用户名: 密码: 验证码:
轻质燃料油蒸发损耗控制软浮顶油罐技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻质燃料油的蒸发损耗,造成了能源浪费、环境污染、健康危害、安全隐患和油品质量的下降。本课题以控制轻质燃料油蒸发损耗的软浮顶油罐技术作为研究对象,首先对影响油品蒸发损耗的两个主要因素,油品蒸发表面积和油品表面温度,开展了相关的理论和实验研究。其次系统的考察了软浮顶的表面氟化性能,以及憎水憎油等阻隔性能。再根据软浮顶的相变材料控温实验,分析了软浮顶减少小呼吸的过程。最后利用自主设计的气相色谱油气在线检测系统和软浮顶模拟油罐,分别在室内和室外研究了软浮顶油罐技术控制轻质燃料油蒸发损耗的实际效果。
     1、深入分析了轻质燃料油蒸发实质和蒸发影响因素,研究了油罐气体空间油气浓度的分布情况。推导出基于表面覆盖的蒸发损耗修正公式,实例验证结果与实际损耗量相比,用瓦廖夫斯基—契尔尼金公式计算损耗量相对实际损耗量误差为21%,推导公式计算损耗量相对实际损耗量误差为7.7%,误差优于原公式。计算所得损耗量与实际损耗量存在的出入,主要是由罐内介质等物理量的非稳状态引起的。
     2、济空某场站立式固定顶油罐24h各部位的温度变化表明,油罐罐壁温度基本不变,油品上部温差为4.5oC,油面10cm以下基本无温差,罐顶金属表面温差高达32oC,油气空间温差呈梯度下降,上部约为20oC,中部约为17oC,下部约为13oC。实验表明,立式金属油罐油气空间的温度变化主要来自于太阳辐射,大气环境、罐壁及罐壁基础对油气空间仅具有季节性温度变化的影响。对济空和成空两个机场油库油罐内部油气温度进行Matlab曲线拟合,结果呈现余弦变化规律,且相关系数均为0.8左右。大气和罐内气体温度的初相位,济空机场油罐为-0.4左右,成空机场油罐为-0.8左右。通过ANSYS建立一维稳态传热模型,列出温度变化方程,利用趋势逼近方法获取油罐内部温度场分布规律,模型表明油罐内油气和油品温度在竖直方向上呈线性关系,油气温度的线性倾斜程度较大,且油品表面温度变化主要受油气温度影响。
     3、利用傅立叶红外光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱分析仪(XPS)和接触角仪(CA)深入研究了软浮顶空心球的化学官能团和表面性能,同时结合常温和升温阻隔实验,考察了软浮顶空心球的阻隔性能。结果表明,直接氟化软浮顶HDPE空心球在1000-1200cm-1处出现碳氟键C-F的特征吸收峰,表面层依次出现氟化层、边界层和未氟化层三层结构;随着氟化浓度、氟化温度和氟化时间的增大,氟化层厚度出现非线性的增加,但浓度和温度的过度增大将引起氟化层的氟化厚度不均匀和平滑性变差;软浮顶空心球直接氟化后,氟化HDPE表面F/C率的增大,HDPE表面憎水性增强,氟化前接触角为78.5°,氟化后接触角增大到90.0°。同时,随着氟化厚度从5.07μm增加到7.86μm,接触角也由90.0°增大到104.5°;常温和升温阻隔实验表明,随着氟化层氟含量的增加,其抗渗透性阻隔能力增强,硬度变化减少。
     4、软浮顶空心球内添加的相变材料平抑了油品表面的温度波动,减少油罐小呼吸的发生,降低了轻质燃料油的蒸发损耗。与空白实验对比,加软浮顶后的升温曲线在28oC左右发生了很明显的变化,降温效果随水浴温度的升高而略有提高,外界温度越高,降温效果越明显,而软浮顶空心球数量的增加对降耗效果并不明显;恒温浴温度在35oC到45oC之间变动时,相同升温时间条件下的油温最大降低了1.5oC到4.1oC。
     5、通过对模拟油罐常温、恒温、控温和变温等系列试验,建立了气相色谱油气在线检测系统。实验表明,在恒温条件下,油气含量的变化曲线呈线性关系;在控温条件下,油气含量变化呈“S”型;在常温和变温条件下,油气含量变化呈余弦关系。计算软浮顶空心球模拟油罐油蒸气达到饱和的时间效率,恒温30oC时效率为71%,恒温50oC为62%,控温时为71%。油液温度对油气的蒸发存在着正比例关系,油液温度的滞后性引起了油气含量的滞后性。
     6、通过软浮顶模拟油罐检测系统,研究了室外真实环境(温度、湿度、大气压等)下软浮顶对轻质燃料油的蒸发抑制效果。试验数据表明,覆盖软浮顶空心球的模拟油罐抑制油品蒸发损耗的效果明显,其油品蒸发损耗抑制率最高值达到了71.4%,随着油品中轻质组分的减少而不断降低,最终维持在30%左右。在室外环境条件下,软浮顶模拟油罐受日照、温差等因素影响较大。
The evaporation loss of light fuel oil results in energy waste, environmental pollution,health hazards, safety hazards and oil quality reduction. First, in this paper the soft-floatingroof tank technology about the evaporation loss of light fuel oil regarded as the object of study,relevant theoretical and experimental researches were done for the two main influencingfactors of oil evaporation loss, i.e. oil evaporation surface area and the oil surface temperature.Secondly, surface fluorination property, hydrophobic property, oleophobic property and otherbarrier properties of the soft-floating roofs were systematically studied. Then the process ofbreathing loss reduction by the soft-floating roof was analyzed through a phase-changingtemperature control test. Finally, independence-designed gas chromatographic oil-gas onlinedetection system and the soft-floating roof simulation tank were used indoors and outdoors tostudy the actual effect of the soft-floating roof tank technology in controlling the evaporationloss of light fuel oil.
     1. In line with essential and influencing factors of the evaporation of light fuel oil,distribution of the oil-gas concentration in the gas space of a tank was analyzed. A evaporationloss correction formula based on surface coverage was deducted. According to the result ofcomparison between the example verification result and the practical loss, the loss calculatedthrough the Waliophsis formula and the practical loss had a difference of21%; the losscalculated through the deduced formula and the practical loss had a difference of7.7%,presenting a difference smaller than the difference based on the original formula. Thedifferences between the losses obtained through calculation and the practical loss were mainlybecause of a non-stable state of physical quantities of substances such as mediums in the tank.
     2. The24-hour temperature changes of all positions of each vertical tank on the airfieldbelong to jinan air force were measured. The tank wall temperature remained basicallyunchanged. There is a temperature difference of4.5oC in the top oil, and no temperaturedifference below the oil line about10cm. There ia a temperature difference up to32oC in themetallic surface of the tank top. The temperature difference in the oil-gas space dropped in agradient way, which was about20oC at the top, about17oC in the middle and about13oC atthe bottom. According to the experiment result, temperature change of the oil-gas space of thevertical metallic tank was mainly contributed by solar radiation and seasonally influenced bythe atmospheric environment, the tank wall and the tank wall foundation. Matlab curve fittingwas done for the internal oil-gas temperatures of tanks of the airport oil terminals of Air Forceof the Jinan Military Area Command and Air Force of the Chengdu Military Area Command. According to the curve fitting result, the oil-gas temperatures showed a cosine change law andthe correlation coefficient was about0.8. The initial phase between the air temperature and thetank gas temperature is about-0.4for the tanks on the airport oil terminal of Air Force of theJinan Military Area Command, or about-0.8for the tanks on the airport oil terminal of AirForce of the Chengdu Military Area Command. Through ANSYS, a one-dimensional steadyheat transfer model was established and a temperature change equation was obtained. Thedistribution law of internal temperature field of the tank was obtained through a trendapproaching method. According to the model, the oil-gas temperature and the oil temperaturein the tank have a linear relation in the vertical direction; the oil-gas temperature is greatlylinearly graded; the oil surface temperature is mainly influenced by the oil-gas temperature.
     3. Chemical functional group and surface properties of the soft-floating roof hollow ballswere analyzed with the help of an FTIR (FT-IR) spectrometer, a scanning electron microscopy(SEM), an X-ray photoelectron spectroscopy (XPS) analyzer and a contact angle (CA) analyzer.A room-temperature barrier test and a temperature-rising barrier test were done to check barrierproperty of the soft-floating roof hollow ball. According to the analysis and test results, afterthe soft-floating roof HDPE hollow balls were directly fluorinated, characteristic absorptionpeak of the carbon-fluorine (C-F) bond would appear in the position of1,000-1,200cm-1and afluorinated layer, a boundary layer and an un-fluorinated layer would appear on the surfacelayer; with increase of concentration, temperature and time of the fluorination, the fluorinatedlayer increased non-linearly, but excessive increases of concentration and temperature of thefluorination would result in uneven thickness and poor smoothness of the fluorinated layer;after the direct fluorination, the fluorinated HDPE surface had a larger F/C ratio and becamemore hydrophobic and the contact angle increased from78.5°to90.0°. Meanwhile, withincrease of the fluorinated thickness from5.07μm to7.86μm, the contact angle furtherincreased from90.0°to104.5°. According to results of the room-temperature barrier test andthe temperature-rising barrier test, with increase of its fluorine content, the fluorinated layerhad better penetration resistance and less frequent hardness change.
     4. Temperature change of the oil surface was suppressed, breathing loss and theevaporation loss of the light fuel oil was reduced with the help of the phase-changing materialsadded in the soft-floating roof hollow balls. Compared with data of the blank test, the heatingcurve added with soft-floating changed dramatically at about28oC; the cooling effect was alittle better with rise of the bath temperature (the higher the external temperature, the better thecooling effect would be); increase of quantity of the breathing floating roof hollow balls didnot reduce the evaporation loss significantly; when temperature of the constant temperaturebath kept at35oC to45oC, the oil temperature dropped by1.5oC to4.1oC at most in the same heating condition.
     5. A gas chromatographic oil-gas online detection system was established and tests weredone with it in the conditions of room temperature, constant temperature, controlledtemperature, changing temperautre, etc. According to the test results, in the constanttemperature condition, the oil-gas content change curve showed a linear relation; in thecontrolled temperature condition, the curve was S-shaped; in the room temperature conditionor the changing temperature condition, the curve showed a cosine relation. Time efficiency wascalculated when oil vapor was saturated in the soft-floating roof simulation tank covered withhollow balls: It was71%at a constant temperature of30oC, or62%at a constant temperatureof50oC, or71%in the controlled temperature condition. The oil temperature and the oil-gasevaporation was directly proportional: posterity of the oil temperature resulted in posterity ofthe oil-gas content.
     6. Evaporation suppression effect of soft-floating roofs for light fuel oil was studied inreal outdoor conditions (such as temperature, humidity and air pressure) through a soft-floatingroof simulation tank detection system. According to the test data, the simulation tanks coveredwith the floating roof hollow balls showed an obvious effect in suppressing the oilevaporation loss, the maximum value of oil evaporation supperession rate was71.4%and thefinal value was kept on around30%after dropping with decrease of light component in the oil.In outdoor conditions, the simulation tanks were mainly influenced by factors such as solarradiation and temperature difference.
引文
[1]人民网.经济资讯[EB/OL].http://www.people.com.cn/GB/paper1668/12701/1141031.html,2004-07-06.
    [2]中华人民共和国第十届全国人民代表大会常务委员会第三十次会议.中华人民共和国节约能源法[EB/OL]. http://www.gov.cn/ziliao/flfg/2007-10/28/content_788493.htm,2007-10-28.
    [3]第十一届全国人民代表大会第一次会议.国家能源委员会[EB/OL]. http://www.nea.gov.cn/gjnyw/index.htm,2013-11-19.
    [4]人民网.世界环保大会[EB/OL]. http://baike.baidu.com/view/10600144.htm,2013-12-06.
    [5]新华网.2013年中国石油产量世界第四对外依存度未现大幅上升[EB/OL].http://finance.sina.com.cn/money/forex/20140109/042917890754.shtml,2014-01-09.
    [6]安全管理网.联系实际谈谈我国石油能源安全面临的风险和对策[EB/OL]. http://www.safehoo.com/Tech/Chemical/201311/331722.shtml,2013-12-28.
    [7]闫啸.石油储罐油气蒸发损耗的成因、危害及对策[J].石油沥青,2006,15(2):41-42.
    [8]王敏.油料蒸发损害的危害及预防措施[J].商品储运与养护,2001,(4):39-40.
    [9] Hakan K. The impact of crankcase oil containing phosphorus on catalytic converters and engine exhaustemission[J]. Industrial Lubrication and Tribology,2001,53(6):237-255.
    [10] US-EPA. Code of Federal Regulation, Title40, Part60, subparts D, Da, Db, Dc; Environmental ProtectionAgency[S]: Washington, DC,1997, p44.
    [11]范亚维,周启星. BTEX的环境行为与生态毒理[J].生态学杂志,2008,27(4):632-638.
    [12] Atkinson R. Atmospheric chemistry of VOC and NOx [J]. Atmospheric Environment,2000,34:2063–2101.
    [13]赵桂玲.油品销售口油库油气蒸发损耗计算、危害及其措施[J].中国石油和化工标准与质量,2011,(7):216,214.
    [14] Weiqiu Huang, Juan Bai, Shuhua Zhao, Aihua Lv. Investigation of oil vapor emission and its evaluationmethods[J]. Journal of Loss Prevention in the Process Industries,2011,24:178–186.
    [15] Jackson, M.M. Organic liquids storage tanks volatile organic compounds (VOCs) emissions, dispersionand risk assessment in developing countries: the case of Dar-es-Salaam City, Tanzania[J]. EnvironmentMonitoring and Assessment,2006,116:363–382.
    [16]黄维秋.油气蒸发排放及其控制技术的研究[D].南京:南京理工大学,2004.
    [17]张爱玲,赵崇瑜,欧宇春等.海洋石油职工恶性肿瘤患者医院感染分析[J].中华航海医学与高气压医学杂志,2005,12(1):47-49.
    [18]吴景初,金力奋,陈建青.石化厂环境污染对儿童健康影响的研究[J].中国环境科学,1991,11(2):155-157.
    [19] GB11085-89散装液态石油产品损耗[S].
    [20] GB3095—1996环境空气质量标准[S].
    [21] GB16297-1996大气污染物综合排放标准[S].
    [22] SH/T3002-2000石油库节能设计导则[S].
    [23] GB50074-2002石油库设计规范[S].
    [24] DB11/206-2003储油库油气排放控制和限值[S].
    [25] GB20950-2007储油库大气污染物排放标准[S].
    [26] GB20951-2007汽油运输大气污染物排放标准[S].
    [27] GB20952-2007加油站大气污染物排放标准[S].
    [28] HJ/T431-2008储油库.加油站大气污染治理项目验收检测技术规范[S].
    [29] HJ/T431-2008储油库.加油站大气污染治理项目验收检测技术规范[S].
    [30]郑发正.油料应用学[M].徐州:中国矿业大学出版社,1998.
    [31] Prepared by the evaporation loss committee of the American Petroleum Institue. Evaporation loss in thepetroleum industry—causes and control, API Bull,2513, February1959.
    [32] Hua, J. S., Fan, W. C., Liao, G. X. Study and prediction of boilover in liquid pool fires with a water sublayer using micro-explosion noise phenomena[J]. Fire Safety Journal,1998,30:269-291.
    [33] Hristov, J., Planas-Cuchi, E., Arnaldos, J., Casal. J. Accidental burning of a fuel layer on a waterbed: ascale analysis of the models prediction the pre-boilover time tests to published data[J]. InternationalJournal of Thermal Sciences,2004,43:221-239.
    [34] Fan, W. C., Hua, J. S., Liao, G. X. Experimental study on the premonitory phenomena of boilover in liquidpool fires supported on water[J]. Journal of Loss Prevention in the Process Industries,1995,8(4):221-227.
    [35] Koseki, H., Natsume, Y., Iwata, Y., Takahashi, T., Hiramo, T. A study on large-scale boilover using crudeoil containing emulsified water[J]. Fire Safety Journal,2003,38(8):665-677.
    [36] Koseki, H., Natsume, Y., Iwata, Y., Takahashi, T., Hiramo, T. Large-scale boilover experiments usingcrude oil [J]. Fire Safety Journal,2006,41(7):529-535.
    [37] ADCO. The Jebel Dhanna Tank Farm Facilities Plan (TFEP). QRA report, Quantification of effects ofproposed improvements to the facility on fire and pollution. Report by Mott MacDonald,2001.
    [38] Persson, H.,&Lonnermark, A. Tank fires: review of fire incidents1951-2003. Brandforsk Project513-021, SP Fire Technology. SP report2004:14. Available at www. sp. Se/sv/units/fire/Documents/Skydd/SP_report2004_14. pdf Accessed June2008,2004.
    [39] Ramsden, N. Large diameter open top floating roof tank fire hazard management[J]. Position paper,2008,5:136-143.
    [40] Ai-Min, L., Wan-Chun, L., Zong-Zhi, W.. Explosion of solvent vapor in a ring partition of floating roof[J].Journal of Loss Prevention in the Process Industries,2008,21:642-645.
    [41] Broeckmann, B., Schecker, H. Heat transfer mechanisms and boilover in burning oil-water systems[J].Journal Loss Prevention in the Process Industries,1995,8(3):137-147.
    [42] Ibrahim M. Shaluf, Salim A. Abdullah. Floating roof storage tank boilver[J]. Journal of Loss Prevention inthe Process Industries,2011,24:1-7.
    [43] API Bulletin2513.Evaporation loss in the petroleum industry-cause and control[R]. USA: API,1973(Reaffirmed).
    [44] IP.Practical implementation of EC Gasoline Vapor Emission Control directives[J]. PetroleumReview,1994,(1):18-30.
    [45] Peter Jones (IP), Oil loss, measurement and control,(Paper Delivered to the China Petroleum Society),July,1985,20-31.
    [46]章拥宁,李选民.空军油料勤务手册[M].北京:蓝天出版社,1997.
    [47]程恩慧,梁博,李东民.内浮顶储罐的应用及维护[J].辽宁化工,2008,37(9):638-639.
    [48]刘明福.拱顶储罐内浮顶的发展[J].石油化工设备,2004,33(1):41-44
    [49]康沛元.铝质内浮顶与塑料内浮顶的比较[J].石油化工设备技术,1993,14(6):15-16.
    [50]凌勇,于清,缪洪俊.大型储罐铝制内浮顶的结构分析[J].新疆石油学院学报,2003,15(2):60-62.
    [51]吴成华,张虹,卿建华.论浮顶罐大呼吸非甲烷总烃排放计算公式参数取值[J].江苏环境科技,2008,21(4):29-32.
    [52]程恩慧,梁博,李东民.内浮顶储罐的应用及维护[J].辽宁化工,2008,37(9):638-639.
    [53]赵志强.内浮顶储罐内壁腐蚀及防护[J].石油化工腐蚀与防护,2009,26(1):31-33,38.
    [54]赵红海,程丽芬,赵东海.浮顶罐沉盘、卡盘故障浅析[J].石油化工设备技术,2008,29(3):23-26.
    [55]申文义,张立忠.浮顶油罐底板腐蚀原因分析[J].油气储运,2000,19(1):20-22.
    [56]曾毓华.氟碳表面活性剂[M].北京:化学工业出版社,2001.
    [57]梁治齐,陈溥.氟表面活性剂[M].北京:中国轻工业出版社,2000.
    [58]梁治齐.汽油蒸发抑制剂的研制[J].北京联合大学学报(自然科学版),2004,55(1):73-74.
    [59] A. Tadjer, A. Ivanova, Y. Velkov, S. Tzvetanov, M. Gotsev, B. Radoev. Exploratory study of dielectricproperties of insoluble monolayers: Molecular models [J]. International Journal of Quantum Chemistry,2007,107(8):1719-1735.
    [60] Hua Bai, Chun Li, Gaoquan Shi. Functional Composite Materials Based on Chemically ConvertedGraphene [J]. Advanced Materials,2011,23(9):1089-1115.
    [61] Ana R. Hortal, Bruno Martínez-Haya, Marcos D. Lobato, José M. Pedrosa, Santiago Lago. On thedetermination of molecular weight distributions of asphaltenes and their aggregates in laser desorptionionization experiments [J]. Journal of Mass Spectrometry,2006,41(7):960-968.
    [62] Tohru Takenaka, Hiroko Fukuzaki. Resonance Raman spectra of insoluble monolayers spread on a watersurface [J]. Journal of Raman Spectroscopy,1979,8(3):151-154.
    [63] Hsin-Kai Su, Wen-Ping Hsu. Mixed monolayers of pmas with poly(styrene-b-methyl methacrylate) at theair/water interface [J]. Polymer Engineering&Science,2013,53(9):1828-1838.
    [64] Katsuhiko Ariga, Jonathan P. Hill. Monolayers at air-water interfaces: from origins-of-life tonanotechnology [J]. The Chemical Record,2011,18(6):199-211.
    [65] William D. Garrett. The influence of monomolecular surface films on the production of condensationnuclei from bubbled sea water [J]. Journal of Geophysical Research,1968,73(16):5145-5150.
    [66] Fran ois LAMARCHE, Gilles PICARD, Fran oise TéCHY, Jacques AGHION. Complex formationbetween chlorophyll a and cytochrome c: surface properties at the air-water interface [J]. EuropeanJournal of Biochemstry,1991,197(2):529-534.
    [67] S. M. Bower, J. R. Saylor. Sherwood–Rayleigh parameterization for evaporation in the presence ofsurfactant monolayers [J]. AIChE Journal,2013,59(1):303-315.
    [68] H. Ranjbar, B. H. Shahraki. Effect of Aqueous Film-Forming Foams on the Evaporation Rate ofHydrocarbon Fuels [J]. Chemical Engineering&Technology,2013,36(2):295-299.
    [69] David G. Whitten. Photochemical Reactions of Surfactant Molecules in Condensed MonolayerAssemblies—Environmental Control and Modification of Reactivity [J]. Angewandte ChemieInternational Edition in English,1979,18(6):440-455.
    [70]张兰辉,朱步瑶,赵国玺.不溶性单分子膜中碳氢、碳氟表面活性剂分子间相互作用[J].高等学校化学学报,1996,17(1):107-111.
    [71]毛绍裘,汤美芳.氟表面活性剂的应用研究—降低烃油的蒸发损耗[J].表面活性剂工业,1990(4):36-39,35.
    [72]浮东宝,朱建华.抑制汽油挥发的分子膜技术研究[J].高校化学工程学报,2004,18(3):389-393.
    [73]赵国玺,朱步瑶.碳氟与碳氢表面活性剂混合物的表面活性及其水溶液在油面上的铺展[J].表面活性剂工业,1984(1):1-4.
    [74]杨诗模.一种浮顶[P].中国专利:ZL94238198.x,1996-09-11.
    [75]杨诗模.用于覆盖液面的膜式柔性浮顶[P].中国专利:ZL99233384.9,2000-03-03.
    [76]田继红.单层膜式柔性浮顶[P].中国专利:ZL200520096791.9,2006-11-01.
    [77]李容.错层加强膜式柔性浮顶[P].中国专利:CN201610287U,2010-03-19.
    [78]杜占合,季峰.发动机燃料[M].徐州:蓝天出版社,2005.
    [79]王明吉,张勇,曹文.原油储罐纵向温度分布规律[J].大庆石油学院学报,2006,28(5):1-3.
    [80] Warneford I P, Fussey D E. Natural convection from a constant-heat flux include flat plat [J]. HeatTransfer,1974,5(1):57-67.
    [81] Humphrey Pasley, Colin. Computational fluid dynamics study of flow around floating-roof Oil storagetank [J]. Journal of Wind Engineering and Industrial Aerodynamic,2000,86:37-54.
    [82] S. Murakami, N. G. Wright, R. Hoxey. Current status and future trends in computational wind engineering[J]. J. Wind Eng. Ind. Aerodyn,1997,67:3-34.
    [83] G.J. Easom, N.G. Wright, R. Hoxey. Improved computational models for wind engineering [C].Proceedings of fourth UK Conference on Wind Engineering,1998:117-122.
    [84] I. Celik, F. Sha!er. Long time-averaged solutions of turbulent#ow past a circular cylinder [J]. J. WindEng. Ind. Aerodyn,1995,56:185-212.
    [85] R.J. Holroyd. On the behaviour of open-topped oil storage tanks in high wind [J]. Part I. AerodynamicAspects, J. Wind Eng. Ind. Aerodyn,1983,12:329-352.
    [86] American Petroleum Institute. Wind Tunnel Testing of External Floating-Roof Storage Tanks, FirstEdition, API Publication2558,1993.
    [87]王宇杰.双金属温度计在立式油罐测温中的使用要点[J].中国计量,2007,32(2):36-36.
    [88]董春利.油罐平均温度的测量技术与仪表[J].炼油化工自动化,2006,1:67-69.
    [89]沈为民,张鸿安.油罐精密测用光纤温度传感系统[J].杭州科技,2007,18(5):22-22.
    [90]张雅,向虎,汤国强.光纤光栅感温火灾探测报警系统在原油罐区的应用[J].炼油技术与工程,2006,36(11):56-57.
    [91]王俊武,靳冰冰.分布式光纤光栅在大型油罐群温度在线监测中的应用[J].内蒙古石油化工,2007,33(6):87-89.
    [92]南昌铁路局科委.油罐(群)液位、温度集中监测报警系统[J].中国铁路,2007,1:72.
    [93]吴顺生,罗平安,沙志强.铁路油罐群液位、温度监视报警及油库微机管理系统[J].中国铁路,2004,5:40-41,48.
    [94]郝思龙,刘德明,陈春同.加油站油罐温度跟踪检测系统[J].石油库与加油站,2009,(1):38-40
    [95]于达.大型浮顶油罐测温系统的研发[J].油气储运,北京,2005,24(8):41-43.
    [96]何冠声,高学农等.油罐液位温度自动检测系统及其程序设计[J].电力系统及其自动化学报,2007,14(3):47-49,74.
    [97]朱秀峰,黄秀杰等.储油罐温度分布规律初探[J].油气田地面工程,2006,21(5):136-137.
    [98]朱国文,王明吉等.储油罐原油温度实时监测报警系统[J].国外油田工程,2006,17(8):51-52.
    [99]康勇.油罐内油气温度与压力变化规律分析[J].石油库与加油站,北京,2006,15(5):34-36.
    [100]朱作京,于达,宫敬.储油罐温度场模拟过程中传热相似理论[J].油气储运,2007,26(12):37-42.
    [101]刘焕桥,陶锦娟.应用立式罐罐壁平均温度计算式的建议[J].油气储运,2009,19(1):35-38,43.
    [102]何力.最小二乘法回归罐壁温度计算公式[J].计量技术,2009(10):18-19,7.
    [103]李宝山,杜秋萍.油罐车的非稳定传热计算[J].油气储运,2007,16(3):13-15.
    [104]王彦,桑广世.成品油罐自然冷却油品最终温度的计算[J].油气储运,2000,19(3):9-12.
    [105] Sivaraman S, Hess C J. Correlation predict tank-shell temperature [J]. Oil&Gas Journal,1988,3:65-68.
    [106] Ostrach S. An Analysis of Laminar Free Convection Flow and Heat Transfer About a Flat Plate Parallel tothe Direction of the Generating Body Force [R]. N. A. C. A. Report1111,1953.
    [107] Arpaci V S. Conduction Heat Transfer [M]. Mass: Addison-Weley Publishing Company,1966.
    [108] Hottel H C, Sarofim A F. Radiative Transfer [M]. New York: McGraw-hill Book Company,1967.
    [109]祝威,金俏等.立式圆柱形油罐传热系数的简化算法[J].抚顺石油学院学报,2007,21(3):36-40.
    [110]张丽娜,陈保东.油罐温度场的数值求解[J].管道技术与设备,2003,4:1-2,45.
    [111]施雯,吴明,李高萍,等.用有限元法计算罐车内轻油温度场[J].油气储运,2009,28(2):31-33.
    [112]黄达海,杨虎.地下混凝土双壁储油罐温度应力数值模拟[J].石油工程建设,2009,35(2):1-5.
    [113] J. Maity, C. Jacob, C.K. Das, A.P. Kharitonov, R.P. Singh, S. Alam. Fluorinated aramid fiber reinforcedpolypropylene composites and their characterization [J]. Polymer Composites,2007,28(4):462-469.
    [114] Theresa Liang, Constanze N. Neumann, Tobias Ritter. Introduction of Fluorine and Fluorine-ContainingFunctional Groups [J]. Angewandte Chemie International Edition,2013,52(32):8214-8264.
    [115] Gerstenberger, Alois Haas. Methods of Fluorination in Organic Chemistry [J]. Angewandte ChemieInternational Edition in English,1981,20(8):647-667.
    [116] Gérard Calleja, Axel Houdayer, Sylvie Etienne-calas, David Bourgogne, Valérie Flaud, Gilles Silly, SotaShibahara, Atsushi Takahara, Alex Jourdan, André Hamwi, Bruno Ameduri. Conversion ofpoly(ethylene-alt-tetrafluoroethylene) copolymers into polytetrafluoroethylene by direct fluorination: Aconvenient approach to access new properties at the ETFE surface [J]. Joural of Polymer Science PartA:Polymer Chemistry,2011,49(7):1517-1527.
    [117] Toshi Kasai, Tetsuya Aya,Hidehiko Ohara. A fluorine gas monitoring system for the direct oxy-fluorinationof polyethylene sheets [J]. Joural of Applied Polymer Science,2002,86(3):684-691.
    [118] C. L. Kiplinger, D. F. Persico, R. J. Lagow,D. R. Paul. Gas transport in partially fluorinated low-densitypolyethylene [J]. Joural of Applied Polymer Science,1986,31(8):2617-2626.
    [119] R. J. Lagow, J. L. Margrave. The controlled reaction of hydrocarbon polymers with elemental fluorine [J].Joural of Polymer Science,1974,12(4):177-184.
    [120] Madeline S. Toy, J. Melford Newman. Polyperfluorobutadiene. II. Fractionation and crosslinking [J]. Jouralof Polymer Science Part A-1: Polymer Chemistry,1974,12(4):177-184.
    [121] Derek D. Steiner, Nobuyuki Mase, Carlos F. Barbas. Direct Asymmetric α-Fluorination of Aldehydes [J].Angewandte Chemie International Edition,2005,44(24):3706-3710.
    [122] Fabienne Poncin-Epaillard, Barbara Pomepui, Jean-Claude Brosse. Study of polymer treatment withtetrafluoromethane plasma: Reactivity of fluorinated species on model surfaces [J]. Joural of Polymer SciencePart A-1: Polymer Chemistry,1993,31(11):2671-2680.
    [123] Mark Strobel, Stewart Corn, Christopher S. Lyons, Gary A. Korba. Plasma fluorination of polyolefins [J].Joural of Polymer Science Part A-1: Polymer Chemistry,1987,25(5):1295-1307.
    [124] MP Krafft, JG Riess. Highly fluorinated amphiphiles and colloidal systems, and their applications in thebiomedical field. A contribution [J]. Biochimic,1998,80(6):489-514.
    [125] H. Groult, F. Lantelme, M. Salanne, et al. Role of elemental fluorine in nuclear field [J]. J Fluorine Chem,2007,128(11):285-295.
    [126] W. B. Whalley. Fluorination of organic compounds with anhydrous hydrogen fluoride. Part II. Aninvestigation of antimony pentachloride catalysed fluorinations [J]. Journal of the Society of ChemicalIndustry,1947,66(12):430-433.
    [127] Mark Strobel, Patrick A. Thomas, Christopher S. Lyons. Plasma fluorination of polystyrene [J]. Joural ofPolymer Science Part A-1: Polymer Chemistry,1987,25(12):3343-3348.
    [128] Stefano Piana, Ingrid Devillers, Antonio Togni, Ursula Rothlisberger. The Mechanism of CatalyticEnantioselective Fluorination: Computational and Experimental Studies [J]. Angewandte ChemieInternational Edition,2002,41(6):979-982.
    [129] Siti-Ros Shamsuddin, Kingsley K. C. Ho, Steven Lamoriniere, Adam F. Lee, Impact of in-line atmosphericplasma fluorination of carbon fibers on the performance of unidirectional, carbon fiber-reinforcedpolyvinylidene fluoride [J]. Advances in Polymer Technology,2010,29(2):86-97.
    [130] Siti-Ros Shamsuddin, Kingsley K. C. Ho, Steven Lamoriniere, Adam F. Lee, Impact of in-line atmosphericplasma fluorination of carbon fibers on the performance of unidirectional, carbon fiber-reinforcedpolyvinylidene fluoride [J]. Advances in Polymer Technology,2010,29(2):86-97.
    [131] Shigeyuki Yamada, Andrei Gavryushin, Paul Knochel. Convenient Electrophilic Fluorination ofFunctionalized Aryl and Heteroaryl Magnesium Reagents [J]. Angewandte Chemie International Edition,2010,49(12):2215-2218.
    [132] Masanori Sawaguchi, Shoji Hara, Tsuyoshi Fukuhara, Norihiko Yoneda. Electrochemical Direct Fluorinationof Lactams [J]. Israel Journal of Chemistry,1999,39(2):2215-2218.
    [133] Lucius A.B. Chem. Rev.1947,40(1),51-115.
    [134] Lagow R.J., Margrave J.L. Prog. Inorg. Chem.26(1979)162–210.
    [135] A.P. Kharitonov. Practical applications of the direct fluorination of polymers [J]. Journal of FluorineChemistry,2000,103(2):123-132.
    [136] H. Shinohara, M. Iwasaki, S. Tsujimura, K. Watanabe, S. Okazaki. Fluorination ofpolyhydrofluoroethylenes. I. Direct fluorination of poly(vinyl fluoride) film [J]. Joural of PolymerScience Part A-1: Polymer Chemistry,1972,10(7):2129-154.
    [137] Derek D. Steiner, Nobuyuki Mase, Carlos F. Barbas. Direct Asymmetric α-Fluorination of Aldehydes[J].Angwandte Chemie International Edition,2005,44(24):3703-3710.
    [138] Yadira Vega-Cantú, Robert Hauge, Lewis Norman, W. E. Billups. Enhancement of the chemicalresistance of nitrile rubber by direct fluorination[J]. Journal of Applied Polymer Science,2003,89(4):971-979.
    [139] M. Mukherjee, C.K. Das, A.P. Kharitonovld, Vincent M. Lynch, M. Frederick Hawthorne, Richard J.Lagow. Fluorinated and oxyfluorinated short Kevlar fiber-reinforced ethylene propylene polymer[J].Polymer Composites,2006,27(2):205-212.
    [140] Siti-Ros Shamsuddin, Kingsley K. C. Ho, Steven Lamoriniere, Adam F. Lee, Alexander Bismarck.Impact of in-line atmospheric plasma fluorination of carbon fibers on the performance of unidirectional,carbon fiber-reinforced polyvinylidene fluoride[J]. Advances in Polymer Technology,2010,29(2):86-97.
    [141] A.P. Kharitonov, R. Taege, G. Ferrier, N. P. Piven. The kinetics and mechanism of the direct fluorination ofpolyethylenes [J]. Surface Coatings International Part B: Coatings Transactions,2005,88(3):201-209.
    [142] Thekla Volkmann, Hartmut Widdecke. Fluorination of polyethylene films [J]. Makromolekulare Chemie.Macromolecular Symposia,1989,25(1):243-248.
    [143] A.P. Kharitonov, Yu.L. Moskvin, G.A. Kolpakov. Application of interference spectroscopy for studyingkinetics of chemical reactions in optically transparent films [J]. Polymer Science,1985,27(3):739-748.
    [144] A.P. Kharitonov, Yu.L. Moskvin. Proceedings of the Second International Conference on Fluorine inCoatings, Salford, UK,1994,13:877.
    [145] Fabienne Poncin-Epaillard, Barbara Pomepui, Jean-Claude Brosse. Study of polymer treatment withtetrafluoromethane plasma: Reactivity of fluorinated species on model surfaces [J]. Polymer Chemistry,1993,31(11):2271-2680.
    [146] Masanori Sawaguchi, Shoji Hara, Tsuyoshi Fukuhara, Norihiko Yoneda. Electrochemical DirectFluorination of Lactams [J]. Israel Journal of Chemistry,1999,39(2):151-154.
    [147] A.P. Kharitonov, Yu.L. Moskvin. Direc fluorination of polystyrene films [J]. Journal of FluorineChemistry,1998,91:87-93.
    [148] Madeline S. Toy, J. Melford Newman. Polyperfluorobutadiene. II. Fractionation and crosslinking[J].Polymer Chemistry,1969,7(8):2333-2340.
    [149] A.P. Kharitonov, Yu.L. Moskvin, V.V. Teplyakov, et al. Direct fluorination of poly(vinyl trimethylsilane) andpoly(phenylene oxide)[J]. J Fluorine Chem,1999,93(8):129-137.
    [150] Wolfram Koch, Mirjana Eckert-Maksi, Zvonimir B. Maksi. Fluorination effect on the structuralproperties in benzocyclobutenes and benzocyclobutadienes [J]. International Journal of QuantumChemistry,1993,48(5):319-332.
    [151] E. Differding, W. Frick, R. W. Lang, P. Martin, C. Schmit, S. Veenstra, H. Greuter. FluorinatedHeterocycles: Targets in the Search for Bioactive Compounds and Tools for their Preparation [J]. Bulletindes Sociétés Chimiques Belges,1990,99(9):647-671.
    [152] A.P. Kharitonov, Yu.L. Moskvin, G.A. Kolpakov. Patent of the Russian Federation No.1754191, filed26July1990.
    [153] V. Frolov, V.V. Teplyakov, A.P. Kharitonov. Proceedings of the Second International Conference onFluorine in Coatings, Salford, UK,28-30September1994, Conference Paper, Paper22.
    [154] A.P. Kharitonov, Yu.L. Moskvin, V.V. Teplyakov, J.D. Le Roux, Proceedings of the Third InternationalConference on Fluorine in Coatings-Ⅱ, Munich, Germany,24-26February1997, Conference Paper,Paper35.
    [155] A.P. Kharitonov, Yu.L. Moskvin, L.N. Kharitonova, M.N. Tulskii, A.A. Kotenko, Mendeleev Commun.No.3(1994)91.
    [156] A.P. Kharitonov, Yu.L. Moskvin, L.N. Kharitonova, A.A. Kotenko, M.N. Tulskii, Kinetics and Catal. No.35(1994)792.
    [157] A.P. Kharitonov, Yu.L. Moskvin, V.V. Teplyakov, J.D. Le Roux. Direc fluorination of poly(vinyltrimethylsilane) and poly(phenylene oxide)[J]. Journal of Fluorine Chemistry,1999,93:129-137.
    [158] J. Maity, C. Jacob, C. K. Das,R. P. Singh. Direct fluorination of Twaron fiber and investigation ofmechanical thermal and morphological properties of high density polyethylene and Twaron fibercomposites [J]. Journal of Applied Polymer Science,2008,107(6):3739-3749.
    [159] DUAN Hui, WANG Houzhi, ZHAO Lei, et al. The Fabrication of Microstructure Surface ofSuper-hydrophobic Coating by Surface Gelation Technology [J]. J. Wuhan University of Tech-Mate. Sci.Ed.,2008,23(2):163-165.
    [160] A.P. Kharitonov, B.A. Loginov. Direct fluorination of polymer final products: From fundamental studyto practical application [J]. Russ J Gen Chem,2009,79(3):635–641.
    [161] Sangyun A. Lee, Sang Hyup, Woojin Lee. The effect of direct fluorination of polydimethylsiloxanefilms on their surface properties [J]. J Colloid Interface Sci,2009,332:461–466.
    [162] C.L. Duarte, D.C. Andrade, R.P. Melo, et al. Decontamination of Ametryne HDPE packaging usingelectron beam accelerator [J]. Radiat Phys Chem,2009,78(3):725-728.
    [163] Necmi Dusunceli, Ozgen U, Colak. High density polyethylene (HDPE): Experiments and modeling[J]. Mech Time-Depend Mater,2006,10:331-345.
    [164] Costas K. Samios, Nikos K. Kalfoglou. Compatibilization of poly(ethylene-co-vinylalcohol)(EVOH)and EVOH/HDPE blends with ionomers. Structure and properties [J]. Polymer.1998,39(16):37-41.
    [165] A.P. Kharitonov. Practical applications of the direct fluorination of polymers [J]. J Fluorine Chem,2000,103(3):123-127.
    [166] CUI Yihua, Noruziaan Bahman, Lee Stephen, et al. Research on Recycled Plastic Wood Composites[J]. J. Nanjing University of Aeronautics&Astronautics,2005,37(5):587-592.
    [167] Jong-Seok Park, In-Hee Cho, Sung-Jin Gwon, et al. Preparation of a high-densitypolyethylene(HDPE) film with a nucleating agent during a stretching process [J]. Radiat Phys Chem,2009,78(3):501-503.
    [168] Robert Clement, Charbel Kanaan, Benoit Brule, et al. An original automated desorption apparatusfor measuring multi-component sorption properties of barrier polymer films [J]. J Membr Sci,2007,302(6):95-101.
    [169] J. Maity, C. Jacob,C.K, et al. Direct fluorination of UHMWPE fiber and preparation of fluorinated andnon-fluorinated fiber composites with LDPE matrix [J]. Polym Test,2008,27(4):581-590.
    [170] Wei Zhang, Marc Dubois, Katia Guerin, et al. Direct fluorination of various poly(p-phenylene): Effects of thepolymer synthesis and thermal post-treatment [J]. Polymer,2007,48(2):3961-3973.
    [171] Wei Zhang, Marc Dubois, Katia Guerin, et al. Fluorination of poly(p-phenylene) using TbF4as fluorinationagent [J]. J Hazard Mater,2007,128:1402-1409.
    [172] A.P. Kharitonov, Yu.L. Moskvin. Direct fluorination of polystyrene films [J]. J Fluorine Chem,1998,91(12):87-93.
    [173] Thekla Volkmann, Hartmut Widdecke. Fluorination of polyethylene films [J]. Makromolekulare Chemie.Macromolecular Symposia,1989,25(1):243-248.
    [174] M. Dubois, K. Guerin, J. Giraudet, et al. Direct fluorination of poly(p-phenylene)[J]. Polymer,2005,46(6):6736-6745.
    [175] A.P. Kharitonov. Direct fluorination of polymers-From fundamental research to industrial applications [J].Prog Org Coat,2008,61(4):192-204.
    [176] Xinhua Liang, David M.King, Markus D. Groner, et al. Barrier properties of polymer/aluminananocomposite membranes fabricated by atomic layer deposition [J]. J Membr Sci,2008,322(5):37-41.
    [177] Yadira Vega-Cantú, Robert Hauge, Lewis Norman, W. E. Billups. Enhancement of the chemicalresistance of nitrile rubber by direct fluorination [J]. Journal of Applied Polymer Science,2003,89(4):971-979.
    [178] G. Serpe, Y. Huiban, J. Lynch, J. P. Dole-Robbe, G. Legfay. Polyethylene plasma fluorination andpermeability relationships to methanol-gasoline mixtures [J]. Journal of Applied Polymer Science,1996,61(10):1707-1715.
    [179] ASTM Standard D2887. Annual book of ASTM standards[S],2006.
    [180] ASTM Standard133710. Annual book of ASTM standards[S],2006.
    [181] ASTM Standard D86. Annual book of ASTM standards[S],2006.
    [182]张玉贵,李凡,谢克昌.煤焦油气相色谱模拟蒸馏的研究[J].焦作工学院学报(自然科学版),2006,21(2):157-160.
    [183]廖珊,陈东华.毛细管气相色谱测定汽油的八项质量指标[J].石油化工,2007,22(6):404-407.
    [184] Crawford R,He1lmuth W. Characterization of organic matter in total suspended particles by gaschromatography-mass spectrometry[J]. Fuel,2006,69(4):443-447.
    [185]于爱东,袁冬梅.汽油单体烃色谱分离及辛烷值计算[J].大连民族学院学报,2006,7(3):62-65.
    [186] Blomberg J,Schoenmakers P J,Beens J,etal. A novel ionic liquids grafted polysiloxane for capillary gaschromatography[J]. JHRC&GC,2007,20:539-544.
    [187]华莲.全二维气相色谱技术的概述及其应用[J].天津药学,2009,21(4):47-50.
    [188]赵力,李之璇.毛细管气相色谱与质谱联用测定液化石油气中Cl-C5组分研究[J].高师理科学刊,2006,20(3):44-45.
    [189]杨永坛,王征,杨海鹰.气相色谱法测定催化柴油中硫化物类型分布及数据对比[J].分析化学,2005,33(11):1517-1521.
    [190]刘颖荣,杨海鹰.气相色谱-原子发射光谱和溴加成法联合测定含烯烃汽油中的烯烃单体:汽油中烯烃保留值的研究[J].色谱,2006,21(1):1-8.
    [191]刘颖荣,杨海鹰.气相色谱-原子发射光谱和溴加成法联合测定含烯烃汽油中的单体烯烃:汽油的定量分析[J].色谱,2006,21(2):97-101.
    [192]叶艺娟.气相色谱同时测定工作场所空气中6种有毒成分[J].中国卫生检验杂志,2008,18(3):446-447.
    [193]彭清涛,李珍,夏本立.科研试验场所总烃、甲烷烃和非甲烷烃的气相色谱分析[J].导弹试验技术,2008,1:19-21.
    [194]刘虎威编著.气相色谱方法与应用[M].北京:化学工业出版社,2007.17~23.
    [195]武传珍,刘浩,鲁传宏.气相色谱法直接测定车间空气中液化石油气[J].卫生防疫,2007,4(6):95.
    [196]王瑞玉,郑华艳,李忠.甲醇气相氧化羰基化产物在线气相色谱分析[J].太原理工大学学报,2010,41(2):123-126.
    [197]齐敏,张立军,俞安复.车间空气中苯系物正己烷酮类的气相色谱同时测定方法[J].中国卫生检验杂志,2006,16(2):196,219.
    [198]曹志奎,刘占峰.合成气中甲醇测定的气相色谱方法改进[J].化学工程与装备,2009,(11):145-146
    [199]刘景锋,石晓枫,邓水智.对油品仓储区大气中NMHC特征的监测分析[J].环境科学与技术,2006.2:54-55.
    [200]章虎,陈关喜,冯建跃.93号汽油样品组分的GC-MS分析[J].分析测试学报,2007,22(5):56-59.
    [201]高俊华,高海洋.从蒸发排放物的成分分析乙醇汽油蒸发排放特性[J].汽车技术,2006,(11):17-19.
    [202]赵力,李之璇.毛细管气相色谱与质谱联用测定液化石油气中Cl-C5组分研究[J].高师理科学刊,2000,20(3):44-45.
    [203]丁晓敏,薛平.气相色谱分析液化石油气最佳条件的研究[J].城市公用事业,2008,10(5):29-31.
    [204]黄维秋,卢建国,赵书华.油气质量浓度的标定方法[J].江苏工业学院学报,2008,20(1):44-47.
    [205]刘明明,夏炳乐,杨俊.自动化色谱谱图解析—谱峰的自动识别与快速解析[J].色谱,2009,27(3):351-355.
    [206]黄维秋.石油蒸发损耗及其控制技术的评价体系[J].石油学报(石油加工),2005,21(4):79-85.
    [207] Merv F. Fingas. Studies on the evaporation of crude oil and petroleum products: Ⅰ. the relationshipbetween evaporation rate and time[J]. Journal of Hazardous Materials,1997,56:227-236.
    [208]郭光臣.油库设计与管理[M].东营:石油大学出版社,2006.
    [209]常毅.油品蒸发损耗的分析及降低措施[J].南炼科技,2002,9(4):16-19.
    [210]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,2006.
    [211]孙晓春.塔里木油田固定顶储罐油气损耗特点分析[J].石油规划设计,2004,15(4):31-33.
    [212]张灯贵,王英波,鲍时付等.原油库的油品损耗及其控制[J].油气储运,2005,24(3):46-48.
    [213]华敏,潘旭海.太阳辐射对纯液体蒸发行为影响的实验研究[J].工业安全与环保,33(5):1-3.
    [214]康勇.油罐内气体空间温度与压力变化规律分析[J].石油库与加油站,2006,15(5):34-36.
    [215] Vishnu Verma, A. K. Ghosh, H. S. Kushwaha. Temperature Distribution and Thermal StressAnalysis of Ball-Tank Subjected to Solar Radiation [J]. Journal of Pressure Vessel Technology,2005,127(5):119-122.
    [216]杨宏伟,杨士亮,费逸伟等.固定顶油罐油气空间温度梯度与小呼吸降耗措施[J].油气储运,2011,30(4):311,314-315.
    [217]马晓宇,李源,费逸伟等.固定顶油罐油气空间温度分布及变化研究[J].油气储运,2009,28(3):13-16.
    [218]黄维秋,高锡祺.小型锥顶汽油罐蒸发损耗的实验测定[J].江苏石油化工学院学报,1997,9(3):1-6.
    [219] Saeed Moaveni著.有限元分析-ANSYS理论与应用[M].北京:电子工业出版社,2008,6-27.
    [220] ASTM Standard D2887. Annual book of ASTM standards[S],2006.
    [221]杨宏伟,费逸伟.固定顶油罐内气体空间油气浓度分布[J].石化技术.2008,11(4):15-17.
    [222] Katsuhiro Okamoto, Norimichi Watanabe, Yasuaki Hagimoto,et. Changes in evaporation rate andvapor pressure of gasoline with progress of evaporation[J]. Fire Safety Journal.2009,44:756-763.
    [223] A.P. Kharitonov, R. Taege, G. Ferrier, et al. Direct fluorination-Useful tool to enhance commercialproperties of polymer articles [J]. J Fluorine Chem,2005,126(2):251-263.
    [224]戴彧,唐黎明.相变储热材料研究进展[J].化学世界,2001,(12):662-665.
    [225]陈爱英,汪学英,等.相变储能材料的研究进展与应用[J].材料导报,2003,17(5):42-44.
    [226]李晶.相变蓄热材料及其相变特性的研究[D].北京工业大学硕士论文,2005,40-41.
    [227]方晓明,张正国.硬脂酸/膨润土复合相变储热材料研究[J].非金属矿,2005,28(4):23-26.
    [228] A. Abhat. Low temperature latent heat thermal energy storage: heat storage materials [J]. Solar Energy,1983,30:313-332.
    [229] Ye H,Ge X S. Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phasechange material [J]. Solar Energy Materials&Solar Cells,2000,64:37-44.
    [230] Xiao M,Feng B,Gong K C. Preparation and performance of shape stabilized phase thermal storagematerials with high thermal conductivity [J]. Energy Conversion&management,2002,43:103-108.
    [231] Ahmet Sari. Form-stable paraffin/high density polyethylene compositesas solid–liquid phase changematerial for thermal energy storage: preparation and thermal properties [J]. Energy Conversion andManagement,2004,45:2033-2042.
    [232] Li W, Zhang D, Zhang T, et al. Study of solid–solid phase change of (n-Cn H2nt1NH3)2MCL4forthermal energy storage [J]. Thermochim Acta,1999,326:183-186.
    [233]郭元强.聚乙二醇复合物相转变储能温控材料:[C].广州:华南理工大学,2002.
    [234] Su J C, Liu P S.A novel solid–solid phase change heat storage material with polyurethane blockcopolymer structure [J]. Energy Conversion and management,2006,47:3185-3191.
    [235] Chen Y F, Jin L M. Sol-Gel processing of organic-inorganic nano-composite protective coatings [J]. Jof Sol-Gel,1998,13:735-738.
    [236]林怡辉,张正国,王世平.溶胶-凝胶法制备新型蓄热复合材料[J].太阳能学报,2001,22(3):334-337.
    [237] Sari A. Thermal characteristics of myristic and palmitic acids as PCMs for heating applications [J]. ApplThermal Eng,2003,23(9):1005-1017.
    [238] Vaia R A,Ishiihope,Giannelis E P. Relaxations of confined chains in polymer nana composites: Glasstransition properties of poly(ethylene oxide) intercalated in montmorillonite [J]. J of Polymer Sci Part B:Polymer Physics,1999,37(12):1197-1208.
    [239]肖德炎,张东,等.有机/无机复合相变材料的长期化学稳定性研究[J].材料开发与应用,2005,20(2):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700