisMethods[J]. ICAS-88-2.3.3:424-434.
    [8]王岩.计算流体力学中有限元的强间断处理[J].空气动力学报,1994,12(1):22-29.
    [9]段占元.有限差分-有限元杂交算法及其应用[D].中国科技大学,1997.
    [10]黄唐.流场、热、结构一体化数值模拟[D].北京空气动力研究所,1999.
    [11]黄唐.二维流场、热、结构一体化数值模拟[J].空气动力学报,2000,18(1):115-119.
    [12]耿湘人,张涵信,沈清,高树椿.高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J].空气动力学报,2002,20(4):423-427.
    [13]胡海洋,王强.一种能克服两方程湍流模型刚性的流热一体化算法[J].计算物理,2009,26(5):685-692.
    [14] Rogers M. Aerothermoelasticity[J]. Aero/Space Engineering,1958,17(10):34~43,64.
    [15]吴志刚,惠俊鹏,杨超.高超声速下翼面的热颤振工程分析[J].北京航空航天大学学报,2005,31(3):270~273.
    [16] Garrick I. E. A Survey of Aerothermoelasticity[J]. Aero/Space Engineering,1963,22(1):140~147.
    [17] Rodgers J.P. Aerothermoelastic Analysis of a NASP-Like Vertical Fin[C].Proc.33rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics andMaterials Conference,1992,
    [18] Heeg J, Gilbert M. G, Pototzky A. S. Active Control of AerothermoelasticEffects for a Conceptual Hypersonic Aircraft[J]. Journal of Aircraft,1993,30(4):453~458.
    [19] Heeg J, Zeiler T. A, Pototzky A. S, Spain C. V, Engelund W. C.Aerothermoelastic Analysis of a NASP Demonstrator Model[R]. AIAA Paper1993-1366.1993.
    [20] Mcnamara J. J, Friedmann P. P, Powell K. G, Thuruthimattam B. J, Bartels R.E. Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow[J]. AIAAJournal,2008,46(10):2591~2610.
    [21] Lohner R, Yang C, Cebral J, Baum J. Fluid-Structure-Thermal Interaction usinga Loose Coupling Algorithm and Adaptive Unstructured Grids[C]. Proceedingsof the29th AIAA Fluid Dynamics Conference,1998,
    [22] Tran Hai, Farhat Charbel. An integrated platform for the simulation offluid-structure-thermal interaction problems[C].43rdAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsCon,2002, AIAA2002-1307.
    [23] Friedmann P. P., Mcnamara J. J., Thuruthimattam B. J., Powell K. G.Hypersonic aerothermoelasticity with application reuseable launch vehicles2003[C].12th AIAA International Space Planes and Hypersonic Systems andTechnologies,15-19December2003, AIAA2003-7014.
    [24] Liu D. D., Chen P. C., Tang L., Chang K. T. Hypersonicaerothermodynamics/aerothermoelastics methodology for reusable launchvehicles/TPS design and analysis[C].41st Aerospace Sciences Meeting andExhibit,6-9January2003, AIAA2003-2897.
    [25] Mcnamara J. J., Friedmann P. P. Aeroelastic and Aerothermoelastic Analysis ofHypersonic Vehicles: Current Status and Future Trends[C].14th AIAA/AHISpace Planes and Hypersonic Systems and Technologies Conference,2006,
    [26] Manamara Jack J., Friedmann Peretz P., Powell Kenneth G., ThuruthimattamB. J. Aeroelastic and aerothermoelastic behavior in hypersonic flow[J]. AIAAJournal,2008,46(10):2591-2610.
    [27] Fazelzadeh S. A., Hosseini M. Aerothermoelastic behavior of supersonicrotating thin-walled beams made of functionally graded materials[J]. Journal ofFluids and Structures,2007,23:1251-1264.
    [28] Polli Gian Mario, Mastroddi Franco, Librescu Liviu, Trapani Claudia Di.Aerothermoelastic stability of composite aerovehicle wings subjected to heatinputs[J]. AIAA Journal,2008,46(4):992-1001.
    [29] Lamorte Nicolas, Glaz Bryan, Friedmann P. P. Uncertainty propagation inhypersonic aerothermoelastic analysis[C].51st AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference,12-15April2010,, AIAA2010-2964.
    [30] Adam J, Culler, Mcnamara J J Studies on Fluid–Thermal–Structural Couplingfor Aerothermoelasticity in Hypersonic Flow[J]. AIAA Journal,2010,48(8):1721~1723.
    [31] Adam John Culler. Coupled Fluid-Thermal-Structural Modeling and Analysisof Hypersonic Flight Vehicle Structures[D]. The Ohio State University,2010.
    [32]张伟伟.基于CFD技术的高效气动弹性分析方法研究[D].西北工业大学,2006.
    [33]张伟伟,夏巍,叶正寅.一种高超音速热气动弹性数值研究方法[J].工程力学,2006,23(2):41~46.
    [34]李增文.高超声速全动翼面热颤振特性分析[C].第十届全国空气弹性学术交流会,2007,
    [35]惠俊鹏,杨超,杨勇.采用分布式压电驱动器的翼面热颤振主动抑制[J].宇航学报,2010,31(12):2644~2650.
    [36]吕继航,杨茂,陈凤明.超音速舵面热气动弹性仿真[J].计算机仿真,2010,27(3):43~46.
    [37]汤海荣.高超声速飞行器表面热流密度工程估算方法研究[D].南京航空航天大学,2008.
    [38]沈遐龄.航天飞机气动加热计算[J].北京航空航天大学学报,1998,24(2):189-192.
    [39] Zoby E. V., Moss J. N., Sutton K. Approximate Convective-Heating Equationsfor Hypersonic Flow[J]. Journal of Spacecraft and Rockets,1981,18(1):64-70.
    [40] Van Driest. Turbulent Boundary Layer in Compressible Fluids[J]. Journal ofAeronautic Science,1951:145-160.
    [41] Van Driest. Investigation of laminar boundary layer in compressible fluidsusing the crocco method[R]. NACA TN2597.1952.
    [42] Van Driest. Turbulent boundary layer on a cone in a supersonic flow at zeroangle of attack[J]. Journal of Aeronautic Science,1952:55-57.
    [43] Holden M.S., Moselle J.R. A database of aerothermal measurements inhypersonic flow for CFD validation[J]. AIAA92-4023.
    [44] Holden M.S., Wadhams T.P., Maclean M. Experimental studies in hypersonicflows for facility and code validation[J]. AIAA2007-1304.
    [45] Lee D.B., Faget M.A. Charts adapted from Van Driest’s turbulent flat platetheory for determining values of turbulent aerodynamic friction and heattransfer coefficients[R]. NACA TN-3811.1956.
    [46] Dejarnette F.R., Davis R.M. A simplified method for calculating laminar heattransfer over bodies at an angle of attack[R]. NASA TN D-4720.1968.
    [47] Hamilton H.H., Weilmuenster K.J. Application of axisymmetric analogue forcalculating heating in three dimensional flows[J]. AIAA85-0245.
    [48] Hamilton H H, Greene F A. An approximate method for calculating heatingrates on three-dimensional vehicles[J]. AIAA93-2881.
    [49] Hamilton H.H., Weilmuenster K.J., Dejarnette F.R. Improved approximatemethod for computing convective heating on hypersonic vehicles usingunstructured grids[J]. AIAA2006-3394.
    [50] Riley C.J., Dejarnette F.R. An engineering aerodynamic heating method forhypersonic flow[J]. AIAA92-0499.
    [51] Riley C.J. Application of an engineering inviscid boundary layer method toslender three dimensional vehicle forebodies[J]. AIAA93-2793.
    [52] Nathaniel B Cohen. Correlation Formulas and Tables of Density and someTransport Properties of Equilibrium Dissociating Air for Use in Solutions of theBoundary-Layer Equations[R]. NASA TN-D-194.1960.
    [53] Roger a Svehla. Estimated Viscosities and Thermal Conductivities of Gases atHigh Temperatures[R]. NASA TR-R-132.1962.
    [54] Warren F Ahtye, Tzy Cheng Peng. Approximations for the Thermodynamicand Transport Proerties of High-temperature Nitrogen with Shock-tubeApplications[R]. NASA TN-D-1303.1962.
    [55] Kenneth Sutton, Randolpb a Graves. A General Stagnation-Point ConvectiveHeating Equation for Arbitrary Gas Mixtures[R]. NASA TR-R-376.1971.
    [56] Dirling R B. The Effect of Transition and Boundary Layer Development onHypersonic Reentry Shape Change[C]. AIAA-76-673.1975.
    [57] Hamilton H H. Approximate Method of Prediction Heating on the windwardSide of Space Shuttle Orbiter and Comparisons with Flight Data[C].AIAA-82-0823.1982.
    [58] Marvin J G. Turbulence Modeling for Computational Aerodynamics[J]. AIAAJournal,1983,21(7):941-955.
    [59] Fay J A, Riddle F R. Theory of Stagnation Point Heat Transfer in DissociatedAir[J]. Journal of the Aeronautical Sciences,1985,25(2):73-85.
    [60] Riley, Christopher J, Dejarnette, Fred R. An Engineering Aerodynamic HeatingMethod for Hypersonic Flow[C]. AIAA-92-0499.1992.
    [61] Jain a C, Hayes J R. Hypersonic Pressure, Skin-Friction and Heat TransferDistributions on Space Vehicles: Planar Bodies[J]. AIAA Journal,2004,42(10):2060-2069.
    [62] Jain a C, Hayes J R. Hypersonic pressure, skin-friction and heat transferdistributions on space vehicles: Three-Dimensional Bodies[J]. AIAA Journal,2004,42(10):2070-2081.
    [63] Defilippis F, Savino R, Martucci A. Numerical-Experimental Correlation ofStagnation Point Heat Flux in High Enthalpy Hypersonic Wind Tunnel[C].AIAA-2005-3277.2005.
    [64] Alireza Najafiyazdi. An Engineering Inviscid-Reacting Boundary LayerMethod for Calculation of Hypersonic Aerodynamic Heating[C].AIAA-2005-510.2005.
    [65] Alireza Najafiyazdi. An Engineering Method for Aerodynamic HeatingPrediction of Biconic Configurations in3-D Hypersonic Flow[C].AIAA-2005-4827.2005.
    [66] Steven P Schneider. Laminar-Turbulent Transition on Reentry Capsules andPlanetary Probes[C]. AIAA-2005-4763.2005.
    [67]李会萍.高超声速飞行器气动加热特性及其计算方法研究[D].上海交通大学,2010.
    [68] Wurster, Kathryn E., Zoby E. Influence of Flowfield and Vehicle Parameterson Engineering Aerothermal Methods[J]. AIAA89-1769,1989.
    [69] Dejarnette F, R., Hamilton H, H. Inviscid surface streamlines and heat transferon shuttle-type configurations[J]. Journal of Spacecraft and Rockets,1973,(6):314-321.
    [70] Hamilton H H, Weilmuenster K J, Dejarnette F R. Improved approximatemethod for computing convective heating on hypersonic vehicles usingunstructured grids[J]. AIAA2006-3394.
    [71]黄志澄.空天飞机气动加热的工程预测方法[J].气动实验与测量控制,1992,6(1):1-8.
    [72] Pond J. E., Schmitz C. P.. MINIVER Upgrade for the AVID System. Volume3EXITS User's and Input Guide[R]. NASA-CR-172214.1983.
    [73] Zoby E.V., Simmonds A.L. Engineering Flowfield Method withAngle-of-Attack Applications[J]. Journal of Spacecraft and Rockets,1985,22:398-404.
    [74] Christopher J Riley. Application of an engineer in inviscid-boundary layermethod to slender three-dimensional vehicle forebodies[J]. AIAA-93-2793.
    [75]张涵信.无波动、无自由流参数的耗散差分格式[J].空气动力学学报,1988,18(13):11-17.
    [76]王发民,沈月阳,姚文秀等.高超声速升力体气动热数值计算[J].空气动力学学报,2001,19(4):36-43.
    [77]卞荫贵,钟家康.高温边界层传热[M].北京:科学出版社,1986.
    [78]黄志澄,林炳秋,韩庆云等.航天空气动力学[M].北京:宇航出版社,1994.
    [79]瞿章华,刘伟,曾明等.高超声速空气动力学[M].长沙:国防科技大学出版社,2001.
    [80]张志成.高超声速气动热和热防护[M].北京:国防工业出版社,2003.
    [81]黄志澄.空天飞机气动热的工程预测方法[J].气动实验与测量控制,1992,6(1):1-8.
    [82]赵梦熊.载人飞船返回舱的气动热流分布[J].气动实验与测量控制,1996,(1):1-8.
    [83]刘仙名.空空导弹气动加热理论计算及其应用[J].航空兵器,1997,(2):22-25.
    [84]雷延花.高超声速飞行器气动特性计算方法研究[D].西北工业大学,2000.
    [85]陈志敏,雷延花.天地往返运输器气动力和气动热工程计算方法研究[J].西北工业大学学报,2001,19(2):205-208.
    [86]范晓墙,李桦等,丁猛.钝头双锥体有攻角表面热流计算密度[J].兵工学报,2002,23(1):142-144.
    [87]乐嘉陵.高超声速飞行器表面气动热和粘性摩擦力计算[J].流体力学实验与测量,2002,16(1):8-20.
    [88]乐发仁,杨军,姜贵庆等.微重力火箭气动加热计算[J].固体火箭技术,2003,26(1):1-9.
    [89]程养民. TY3探空火箭突起物气动加热计算[J].固体火箭技术,2003,26(2):1-3.
    [90]吕丽丽.高超声速气动热工程算法研究[D].西北工业大学,2005.
    [91]康宏琳,阎超,李亭鹤等.高超声速再入钝头体表面热流计算[J].北京航空航天大学学报,2006,32(12):1395-1398.
    [92]樊菁.高超声速高温气体效应判据[J].力学学报,2010,42(4):591-596.
    [93]蒋友娣.高超声速飞行器气动热和表面瞬态温度计算研究[D].上海交通大学,2008.
    [94]车竞,唐硕.类乘波体飞行器气动加热的工程计算方法[C].全国飞行力学与飞行试验学术交流年会.2005.
    [95]车竞,唐硕,何开锋.类乘波体飞行器气动加热的工程计算方法[J].弹道学报,2006,18(4):93-96.
    [96] Che Jing, Tang Shuo. The Engineering Calculation of Aerodynamics forQuasi-waverider Vehicle[J]. ACTA AERODYNAMICA SINICA,2007,25(3):381-385.
    [97]雍恩米,唐国金,陈磊.助推-滑翔式导弹中段弹道方案的初步分析[J].国防科技大学学报,2006,28(6):6-10.
    [98]刘建霞,侯中喜,陈小庆.高超声速滑翔飞行器表面加热特点研究[J].航空计算技术,2010,40(3):1-4.
    [99] Hurka J, Ballmann J. Elastic panels in transonic flow[J]. AIAA Paper2001-2722.
    [100] A.H. Van Zuijlen, S. Bosscher, H. Bijl. Two level algorithms for partitionedfluid–structure interaction computations[J]. Comput. Methods Appl. Mech.Engrg.,2007,196:1458-1470.
    [101] Ramji Kamakoti, Wei Shyy. Fluid–structure interaction for aeroelasticapplications[J]. Progress in Aerospace Sciences,2004,40:535-558.
    [102]窦怡彬,徐敏,蔡天星,姚伟刚.基于CFD/CSD耦合的二维壁板颤振特性研究[J].工程力学,2011,28(6):176-181.
    [103]蔡天星,徐敏,姚伟刚,窦怡彬.基于CFD/CSD耦合的超声速舵面动载荷计算[J].工程力学,2011,28(3):245-250.
    [104]肖军,谷传纲.基于全隐式紧耦合算法的气动弹性数值仿真[J].宇航学报,2010,31(11):2471-2476.
    [105]肖军,谷传纲.基于全隐式紧耦合算法的颤振数值分析[J].机械工程学报,2010,46(22).
    [106] Felippa C.A., Park K.C., Farhat C. Partitioned analysis of coupled mechanicalsystems[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(24-25):3247.
    [107] Joris Degroote, Robby Haelterman, Sebastiaan Annerel, Peter Bruggeman, JanVierendeels. Performance of partitioned procedures in fluid–structureinteraction[J]. Computers and Structures,2010,88:446–457.
    [108] Jahromi H, Izzuddin B, Zdravkovic L. Partitioned analysis of nonlinearsoil-structure interaction using iterative coupling[J]. Interact Multiscale Mech,2007,1(1):33-51.
    [109] Elleithy W, Tanaka M. Interface relaxation algorithms for BEM–BEM couplingand FEM–BEM coupling[J]. Comput Method Appl Mech Eng,2003,192:2977-2992.
    [110] Onte E, Idelsohn S, Del Pin F, Aubry R. The particle finite element method. Anoverview[J]. Int J Comput Method,2004,1:267-307.
    [111] Monaghan J. Simulating free surface flows with SPH[J]. J Comput Phys,1994,110(2):399-406.
    [112] Potapov S, Maurel B, Combescure A, Fabis J. Modeling accidental-typefluid-structure interaction problems with the SPH method[J]. Comput Struct,2009,87(11-12):721-734.
    [113] Peskin C, Mcqueen D. A three-dimensional computational method for bloodflow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid[J].J Comput Phys,1989,81(372-405).
    [114] Van Loon R, Anderson P, Van De Vosse F, Sherwin S. Comparison of variousfluid-structure interaction methods for deformable bodies[J]. Comput Struct,2007,85(11-14).
    [115] Piperno S. Explicit/implicit fluid/structure staggered procedures with astructural predictor and fluid subcycling for2D inviscid aeroelasticsimulations[J]. Int. J. Numer. Methods Fl,1997,25:1207-1226.
    [116] S. Piperno, C. Farhat. Partitioned procedures for the transient solution ofcoupled aeroelastic problems-Part II: Energy transfer analysis andthree-dimensional applications[J]. Comput. Methods Appl. Mech. Engrg,2001,190:3147-3170.
    [117] M. Heil. An efficient solver for the fully coupled solution of large displacementfluid-structure interaction problems[J]. Comput. Methods Appl. Mech. Engrg,2004,193:1-23.
    [118] Matthies H, Steindorf J. Partitioned strong coupling algorithms forfluid-structure interaction[J]. Comput Struct,2003,80:805-812.
    [119] C. Michler, E.H. Van Brummelen, R. De Borst. Error-amplification analysis ofsubiteration-preconditioned GMRES for fluid-structure interactions[J].Comput. Methods Appl. Mech. Engrg,2006,195:2124-2148.
    [120] R. Jaiman, P. Geubelle, E. Loth, X. Jiao. Transient fluid–structure interactionwith non-matching spatial and temporal discretizations[J]. Computers&Fluids,2011,50:120-135.
    [121] Heil M. An efficient solver for the fully coupled solution of large-displacementfluid-structure interaction problems[J]. Comput Method Appl Mech Eng,2004,193:1-23.
    [122] Bathe Kj, Zhang H. Finite element developments for general fluid flows withstructural interactions[J]. Int J Numer Method Eng,2004,60(213-232).
    [123] Bungartz H-J, Schafer M. Fluid-structure interaction-modelling, simulation,optimisation[M]. Berlin:2006.
    [124] Matthies H, Niekamp R, Steindorf J. Algorithms for strong couplingprocedures[J]. Comput Method Appl Mech Eng2006,195:2028-2049.
    [125] Fernandez M, Moubachir M. A Newton method using exact Jacobians forsolving fluid-structure coupling[J]. Comput Struct2005,83:127-142.
    [126] Vierendeels J, Lanoye L, Degroote J, Verdonck P. Implicit coupling ofpartitioned fluid-structure interaction problems with reduced order models[J].Comput Struct,2007,85(11-14):970-976.
    [127] Adam J. Culler, Jack J. Mcnamara. Studies on Fluid–Thermal–StructuralCoupling for Aerothermoelasticity in Hypersonic Flow[J]. AIAA-51245-946.
    [128] Adam J. Culler, Jack J. Mcnamara. Coupled Flow-Thermal-Structural Analysisfor Response Prediction of Hypersonic Vehicle Skin Panels[J]. AIAA2010-2965.
    [129] Adam J. Culler, Trevor Williams, Michael A. Bolender. Aerothermal Modelingand Dynamic Analysis of a Hypersonic Vehicle[J]. AIAA2007-6395.
    [130] Adam J Culler. Coupled Fluid-Thermal-Structural Modeling and Analysis ofHypersonic Flight Vehicle Structures[D]. Ohio State University,2010.
    [131] James R, Stewart H, Carter Edwards. A framework approach for developingparallel adaptive multiphysics applications[J]. Finite Elements in Analysis andDesign sign,2004,(40):1599-15911617.
    [132] Sahu R, Panthaki M J, Gerstle W H. An object-oriented framework formultidisciplinary,multi-physics[J]. Computational Mechanics Engineering withComputers&Fluids,1999,15(105-125).
    [133] Song Shaoyun, Li Shiqi. Collaborative design of mul-tiphysics problems[J].Chinese Journal of Mechanical Engineering with Computers,2007,20(3):105-108.
    [134] Charles Boivin, Carl0llivier-Gooch. A toolkit for numerical simulation ofPDEs,lI:solving generic mul-tiphysics problems[J]. Computer Methods inApplied Mechanics and Engineering,2004,(193):3891-3918.
    [135]宋少云,李世其.多场协同求解的预测一跳跃加速算法[J].华中科技大学学报(自然科学版),2009,37(8):85-87.
    [136]安效民,徐敏,陈士橹.二阶时间精度的CFD/CSD耦合算法研究[J].空气动力学学报,2009,27(5):547-552.
    [137]安效民,徐敏,陈士橹.多场耦合求解非线性气动弹性的研究综述[J].力学进展,2009,39(3):284-298.
    [138]刘占生,张云峰.非线性壁板颤振计算的子循环预测校正方法研究[J].航空动力学报,2007,22(5):1761-1767.
    [139]崔鹏,韩景龙.基于CFD/CSD的非线性气动弹性分析方法[J].航空学报,2010,31(3):480-486.
    [140] Harder Robert L. Interpolation Using Surface Splines[J]. ENGINEERINGNOTES,1972.
    [141] Yu.Z.W. Surface interpolation f rom irregularly distributed point s usingsurface splines with Fortran program[J]. Computers&Geosciences,2001.
    [142] Appa.K. Finite surface spline[J]. Joural of Aircraft,1989.
    [143] Hardy R.L. Theory And Applications of the Multiquadrie-BihannonieMethod[J]. Computers Math Applic,1990,19(8/9):163-208.
    [144] Duchon J. Splines minimizing rotation-invariant semi-norms in sobolevspaces[J]. Constructive Theory of Functions of Several Variables,1976:85-100.
    [145] Center Davidtaylor Research. DT NURBS Spline Geometry SubprogramLibrary User’s Manual[J]. Boeing Computer Services,1995.
    [146] Hodges Marilyn J. Smith and Dewey H. Evaluation of ComputationalAlgorithms Suitable for Fluid-Structure Interactions[J]. JOURNAL OFAIRCRAFT,2000.
    [147] Aukje De Boer, Hester Bijl, Alexander Van Zuijlen. Comparing DifferentMethods for the Coupling of Non-Matching Meshes in Fluid-StructureInteraction Computations[J]. AIAA2005-4620.
    [148] Thevebza P., Blu T., Unser M. Interpolation Revisited[J]. IEEE Transactions onMedical Imaging,2000,19(7):739-758.
    [149]汪学锋,李锋,周炜,冷文浩,汤家力.流固耦合网格插值方法研究[J].船舶力学,2009.
    [150] Farhat C, Lesoinne M, Tallec P. Load and Motion Transfer Algorithms forFluid/Structure Interaction problems with Non-Matching Discrete Interface:Momentum and Energy Conservation, Optimal Discretization and Applicationto Aeroelasticity[J]. Computer Methods in Applied Mechanics andEngineering,1998,157:95-114.
    [151] Cebral J.R., Lohner R. Conservative Load Projection and Tracking forFluid-Structure Problems[J]. AIAA Journal,1997,35(4):687-692.
    [152] Lohner R., Yang C., Cebral J. Fluid-Structure Interaction Using a LooseCouping Algorithm and Adaptive Unstructured Grids[J]. Computational FluidDynamics Review,1995.
    [153] W. Dettmer D. Peric. A computational framework for fluid–rigid bodyinteraction: Finite element formulation and applications[J]. Computer Methodsin Applied Mechanics and Engineering,2006.
    [154] A. De Boer A.H. Van Zuijlen, H. Bijl. Review of coupling methods fornon-matching meshes[J]. Computer Methods in Applied Mechanics andEngineering,2007.
    [155] Goura G.L, Badcock K.J. A Data Exehange Methed for Fluid-StructureInteraction Problems[J]. The Aeronautical Journal,2001:215-221.
    [156] Beckert A., Wendland H. Multivariate Interpolation forFluid-Structure-Interaction Problems Using Radial Basis Fuctions[J].Aerospace Science and Technology,2000:1-11.
    [157] Smith M.J., Cesnik C.E., Hodges D.H. Evaluation of Some Data TransferAlgorithms for Noncntiguous Meshes[J]. Journal of Aerospace Engineering,2000,13(2):52-58.
    [158] Smith M.J., Hodges D.H., Cesnik C.E. Evaluation of ComputationalAlgorithms Suitable for Fluid-Structure Interactions[J]. Journal of Aircraft,2000,37(2):282-294.
    [159] Buhmann M. D. RadialBasis Functions:Theory and Implementations2003.
    [160]吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报,2002.
    [161] Franke Richard. Scattered Data Interpolation:Tests of Some Methods[J].MATHEMATICS OF COMPUTATION,1982.
    [162]徐敏,陈士橹. CFD/CSD耦合计算研究[J].应用力学学报,2003,21(2):33-37.
    [163]史忠军. CFD_CSD耦合接口技术研究[D].2003.
    [164]安效民,徐敏,陈士橹.一种新的界面映射推进方法及其在气动弹性力学中的应用[J].宇航学报,2008.
    [165]徐敏,史忠军,陈士橹.一种流体-结构耦合计算问题的网格数据交换方法[J].西北工业大学学报,2003,21(5):532-535.
    [166]宋少云,李世其.耦合场协同仿真中节点载荷插值的混合法[J].计算机仿真,2006.
    [167]苏波,钱若军,袁行飞,于猛.利用能量守恒和径向基函数插值的流固耦合界面数据传递方法[J].西安交通大学学报,2009,43(9):114-119.
    [168]苏波,钱若军,袁行飞.流固耦合界面信息传递理论和方法研究进展[J].空间结构,2010,16(1):3-10.
    [169]汪学锋,李锋,周炜,冷文浩,汤家力.流固耦合网格插值方法研究[J].船舶力学,2009,13(4):571-578.
    [170]周岱,李磊,邓麟勇,张夏萍.流固耦合问题的网格更新与信息传递新方法[J].工程力学,2010,27(5):83-90.
    [171]韩向科,钱若军,波苏,袁行飞.基于紧支径向基函数的流固交互作用数据传递[J].同济大学学报(自然科学版),2011,39(1):48-52.
    [172]李立州,王婧超,吕震宙,岳珠峰.学科间载荷参数空间插值传递方法[J].航空动力学报,2007.
    [173]王晓江,夏露,詹浩,刘付龙.三维机翼的静气动弹性特性数值模拟研究[J].航空计算技术,2010.
    [174]史丽萍,赫晓东.可重复使用航天器的热防护系统概述[J].航空制造技术,2004,(7):80-83.
    [175] E. Glass David. Ceramic Matrix Composite (CMC) Thermal ProtectionSystems (TPS) and Hot Structures for Hypersonic Vehicles[J].AIAA-2008-2682.
    [176] Thornton E. A. Thermal Structures: Four Decades of Progress[J]. Journal ofAircraft,1992,29(3):485-498.
    [177] Clay C. L. High Speed Flight Vehicle Structures: An Overview[J]. Journal ofAircraft,2004,4(5):978-985.
    [178] Blevins R. D., Holehouse, I., and Wentz, K. R. hermoacoustic Loads andFatigue of Hypersonic Vehicle Skin Panels[J]. Journal of Aircraft,1993,30(6):971-978.
    [179] Shih P. K., Prunty, J., and Mueller, R. N. Thermostructural Concepts forHypervelocity Vehicles[J]. Journal of Aircraft,1991,28(5):337-345.
    [180] Thornton E. A., Thermal Structures for Aerospace Applications, AmericanInstitute, Of Aeronautics and Astronautics Reston, Virginia,1996.[J].
    [181] Orton G. F. And Scuderi, L. F. A Hypersonic Cruiser Concept for the21stCentury[J]. AIAA Paper1998-5525.
    [182] Lockwood M. K., Petley, D. H., Martin, J. G., and Hunt, J. L. AirbreathingHypersonic Vehicle Design and Analysis Methods and Interactions[J]. Progressin Aerospace Sciences,1999,35:1-32.
    [183] Tenney D. R., Lisagor, W. B., and Dixon, S. C. Materials and Structures forHypersonic Vehicles[J]. Journal of Aircraft,1989,26(11):953-970.
    [184]史丽萍,李垚,赫晓东.金属热防护系统的研究进展[J].宇航材料工艺,2005,(3):21-23.
    [185] David E. Glass. European Directions for Hypersonic Thermal ProtectionSystems and Hot Structures[C].31st Annual Conference on CompositesMaterials and Structures. Daytona Beach, FL,2007.
    [186] C.P. Leonard R. M. Amundsen, and W. E. Bruce. Hyper-X Hot StructuresDesign and ComparisonWith Flight Data[J]. AIAA2005-3438.
    [187]苏芳,孟宪红.三种典型热防护系统发展概况[J].飞航导弹,2006,(10):57-60.
    [188] E. Myers Carl J. Martin, and Max L. Blosser David. Parametric WeightComparison of Advanced Metallic, Ceramic Tile, and Ceramic BlanketThermal Protection Systems[J]. NASA/TM-2000-210289,2000.
    [189]苏大亮.高超声速飞行器热结构设计与分析[D].西北工业大学,2006.
    [190]王思青,张长瑞,周新贵等.重复使用运载器陶瓷热防护系统[J].导弹与航天运载技术,2004,3:37-41.
    [191] T.Pichona, R.Barreteaua, P.Soyrisa. CMC thermal protection system for futurereusable launch vehicles-Generic shingle technological[J]. Acta Astronautica,2009,65:165-176.
    [192] Houbolt J. C. A Study of Several Aerothermoelastic Problems of AircraftStructures in High-Speed Flight[D]. Swiss Federal Inst. of Technology,1958.
    [193] Dugundji J, Calligeros J. M. Similarity Laws for Aerothermoelastic Testing[J].Journal of the Aero/Space Sciences,1962,29(8):935~950.
    [194] Laidlaw W. R, Wykes J. H. Potential Aerothermoelastic Problems Associatedwith Advanced Vehicle Design[J]. Aero/Space Engineering,1963,22(1):154~164.
    [195] John H, Wykes, Robert E. Aerothermoelasticity-some recent studies of theimpact on stability and control of winged aerospace vehicles[R].AIAA64-0489.1964.
    [196] Menkes E.G, Houbolt J.C. Evaluation of aerothermoelasticity problems forunmanned mars entry vehicles[R]. AIAA68-0283.1968.
    [197]郝继光,姜毅,刘琦.导弹头部气动加热的流固耦合数值模拟[J].弹箭与制导学报,2006,26(4):230-232.
    [198] Eric L. Blades, James C. Newman. Computational Aeroelastic Analysis of anUnmanned Aerial Vehicle using U2NCLE[J]. AIAA2007-2237.
    [199]夏刚,刘新建,程文科,秦子增.钝体高超声速气动加热与结构热传递耦合的数值计算[J].国防科技大学学报,2003,25(1):35-41.
    [200]耿湘秋,张涵信,沈清,高树椿.高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J].空气动力学报,2002,20(4).
    [201] Juan R.Cebral, Rainald L. On The Loose Coupling Of Implicit Time-MarchingCodes[J]. AIAA2005-1093.
    [202] Rainald L., Chi Yang, Juan Cebral. Fluid-structure-thermal interaction using aloose coupling algorithm and adaptive unstructured grids[J]. AIAA98-2419.
    [203]宋少云.多场耦合问题的建模与耦合关系的研究[J].武汉工业学院学报,2005,24(4):21-29.
    [204]宋少云.多场耦合问题的协同求解方法研究与应用[D].华中科技大学,2007.
    [205] Michopoulos J. G., Farhat C., Fish J. Modeling and Simulation of MultiphysicsSystems[J]. Journal of Computing and Information Science in Engineering,2005,5(3):198-213.
    [206]宋少云.多场耦合问题的分类及其应用研究[J].武汉工业学院学报,2008,27(3):46-49.
    [207]方平治,顾明.基于松耦合法的求解气动弹性问题的数值模拟方法[J].同济大学学报(自然科学版),2007,35(7):888-892.
    [208] Juan R.Cebral, Rainald Loehner. Fluid-structure coupling-Extensions andimprovements[J]. AIAA97-0858.
    [209]张华,马东立,马铁林.弹性变形对柔性机翼气动特性影响分析[J].北京航空航天大学学报,2008,34(5):487-490.
    [210] Hermann G. Matthies, Rainer Niekamp, Jan Steindorf. Algorithms for strongcoupling procedures[J]. Comput. Methods Appl. Mech. Engrg,2006,195:2028-2049.
    [211] Jack J. Mcnamara, Adam J. Culler, Andrew R. Crowell. AerothermoelasticModeling Considerations for Hypersonic Vehicles[J]. AIAA2009-7397.
    [212]范绪箕.高速飞行器热结构分析与应用[M].北京:国防工业出版社,2009.
    [213] Jack J. Mcnamara, Peretz P. Friedmann. Aeroelastic and AerothermoelasticAnalysis of Hypersonic Vehicles: Current Status and Future Trends[J]. AIAA2007-2013.
    [214] Spain C, Soistmann D, Parker E. An overview of selected NASP aeroelasticstudies at the NASA Langley Research Center[R]. AIAA9025218.
    [215]吴志刚,惠俊鹏,杨超.高超声速下翼面的热颤振工程分析[J].北京航空航天大学学报,2005,31(3):270-273.
    [216]吕继航,杨茂,陈凤明.超音速舵面热气动弹性仿真[J].计算机仿真,2010,27(3):43-46.
    [217] Carlos A. Felippa, K.C. Park, Charbel Farhat. Partitioned analysis of coupledmechanical systems[J]. Comput. Methods Appl. Mech. Engrg,2001,190:3247-3270.
    [218]瞿章华,刘伟,曾明,柳军.高超声速空气动力学[M].长沙:国防科技大学出版社,2001.
    [219]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [220] Chen P. C., Jadic I. Interfacing of fluid and structural models via innovativestructural boundary element method[J]. AIAA Journal,1998,36(2):282-287.
    [221]史忠军. CFD/CSD耦合接口技术研究[D].西北工业大学,2003.
    [222] Wu Zongmin. Compactly supported positive definite radial functions[J].Advances in Computational Mathematics,1995.
    [223] Mcnamara J. J., Friedmann P. P., Powell K. G., Thuruthimattam B.J.Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow[J]. AIAAJournal,2008,46(10):2591-2610.
    [224] Mei C., Abdel-Motagaly, K., and Chen, R. Review of Nonlinear Panel Flutterat Supersonic and Hypersonic Speeds[J]. Applied Mechanics Reviews,1999,52(10):321-332.
    [225] Cheng G. And Mei, C. Finite Element Modal Formulation for Hypersonic PanelFlutter Analysis with Thermal Effects[J]. AIAA Journal,2004,42(4):687-695.
    [226] Van Dyke M.D., Gordon H. D. Supersonic Flow Past a Family of BluntAxisymmetric Bodies[J]. NASA TR R-1,1959.
    [227] Fay J A, Riddell F R. Theory of Stagnation Point Heat Transfer inDissociated[J]. J Aero Sci,1985,25(2).
    [228]张钧波.高超声速弹箭头部气动热数值计算[D].南京理工大学,2009.
    [229]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社,2003.
    [230]蒋友娣.高超声速飞行器气动热和表面瞬态温度计算研究[D].2008.
    [231]黄志澄.高超声速飞行器空气动力学[M].北京:国防工业出版社,1995.
    [232]严传俊,范玮.燃烧学[M][M].西安:西北工业大学出版社,2005.
    [233] Anderson John D, Jr L.M Albacete, Winkehnann A.E. Comment onShock-Wave Shapes around Spherical-and Cylindrical-Nosed Bodies[J].Journal of Spacecraft and Rackets,1968,5(10):1247-1248.
    [234] Van Dyke M. D. The Supersonic Blunt-Body Problem Review andExtension[J]. Journal of Aeronautical Sciences,1958,25:485-495.
    [235] Billing. Shock-Wave shapes around Spherical and Cylindrical-Nosed bodies[J].Journal of Spacecraft and Rockets,1967,4(6):822-823.
    [236] George R. Inger, Charlotte Higgins, Richard Morgan. Shock standoff onhypersonic blunt bodies in nonequilibrium gas flows[J]. AIAA2001-0812.
    [237] George R. Inger. Low Reynolds number effects on hypersonic blunt bodyshock standoff[J]. AIAA2003-1136.
    [238] Kamyar Mansour, Ziba Eghlima. Calculation of standoff shock on paraboloidsat supersonic speeds using cfd mehod[C]. Tenth International Congress of FluidDynamics.2010.
    [239] Klamon J H. Bow Shock Correlation for Slightlym Blunted Cones[J]. AIAAJournal,1963,1(2).
    [240] Juergen W. Heberle, George P. Wood, Paul B. Gooderum. Data on Shape andLocation of Detached Shock Waves on Cones and Spheres[J]. NACA TN2000.
    [241]卞荫贵,赵国英.可压缩流边界层参数的工程计算方法[J].力学学报,1980,(2):120-128.
    [242] Robert D. Quinn, Leslie Gong. A Method for Calculating Transient SurfaceTemperatures and Surface Heating Rates for High-Speed Aircraft[R].NASA/TP-2000-209034.
    [243]刘建霞.高超声速滑翔式飞行器气动热建模与分析[D].国防科大,2008.
    [244]侯中喜.超声速复杂流场并行数值分析及高阶格式研究[D].国防科技大学,2000.
    [245]李君哲.气动热CFD计算格式及网格影响研究[D].北京航空航天大学,2004.
    [246]潘沙.高超声速气动热数值模拟方法及大规模并行计算研究[D].国防科学技术大学,2010.
    [247] Hoffmann K a Papadakis M, Suzen Y B. Aeroheating and Skin FrictionComputations for a Blunt Body at High Speeds[R]. AIAA94-0445.
    [248] Siddiqui M S Hoffmann K a, Rutledge W H.A. Comparative Study of theNavier-Stokes Solvers with Emphasis on the Heat Transfer Computation ofHigh Speed Flows[R]. AIAA92-0835.
    [249] Charles E.Cockrell J Auslender a H, White J A. Aeroheating Predictions for theX-43Hyper-X Cowl-Closed Configuration at Mach7and10[R]. AIAA2002-0218.
    [250]王浩.高超音速流动数值模拟与热流数值计算[D].北京航空航天大学,2002.
    [251] Chaumette D. Passive Thermal Protection Systems for Hermes[J]. E45831.
    [252] Delon J P. Hermes: The Thermal Protection System[J]. IAF-90-268.
    [253] Mauric Delahais, Michel Nerault. The Hermes System Protection Status andTechnology Aspects[J]. IAF-89-239.
    [254] Miihlratzer A, Handrick K, Weber K H. Hermes Thermal Protection SystemInternal Multilayer Insulation[J]. A-1-13928.
    [255]马忠辉.可重复使用运载器热防护系统性能分析研究[D].西北工业大学,2004.
    [256] Rosario Borrelli, Aniello Riccio, Domenico Tescione, Roberto Gardi, GiulianoMarino. Thermo-structural behaviour of an UHTC made nose cap of a reentryvehicle [J]. Acta Astronautica,2009,(65):441-456.
    [257]施吉林,刘淑珍,陈桂芝.计算机数值方法[M].北京:高等教育出版社,1999.
    [258] Lighthill M J. Oscillating airfoils at high mach numbers[J]. Journal ofAeronautical Science,1953,20(6):402-406.
    [259] Hayes W. D. On Hypersonic Similitude[J]. Quarterly on Applied Mathematics,1947,5(1):105-106.
    [260] Ashley H, Zartarian G. Piston theory--a new aerodynamic tool for theaeroelastician[J]. Journal of Aeronautical Science,1956,23(10):1109-1118.
    [261] Mei C, Abdel-Motagaly K, Chen R. Review of Nonlinear Panel Flutter atSupersonic and Hypersonic Speeds[J]. Applied Mechanics Reviews,1999,52(10):321-332.
    [262]王宝来,吴世平,梁军.复合材料失效及其强度理论[J].失效分析与预防,2006,1(2):13-19.
    [263] Grant Palmer, Dean Kontinos. Surface heating effects of X-33vehicle TPSpanel bowing, steps, and gaps[J]. AIAA98-0865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700