用户名: 密码: 验证码:
大容量变压器中油流分布与绕组温度场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力工业的不断发展,我国生产的超高压、特高压大型电力变压器的额定容量不断增加,变压器的损耗和温升问题已成为国际电工领域的研究热点问题之一。负载损耗是变压器的主要性能参数,其包含的各个损耗分量作为变压器温升研究中的热源,其大小及分布直接影响变压器的热点温升分析。由于变压器在运输过程中体积受到一定的限制,大型变压器单位损耗大且散热困难,负载损耗、冷却特性及绕组区域温升的准确计算和分析是其设计的关键问题。
     本文针对大容量变压器的负载损耗中的各个损耗分量的分解问题、油流冷却系统的固有特性及工作状态、绕组区域温升问题进行了深入的理论计算分析与实验研究。主要研究内容如下:
     (1)应用三维非线性时谐场分析法,对变压器漏磁场进行了计算,并且将部分计算结果与实测值进行对比。指定位置漏磁场计算结果与实验值相对误差在5%以内,满足工程要求,验证了计算方法的有效性。
     (2)建立了考虑材料各向异性及不同屏蔽结构形式的大容量变压器三维有限元时谐涡流场计算分析模型,分析了变压器金属结构件中损耗及分布,通过对十八台不同结构形式及各极限分接运行情况下的变压器产品进行实验及分析,对变压器的负载损耗计算和实验结果进行了对比分析,确定了负载损耗中各个损耗分量所占的比重,并将此计算方法应用于新产品的研发。
     (3)基于权重系数方法建立了变压器绕组杂散损耗计算数学模型,准确地计算出变压器绕组中的杂散损耗。针对不同导线结构进行了实验,并且对数值仿真得到负载损耗计算结果与实验结果进行了对比分析,确定了此方法中的权重系数,提高了绕组杂散损耗的计算精度,并应用此方法对新产品进行了验证分析。
     (4)根据流体力学、流体动力学及粘性流体力学理论,提出了FVM—FLIC耦合方法,分析了变压器冷却系统油流特性,确定冷却系统的工作状态。建立大容量变压器流体域的数值分析模型,对变压器整体冷却系统油流特性进行计算与分析。通过对冷却系统油流特性的分析,确定了冷却系统动力源—油泵的工作点,进而确定冷却系统的工作状态,并将此计算得到的数据结果应用于绕组区域温升的计算。
     (5)基于电磁场、流场及温度场的多场耦合及流—固耦合方法,建立了变压器绕组区域温升计算模型,分析了变压器绕组区域温升分布。首先,通过对变压器电磁场的分析,计算出绕组区域的损耗及分布,得到绕组区域温升计算的热源;其次,对变压器整体油流冷却系统进行计算与分析,确定冷却系统的工作点和工作状态,得到绕组区域温度场计算的边界条件;最后,通过对变压器绕组区域进行多场耦合及流—固耦合计算分析,得到绕组区域的温升及分布。通过对变压器绕组区域进行光纤测温实验,并将计算结果与实验结果进行对比分析,修正计算方法,同时也验证了温升计算方法的有效性和实用性。
     (6)采用本文计算方法,对一台特高压、大容量的变压器进行优化设计及分析计算。在对变压器负载损耗的分解计算、油流冷却系统的分析和绕组区域温升的计算分析基础上,提出了改善绕组区域损耗分布的方法,建立了一套高效、节能的变压器油流冷却系统,简化了冷却结构,改善了变压器绕组温升,设计的产品通过了实验考核。
With the development of power industry, the rated capacity of EHV, UHV large powertransformer is increasing, the losses and temperature rise of transformer has become one ofthe hot issues studied in the field of international electricity. Load losses is one of the mainperformance parameters of the transformer, which includes the various loss components isthe heat source in research of the transformer temperature rise, its value and distributionaffects the hot-spot and temperature rise analysis of transformer directly. Due to thedimeasion restrictions during the transportation, the specific losses is higher and heatradiating is difficulty, the accurate calculation and analysis of load losses, cooling systemand winding temperature rise are the key issues in design.
     This article focuses on the calculation and analysis of the decomposition of variousloss components which include reducing problems load loss, the inherent characteristics ofoil flow cooling system and working state analysis, winding temperature rise are carriedout in-depth theoretical calculation and analysis and experimental research. The maincontents are as follows:
     (1)3D nonlinear time-harmonic field analysis method is taken to calculate themagnetic leakage flux of transformer, and some of the calculation results are comparedwith the measured values. The relative error of calculation results and test value ofmagnetic leakage flux in specified location is within5%. This meets the engineeringrequirements and the validity of the calculation method is varified.
     (2) Establish the3D finite element time-harmonic eddy current calculation andanalysis model to consider material anisotropy and different forms of shielding structurefor large power transformer; analyze the loss and loss distribution in transformer structureparts. Through the analysis of18units’ transformer in different structure forms anddifferent ultimate tapping position, the comparision between the load loss and test values iscarried out and the various loss components of load loss is determined. This calculationmethod is applied to new product development.
     (3) Based on the weight coefficient method the mathematical model of transformerwinding stray loss is established, the stray loss of transformer winding is calculatedaccurately. Experiments are performed for wire in different structure, the load lossnumerical simulation results are compared with the experimental results and analyzed, theweight coefficient of this methodis has been determined; increase the calculation accuracyof winding stray loss is increased. This calculation method has been adopted in evoluationof new products.
     (4) According to fluid mechanics, fluid dynamics and mechanics of viscous fluidsknowledge, the inherent characteristics of transformer oil flow cooling system is analyzedand the wording status of the oil flow cooling system is determined, FVM-FLIC couplingmethod is brought forward, the numerical analysis model of large power transformer influid domain is established in order to calculate and analyze the cooling system of alltransformer oil flow cooling system. Through the research of the oil flow cooling systeminherent characteristics the pump operating point of the cooling system power source isdetermined, thus the working state of transformer oil flow cooling system also. The dataobtained from the calculation results are applied to the calculation of the windingtemperature rise.
     (5) Based on multi-field coupling and fluid-solid coupling method of electromagneticfield, fluid field and temperature field, the winding temperature rise calculation model isestablished, the temperature rise distribution in winding is analyzed. Firs, through theresearch and analysis of electromagnetic field, the loss and loss distribution of winding iscalculated to obtain the heat source of winding; second, the calculation and analysis towhole transformer oil flow cooling system is done, the operating point and working state isdetermined to obtain the boundary conditions for calculating winding temperature field;finally, through of the multi-field coupling and fluid-solid coupling method calculation andanalysis of the transformer winding area, the temperature rise and distribution of windingregion is obtained. Through fiber optic temperature measurement test, the calculationresults and test values are compared to correct the calculating method, and theeffectiveness and practicability of this temperature calculation method are verified also inthe meantime.
     (6) The calculation method used in this paper has been applied to the optimizeddesign and analysis calculations for one UHV, large power transformer. Based on thedecomposition calculation of transformer load loss, analysis of oil flow cooling system and calculation of winding temperature rise, improving the winding area loss distributionapproach is put forward and an efficient, energy saving oil flow cooling system oftransformer is established, the cooling structure is simplized, the transformer windingtemperature rise is improved, and the designed product has been passed the test checking.
引文
[1]政府工作报告.十二五发展规划.2011年.
    [2]高兴耀.21世纪初我国电力变压器技术发展展望.变压器,2000,37(1):4-8.
    [3]王承志.40年来变压器制造技术的发展与进步.变压器,2004,41(3):51-58.
    [4]赵峰,王凯,张俊杰等.大容量变压器局部过热问题分析.变压器,2009,46(7):74-75.
    [5]闵英杰.变压器温升及其对绝缘老化影响的研究:(硕士学位论文).西安:西南交通大学,2008.
    [6]咸日常,袁建华,梁玉.电力变压器温升与冷却装置改造的技术经济分析.高压电器,2006,42(1),58-59.
    [7] Tapan K. Saha,Prithwiraj Purkait. Investigations of Temperature Effects on the DielectricResponse Measurements of Transformer Oil-Paper Insulation System. IEEETRANSACTIONS ON POWER DELIVERY,2008,23(1):252-260.
    [8] José Antonio Jardini, José Luiz Pereira Brittes, Luiz Carlos Magrini. Power TransformerTemperature Evaluation for Overloading Conditions. IEEE TRANSACTIONS ON POWERDELIVERY,2005,20(1):179-184.
    [9] Marius-Constantin Popescu.Transformer thermal and loss of life models. Journal of Electricaland Electronics Engineering Research,2009,1(1):1-22.
    [10]解绍峰,李群湛,贺建闽.牵引变压器温升与寿命损失研究.机车电传动,2003,4(2003),15-17.
    [11]罗玉才,王一凤.变压器冷却方式对绕组温升的影响.变压器,2012,1(4),17-18.
    [12]袁道君.大容量油浸自冷变压器冷却系统设计存在的问题及优化方案.变压器,2005,2(42),25-28.
    [13]胡岩.大型电力变压器磁分路及低压引线电流漏磁效应和局部过热的研究:(博士学位论文).沈阳:沈阳工业大学,2001.
    [14]李建州.高速电力机车主变压器三维油箱损耗分析及温度场计算:(硕士学位论文).长沙:湖南大学,2002.
    [15] Kurt Preis, Oszkár Bíró, Gerhard Buchgraber. Thermal-Electromagnetic Coupling in theFinite-Element Simulation of Power Transformers. IEEE TRANSACTIONS ONMAGNETICS.2006,42(4):999-1002.
    [16]李季,罗隆福,许加柱等.变压器热-磁三维有限元计算.电力系统及其自动化学报,2007,1(19),96-103.
    [17] S. L. Ho, Y. Li, R. Y. Tang. Calculation of Eddy Current Field in the Ascending Flange for theBushings and Tank Wall of a Large Power Transformer. IEEE TRANSACTIONS ONMAGNETICS.2008,44(6):1522-1525.
    [18] Lenart Kralj, Damijan Miljavec. Stray losses in power transformer tank walls and constructionparts. International Conference on Electrical Machines.2010:1002-1006.
    [19] B. Zhang, L. Liu, Y. Liu et al. Effect of geomagnetically induced current on the loss oftransformer tank. Electric Power Applications.2010,4(5):373-379.
    [20] S. Wiak, P. Drzymala, H. Welfle.3D Computer Field Model of Power Transformer-MagneticField and Power Losses Computation. International Conference on Electrical Machines, Rome,2010:1173-1178.
    [21]朱占新.大型电力变压器三维涡流场结构件损耗计算方法的研究:(博士学位论文).沈阳:沈阳工业大学,2012.
    [22]张俊杰、李琳、刘兰荣等.进入硅钢叠片内的漏磁通和附加损耗的模拟实验与仿真.电工技术学报,2013,28(5),148-153.
    [23]杨平,刘文里.用镜像法计算大型电力变压器漏磁场的研究.电机与控制学报,2005,9(2):166-170.
    [24]刘锐,李金忠,张书琦等.大型电力变压器损耗测量不确定度分析.电网技术,2012,36(7),155-160.
    [25]余国清、王玲.电力变压器漏磁场及绕组涡流损耗计算.电气制造,2013(2),39-43.
    [26]王悦.变压器冷却油道中异型三通阻力特性研究.水电能源科学,2000,2(18),53-54.
    [27]毛一之,王秀春,韩鹏.用牛顿—拉普森法计算变压器油流分布.变压器,2004,41(6):13-17.
    [28]黄岩松,沈彦利,李壮.120MVA变压器冷却系统技术改造效果分析.冶金动力,2004,5(105),7-8.
    [29]牛传杰.大型变压器潜油泵的改造.华北电力技术,2006,9(2006),38-39.
    [30]耿基明.高压厂用变压器冷却方式的改造.2008,9(2008),27-30.
    [31]陈伟迎,赖相健.大功率变压器冷却器的改造与维护建议.广东电力,2008,1(21),54-60.
    [32]李鹏飞、李国祥、胡玉平.大型油浸式自冷变压器冷却系统CFD分析.变压器,2008,4(45),45-48.
    [33]谢志杨.紫洞站220kV主变冷却系统的改造.2008,2(44),190-192.
    [34]王长胜,王健,汤焱.±800kV换流变压器油流温升计算分析.变压器,2009,46(9):11-13.
    [35]谢蓉,张星,关亮等.强迫油循环冷却变压器内部温度场数值模拟.电力科学与工程,2012,28(10):47-52.
    [36] Jean-Michel Mufuta, Eric van den Bulck. Modelling of the mixed convection in the windingsof a disc-type power transformer. Applied Thermal Engineering,2000,20(2000),417-437.
    [37]梅田繁树.新的变压器冷却方式.变流技术与电力牵引,2003,2(2003),21-23.
    [38] E. Rahimpour, M. Barati, M. Schafer. An investigation of parameters affecting the temperaturerise in windings with zigzag cooling flow path. Applied Thermal Engineering,2007,27(2007):1923–1930.
    [39] Jiahui Zhang, Xianguo Li, Michael Vance et al. Experiments and modeling of heat transfer inoil transformer winding with zigzag cooling ducts. Applied Thermal Engineering,2008,28(2008),36–48.
    [40] M.A. Taghikhani, A. Gholami. Prediction of hottest spot temperature in power transformerwindings with non-directed and directed oil-forced cooling. Electrical Power and EnergySystems,2009,31(2009):356–364.
    [41] Marko Sorgic, Zoran Radakovic. Oil-Forced Versus Oil-Directed Cooling of PowerTransformers. IEEE TRANSACTIONS ON POWER DELIVERY,2010,25(4):2590-2598.
    [42] A. Weinl der, W. Wu, S. Tenbohlen. Prediction of the oil flow distribution in oil-immersedtransformer windings by network modelling and computational fluid dynamics. Electric PowerApplications.2012,6(2):82-89.
    [43]丛龙飞,冯恩民,郭振岩等.油浸风冷变压器温度场的数值模拟.变压器,2003,5(40),1-6.
    [44]郭健,林鹤云,徐子宏等.混合绝缘液浸电力变压器的热-流耦合场分析及绝缘和散热器结构的改进.高压电器,2008,2(44),122-125.
    [45]周清泉.大型变压器绕组温升计算的修正.变压器,2008,45(9):5-7.
    [46]王秀春,陶军普.大型自然油循环导向冷却变压器温度场研究.变压器,2008,45(7),6-10.
    [47]陈琪,李洪春,钟鸣.绕组热点温度计算及利用绕组控制变压器运行的分析.变压器,2010,47(10),15-18.
    [48]王宇翔,王建民,刘建新.油浸式变压器绕组涡流损耗及温升分布研究.电力科学与工程,2011,27(1):28-31.
    [49]滕黎,陈伟根,孙才新.油浸式电力变压器动态热路改进模型.电网技术,2012,36(4):236-241.
    [50]魏本刚,黄华,傅晨钊等.基于修正热路模型的变压器顶层油温及绕组热点温度计算方法.华东电力,2012,40(3):444-447.
    [51] Simon A. Ryder. A Simple Method for Calculating Winding Temperature Gradient in PowerTransformers. IEEE TRANSACTIONS ON POWER DELIVERY,2002,17(4):977-982.
    [52] Zoran Radakovic, Kurt Feser. A New Method for the Calculation of the Hot-Spot Temperaturein Power Transformers With ONAN Cooling. IEEE TRANSACTIONS ON POWERDELIVERY,2003,18(4),1284–1292.
    [53] Dejan Susa, Matti Lehtonen, Hasse Nordman. Dynamic Thermal Modelling of PowerTransformers. IEEE TRANSACTIONS ON POWER DELIVERY,2005,20(1),197–204.
    [54]佐兰·拉达科维奇,彼得·海因茨西,克劳斯·埃克豪斯等.油粘度对自冷变压器热特性的影响.变压器,2007,8(44),14-19.
    [55] R. Hosseini, M. Nourolahi, G.B. Gharehpetian. Determination of OD cooling systemparameters based on thermal modeling of power transformer winding. Simulation ModellingPractice and Theory,2008,16(2008),585–596.
    [56] Marina A. Tsili, Eleftherios I. Amoiralis, Antonios G et al. Kladas. HybridNumerical-Analytical Technique for Power Transformer Thermal Modeling. IEEETRANSACTIONS ON MAGNETICS.2009,45(3):1408-1411.
    [57] W. Wu, Z.D. Wang, A. Revell. Computational fluid dynamics calibration for networkmodelling of transformer cooling oil flows–part I heat transfer in oil ducts. Electric PowerApplications.2012,6(1):19-27.
    [58] Kamil Dursun. Oil and Winding Temperature Control in Power Transformers.4th InternationalConference on Power Engineering, Energy and Electrical Drives, Turkey,2013:1631-1639.
    [59] L.Susnjic, Z.Haznadar, Z.Valkovic et al.Prediction of Stray Losses in Power Transformer.Electrical and Electronic Engineering, Spain,2005:15-17.
    [60]杨素梅,程志光,朱晓荃等.大型变压器屏蔽涡流场中杂散损耗的研究.高压电器,2007,43(6),451-453.
    [61]毕延军,徐宁,杨平等.应用镜像法研究电缆绕组变压器的漏磁场.黑龙江电力,2006,28(1):11-19.
    [62] Benali Boualem, Francis Piriou. Hybrid Formulation A-with Finite Element Method toModel in3D Electromagnetic Systems. IEEE Trans. Magn.1996,32(6):659-662.
    [63]李岩.大型电力变压器线圈电磁力和局部过热问题研究:(博士学位论文).沈阳:沈阳工业大学,1995.
    [64] M.A. Venegas Vega, R. Escarela Pérez, T. Niewierowicz.3D Finite Element Estimation ofStray Losses in Three-Phase Transformers. JOURNAL OF APPLIED COMPUTERSCIENCE.2008,16(1),89-100.
    [65] P.Belforte, M. Chiampi, M. Tartaglia. A Finite Element Computation ProcedureElectromagnetic Fields Under Different Supply Conditions. IEEE Transactions Magnetics,1985,21(6):2284-2287.
    [66]景崇友,王建民,王永青.大型变压器漏磁场及特性参数的工程仿真软件研发.变压器,2008,45(4):1-5.
    [67]邱清泉,励庆孚,钱虹凌等.电力变压器优化计设计系统构建.电气应用,2006,25(4):39-42.
    [68]周封,熊斌,李伟力等.大型电机定子三维流体场计算及其对温度场分布的影响.中国电机工程学报,2005,25(24):128-132.
    [69]路义萍,陈朋飞,李俊亭等.某新型空冷汽轮发电机转子通风方式的流场分析.中国电机工程学报,2010,30(6):63-68.
    [70]路义萍,郑国丽,李俊亭等.空冷汽轮发电机转子多路通风均匀性.中国电机工程学报,2010,30(3):99-104.
    [71]丁树业,葛云中,徐殿国等.1.5MW双馈风力发电机内流体场分析.中国电机工程学报,2012,32(21):93-98.
    [72]郭鹏程,罗兴锜,覃延春.基于计算流体动力学的混流式水轮机性能预估.中国电机工程学报,2006,26(17):132-137.
    [73] Yingying Wang, Guoqiang Zhang, Weijun Xing et al. Simulation of Oil Flow Process ofInsulation Structure for High Efficiency Cooling Shell Transformers.2010InternationalConference on Power System Technology, China,2010:1-6.
    [74]钟崴,谢金芳,王志新等.锅炉集箱系统并联管组流量不均匀性与热负荷间的关系.中国电机工程学报,2011,31(32):23-30.
    [75]张兆顺,崔桂香.流体力学.清华大学出版社,2010.
    [76]章梓雄,董曾南.粘性流体力学.清华大学出版社,2011.
    [77]王福军.计算流体动力学分析.清华大学出版社,2007.
    [78]张师帅.计算流体动力学及其应用.华中科技大学出版社,2011.
    [79]王菊芬,孟浩龙.变压器油流带电现象.高电压技术,2008,34(5),878-882.
    [80] T. Paillat, Y. Zelu, G. Morin. Ester Oils and Flow Electrification Hazards in PowerTransformers. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(5):1537-1543.
    [81] G.L.Alegi, W.Z. Black. Real-time Thermal Model For An Oil-immersed Forced-air CooledTransformer. IEEE Transactions of Power Delivery,1990,5(2):991-999.
    [82] Xueqian Ding, Wang Ning. Analysis of the Dry-type Transformer Temperature Field Based onFluid-solid Coupling.2012Second International Conference on Instrumentation&Measurement, Computer, Communication and Control, China,2012:520-523.
    [83]郭健,林鹤云,徐子宏.混合绝缘液浸电力变压器的热-流耦合场分析及绝缘和散热器结构的改进.高压电器,2008,44(2),122-125.
    [84]王秀春,刘伟军,朱恒宣等.油浸式变压器层式绕组温度场研究.变压器,2010,47(10):45-48.
    [85] M.T. Askari, M.Z.A. Ab. Kadir, J. Jasne. A Numerical Method for Calculating the Loss Of LifeOf Power Transformers.2012IEEE International Power Engineering and OptimizationConference, Malaysia,2012:29-34.
    [86]丁树业,葛云中,孙兆琼等.高海拔用风力发电机流体场与温度场的计算分析.中国电机工程学报,2012,32(24):74-80.
    [87] Yonghong Wu, Shunbin Hu. The Application Research on the Automation of PowerTransformer's Temperature Rise Test.2007IEEE International Conference on Control andAutomation, China,2007:2400-2402.
    [88] Jian Li, Taosha Jiang, Stanislaw Grzybowski. Hot spot Temperature Models Based on Top-oilTemperature for Oil Immersed Transformers.2009Annual Report Conference on ElectricalInsulation and Dielectric Phenomena, China,2009:55-58.
    [89] Simon A.Ryder, Ian J.Vaughan. A Simple Method for Calculating Core Temperature Rise inPower Transformers. IEEE TRANSACTIONS ON POWER DELIVERY,2004,19(2):637-642.
    [90] Qing He, Jennie Si, Daniel J. Prediction of Top-Oil Temperature for Transformers UsingNeural Networks. IEEE TRANSACTIONS ON POWER DELIVERY,2000,15(4):1205-1211.
    [91] Ahmed Al-Nadabi, Hisham Al-Riyami. Design A Simulation Model to Estimate the Hot SpotTemperature in Power Transformers. SIXTH IEEE INTERNATIONALMULTI-CONFERENCE ON SYSTEMS, SIGNALS&DEVICES,2009:23-26.
    [92]杨世铭,陶文铨.传热学.高等教育出版社,2010.
    [93]陶文铨.数值传热学.西安交通大学出版社,2010.
    [94] J.Aubin, Y. Langhame. Effect Of Oil Viscosity On Transformer Loading Capability At LowAmbient Temperatures. IEEE Transactions of Power Delivery,1992,7(2):516-524.
    [95]张章奎.国内外特高压电网技术发展综述.华北电力技术,2006,47(1):1-11.
    [96]印永华.特高压大电网发展规划研究.电网与清洁能源,2009,25(10):1-3.
    [97]王琼.特高压输电技术发展现状及其应用.企业技术开发,2009,28(2009):5-7.
    [98] Eleftherios I. Amoiralis, Pavlos S. Georgilakis, Marina A. Tsili. Global TransformerOptimization Method Using Evolutionary Design and Numerical Field Computation. IEEETRANSACTIONS ON MAGNETICS,2009,45(3):1720-1723.
    [99]邱凌.热电偶在变压器温升测量中的机理及应用.计量与测试技术,2006,33(4),16-17.
    [100] Slobodan M. Maksimovich, Vladimir M. Shiljkut. Determination of Critical AmbienceTemperature by Power Transformers Loading.8th Mediterranean Conference on PowerGeneration, Transmission, Distribution and Energy Conversion,China,2012:1-6.
    [101]杨治业,王立群,杜建嵩.油浸式电力变压器的温升试验及计算方法.变压器,2001,38(6),15-20.
    [102]陈培伟,陈涛.变压器绕组温度计的原理及其应用.华电技术,2008,30(10):14-21.
    [103]陈军.光纤测温技术在变压器上的应用.变压器,2008,45(1),38-40.
    [104] Myonghwan Kim, June-Ho Lee, Ja-Yoon Koo. A Study on Internal Temperature MonitoringSystem for Power Transformer using Optical Fiber Bragg Grating Sensors.2008InternationalSymposium on Electrical Insulating Materials, Japan,2008:163-166.
    [105]刘伟军,王秀春,朱炎辉等.带光纤温控器的变压器温升试验及分析.变压器,2010,47(9):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700