用户名: 密码: 验证码:
内冷式智能车刀设计与分析及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对难加工材料的无污染、高效加工需求,并根据内冷却所具备的无污染和冷却效果好等优势,本文提出了一种内冷式智能刀具概念,即在刀具内布置具有进出口的微小冷却液通道,切削时冷却液从入口进入刀具体内冷却刀具,然后通过出口回到冷却系统中,冷却液不直接排出,从而组成无污染的循环式冷却系统。通过测量冷却液在进、出口处的温度来预测刀-屑接触面的平均温度,实现切削温度的在线监测,从而根据测量的切削温度可以反映刀具的切削状态,控制系统根据切削温度的高低采取措施对切削过程进行控制。本文主要对内冷式智能刀具的结构设计理论与方法、热学特性、刀具磨损预测和控制等关键基础技术进行了系统的理论分析,并通过切削实验以验证所研制的内冷式智能刀具的切削性能。
     优良的内冷却结构是实现高效冷却的基础。基于对内冷式刀具的冷却以及冷却液温升与切削温度关系的研究,并根据内冷式刀具的切削工艺要求,提出了内冷式刀具设计的一般原则。本文以内冷式车刀为例,运用FEA-CFD联合仿真方法对刀具的内冷却结构进行了优化分析,并制备了优化后的内冷式车刀。通过仿真分析,对比了普通车刀和内冷式车刀的力学和热学性能,结果表明内冷式车刀和普通车刀在强度和刚度性能方面基本一致;通入冷却液后内冷式车刀能有效地降低切削温度,在小于转折流速范围内,切削温度随着流速的增加而快速下降,而当超过转折流速后,切削温度随流速的增加而缓慢下降。通过仿真分析研究了刀-屑接触面面积和热流率、冷却液入口流速和温度对内冷式智能车刀冷却效果的影响规律。
     精确的切削温度和进出口温度之间关系的解析模型是实现在线测量切削温度的理论依据。基于数值仿真结果,采用指数函数对刀具表面的温度分布进行了拟合,对刀具与水接触的表面传热系数进行了等效处理,运用集总参数法建立了内冷式刀具的热特性理论分析模型,得到了切削温度、冷却液出口温度的时间响应解析表达式。仿真结果表明所建立的内冷式刀具热特性理论模型和数值模型的结果相吻合。研究了冷却液流速、刀-屑接触面面积对切削温度与进出口温度之间关系的影响规律,运用最小二乘法拟合得到了切削平均温度和进出口温度之间的解析表达式。对冷却液流速的选择做了分析,对测量过程中存在的误差源进行了分析,并提出了相应的预防措施。通过加热实验验证了所建模型的正确性。
     刀具磨损的监测和控制是提高加工质量和效率的前提。本文在系统地分析刀具磨损和临界切削温度之间关系的基础上,建立了它们之间的关联模型。切削过程中可通过实时调节冷却液流量、切削参数来调节切削温度来间接控制刀具磨损速率,即通过切削温度的控制来控制刀具的磨损。对刀具磨损时的热特性进行了理论分析,通过数值仿真研究了后刀面磨损对切削温度、出口温度的影响规律,得到了刀具磨损下切削温度的预测模型,并和不考虑刀具磨损下的预测模型进行了对比分析,结果表明在刀具的正常磨损范围内,两种模型预测的切削温度基本一致。建立了利用出口温度变化率预测刀具磨损的数学模型。提出了基于临界切削温度约束的刀具磨损控制方法,并设计了PID控制器对切削温度进行控制,通过仿真分析和切削实验证明了控制器的有效性。
     为了考察内冷式智能车刀的测温以及切削性能,本文首先使用内冷式智能车刀和普通车刀对AL6061铝合金进行了对比切削实验,验证了该内冷式车刀能够有效地降低切削温度和通过冷却液进出口温度预测切削温度模型的有效性,且加工质量与普通车刀外冷切削时的结果基本一致。通过对难加工材料Ti6Al4V钛合金的对比切削实验,结果表明该内冷式车刀能够大大降低切削温度,减轻刀具前刀面的磨损,对减少刀具后刀面的磨损也有较好的效果,提高了刀具寿命和工件表面加工质量。
Due to no coolant contamination and special cooling effect for the internallycooled tool, an internally cooled smart turning tool is proposed so as to meet therequirement of the efficient cutting of difficult-to-machine materials with no coolantcontamination to the working environment and workpieces. The main idea is tobuild micro cooling channels within the tool and located close to the cutting tip,forming a closed-loop of the internal cooling circuitry. The cooling lubricantcontamination will be avoided and the cutting temperature be reduced when coolingfluid circulates flowing through the closed channel. The cutting temperature at thetool tip can be estimated by measuring the cooling fluid’s temperatures at the inletand outlet of the cooling structure. In this thesis, the key enabling technology fordesign of an internally cooled smart cutting tool were theoretical analysed includingits design theory and methods, thermal characteristics, tool wear prediction andcontrol. Experimental cutting trials are carried out to further evaluate and validatethe method and concept of applying the smart cutting tool system.
     Internal cooling structure with optimal design is the foundation of efficientcooling, which is the premise of the energy-resource efficient machining. Based onthe analysis of cooling effect, and the relationship between coolant temperatures riseand the cutting temperature was proposed, in light of the mechanical and thermalrequirements of the cutting tool, and the general design principles of the internallycooled cutting tool. Taking a specific internal cooling structure, for example, itsgeometric parameters of the micro cooling structure are obtained by using combinedFEA and CFD simulations. The optimal internally cooled cutting tools are machinedby CNC Machining. The comparison of the mechanical and thermal propertiesbetween the ordinary turning tool and internally cooled turning tool was carried outthrough the indepth analysis. The results show that their mechanical properties aremore or less the same. The cooling fluid can effectively reduce the cuttingtemperature, which is depended on the flow rate and decreases rapidly as theincreasing the flow rate within a certain range. Furthermore, the cooling fluid doesnot have significant effect after exceeding the critical flow rate. The effects of thetool-chip contact surface area and heat flow rate, cooling fluid inlet velocity andtemperature are analysed.
     The analytical model of the relationship between cutting temperature and inletand outlet temperatures is the basis of online measurement of cutting temperature.The temperature distribution on the tool surfaces was fitted using exponentialfunction and the equivalent surface heat transfer coefficients were obtained based on the numerical modeling. Analytical thermal model of the tool is established usingthe lumped parameter method based on the principle of heat transfer. Theoreticalanalysis and numerical simulation results are in good agreement, the influence ofinlet velocity, tool-chip interface area on cutting temperature, outlet temperature andtheir relationships are discussed, and the cutting temperature computationalalgorithm is fitted using the least-squares method. The selection of the optimal inletvelocity, the error source and countermeasures during cutting process are discussed.
     Tool wear monitoring and control is a prerequisite to ensure machining qualityand safety in automated precision machining processes. The intrinsic modellingrelationship between the tool wear and cutting temperature is established using theexperimental results published at Annals of the CIRP by other researchers.Therefore, the tool wear can be controled to some extent by adaptive control of thecutting temperature by adjusting the cooling liquid flow and cutting parameters inreal time. The influence of tool wear on the thermal characteristics of the internallycooled tool is theoretical analysed. Simulations were undertaken to investigate theinfluence of flank wear on the tool cutting temperature, outlet temperature, and thecutting temperature prediction model was thus obtained with taking account of thetool wear effect. The tool wear prediction model was establised by using the outlettemperature rise. The tool wear control method based on the critical cuttingtemperature constraints is proposed. The tool wear control method based on thecritical cutting temperature constraints is proposed. A PID controller is designed tocontrol the cutting temperature, and its validity is demenstrated by the simulatedanalysis and cutting experiment.
     In order to validate the cutting temperature prediction model and study thecutting performance, cutting trials on aluminum alloy6061-T6and titanium alloyTi6Al4V under different cutting conditions are carried out by using the internallycooled turning tool and ordinary tool. The cutting trails demonstrate that theinnovative tooling design concept can effectively reduce the tool temperature whilesensing the cutting temperature at tool tip, which can reduce cutting temperature,prolong the tool life and enhance the workpiece surface quality.
引文
[1]黄张洪,曲恒磊,邓超等.航空用钛及钛合金的发展及应用[J].材料导报,2011,25(1):102-107.
    [2] Durul Ulutan, Tugrul Ozel. Machining Induced Surface Integrity in Titaniumand Nickel Alloys: A Review[J]. International Journal of Machine Tools andManufacture,2011,51:250-280.
    [3] Zhu Dahu, Zhang Xiaoming, Ding Han. Tool Wear Characteristics inMachining of Nickel-based Superalloys[J]. International Journal of MachineTools and Manufacture,2013,64:60-77.
    [4] Heisel C, Silva M, and Schmalzried TP. Bearing Surface Options for Total HipReplacement in Young Patients[J]. The Journal of Bone and Joint Surgery,2004,85(7):1365-1379.
    [5] Ezugwu E O, Wang Z M. Titanium Alloys and Their Machinability-AReview[J]. Journal of Materials Processing Technology,1997,68:262-274.
    [6] Ezugwu E O, Bonney J, Yamane Y. An Overview of the Machinability ofAeroengine Alloys[J]. Journal of Materials Processing Technology,2003,134:233-253.
    [7]曾其勇.化爆材料动态切削温度的薄膜热电偶测量原理及传感器研制[D].大连:大连理工大学博士学位论文.2005.
    [8] Zeng Qiyong, Sun Baoyuan; Deng Xinlu. Development of NiCr/NiSiThin-Film Thermocouple Sensor for Workpiece Temperature Measurement inChemical Explosive Material Machining[J]. Transactions of the ASME,Journal of Manufacturing Science and Engineering,2006,128:175-179.
    [9] Fang F Z., Lee L C., Liu X D. Mean Flank Temperature Measurement in HighSpeed Dry Cutting of Magnesium Alloy[J]. Journal of Materials ProcessingTechnology,2005,167:119-123.
    [10]李玮,马涛,林广山等.水基金属切削液的研究现状及发展趋势[J].工具技术,2010,44(6):6-9.
    [11]冯君茜,胡德栋.极压微乳化切削液的研制与应用[J].润滑与密封,2005,5:157-161.
    [12] Shokrani A, Dhokia V, Newman S T. Environmentally Conscious Machining ofDifficult-to-machine Materials with Regard to Cutting Fluids[J]. InternationalJournal of Machine Tools and Manufacture,2012,57:83-101.
    [13] Bernstein D I, Lummus Z L, James G S. Machine Operator's Lung: aHypersensitivity Pneumonitis Disorder Associated with Exposure to MetalWorking Fluid Aerosols[J]. Chest,1995,108(3):636-641.
    [14] Falkinham J O III. Nontuberculous Mycobacteria in the Environment[J],Clinics in Chest Medicine,2003,23:529-551.
    [15] Seah K H W, Li X, Lee K S. The Effect of Applying Coolant on Tool Wear inMetal Machining[J]. Journal of Materials Processing Technology,1995,48495-501.
    [16]李迎.硬切削加工技术的研究现状与发展趋势[J].组合机床与自动化加工技术,2011,6:107-112.
    [17]刘献礼,岳彩旭.绿色切削技术的研究进展与发展趋势[J].航空制造技术,2008,13:26-31.
    [18] Klocke F, Eisenblaetter G. Dry Cutting[J]. CIRP Annals-ManufacturingTechnology,1997,46(2):519-526.
    [19] Gudolf Kjaerheim. Cleaner Production and Sustainability[J]. Journal ofCleaner Production,2005,13(4):329-339
    [20]张雪萍,赵国伟,蒋辉等.精密干切削淬硬零件表面完整性试验分析[J].上海交通大学学报,2006,40(6):922-926.
    [21] Sreejith P S, Ngoi B K A. Dry Machining: Machining of the Future[J]. Journalof Materials Processing Technology,2000,101:287-291.
    [22]陈明,袁人炜,严隽琪等.推动我国高速切削工艺发展若干问题的探讨[J].中国机械工程,1999,10(11):1296-1299.
    [23] Riaz M, Agostino M, Murat D, et al. Thermally Enhanced UltrasonicallyAssisted Machining of Ti Alloy[J]. CIRP Journal of Manufacturing Scienceand Technology,2014,7:159-167.
    [24] Vishal S. Sharma, Manu Dogra, N.M. Suri. Cooling Techniques for ImprovedProductivity in Turning[J]. International Journal of Machine Tools andManufacture,2009,49:435-453.
    [25] Obikawa T, Kamata Y, Asano Y, et al. Micro-litre Lubrication Machining ofInconel718[J]. International Journal of Machine Tools and Manufacture,2008,48:1605-1612.
    [26]刘俊岩.水蒸汽作绿色冷却润滑剂的作用机理及切削实验研究[D].哈尔滨:哈尔滨工业大学,2005.
    [27] Zhao H, Barber G C, Zou Q. A Study of Flank Wear in Orthogonal Cutting withInternal Cooling. Wear.2002,253:957-962.
    [28] http://www.contemp.org/
    [29] Gaugler R S. Heat Transfer Device[P]. US:2350348. Dec21,1942.
    [30]叶伟昌.热管式刀具[J].机械制造,1990,3:32-34.
    [31] Richard Y C, Chen J S J, et al. Prediction of Heat Transfer Behavior of CarbideInserts with Embedded Heat Pipes for Dry Machining. Proceedings of theASME International Mechanical Engineering Congress and Exposition. NewOrleans, Louisiana, USA, November17-22,2002.
    [32] Richard Y C, Lu L, Chen J S J, Mark T N. Investigation of Dry Machiningwith Embedded Heat Pipe Cooling by Finite Element Analysis andExperiments[J]. International Journal of Advanced Manufacturing Technology,2007,31:905-914.
    [33] Liu Jie. An Investigation on Cutting Tool Temperatures in Machining ofHigh-Strength Al Alloys and Composites Assisted With Vortex-Tube andHeat-Pipe Cooling[D]. The University of Alabama, Tuscaloosa, AL,2005.
    [34] Liu Jie, Chou Y K. Cutting Tool Temperature Analysis in Heat-Pipe AssistedComposite Machining[J]. Transactions of the ASME, Journal of ManufacturingScience and Engineering,2007,129:902-910.
    [35] Liang Liang, Quan Yanming, Ke Zhiyong. Investigation of Tool-chip InterfaceTemperature in Dry Turning Assisted by Heat Pipe Cooling[J]. InternationalJournal of Advanced Manufacturing Technology,2011,54:35-43.
    [36]刘志军,全燕鸣.热管铣刀散热基本结构的优化[J].华南理工大学学报(自然科学版),2012,12(40):47-52.
    [37]刘志军.热管铣刀设计制备及其散热性能分析[D],广东:华南理工大学博士论文,2013.
    [38] Jen T C, Gutierrez G, Eapen S, et al. Investigation of Heat Pipe Cooling inDrilling Applications Part I: Preliminary Numerical Analysis andVerification[J]. International Journal of Machine Tools and Manufacture,2002,42:643-652.
    [39] Zhu L, Jen T C, Yin C L, et al. Investigation of Heat Pipe Cooling in DrillingApplications. Part II: Thermal, Structural Static, and Dynamic Analyses.Proceedings of the ASME International Mechanical Engineering Congress andExposition. Lake Buena Vista, Florida, USA, November13-19,2009.
    [40] Zhu L, Jen T C, Yin C L, et al. Experimental Analyses to Investigate theFeasibility and Effectiveness in Using Heat-pipe Embedded Drills[J].International Journal of Advanced Manufacturing Technology,2012,58:861-868.
    [41]马可.基于热管技术的磨削弧区强化换热基础研究[D].南京航空航天大学,博士论文.2011.
    [42]赫青山,傅玉灿,徐鸿钧等. TC4钛合金高效磨削加工用环形热管砂轮的研制[J].航空学报,2013,34(7):1740-1747.
    [43]吴泽.微织构自润滑与振荡热管自冷却双重效用的干切削刀具的研究[D].山东大学.博士学位论文.2013.
    [44] Wang Z Y, Rajurkar K P. Cryogenic Machining of Hard-to-cut Materials[J].Wear,2000,239:168-175.
    [45] Shane Y H, Irel M, Jeong W. New Cooling Approach and Tool LifeImprovement in Cryogenic Machining of Titanium Alloy Ti-6Al-4V[J].International Journal of Machine Tools and Manufacture,2001,41:2245-2260.
    [46] Rozzi J C, Chen W B, Archibald E E. Indirect Cooling of a Cutting Tool[P], US:EP2416914B1,2011.
    [47] Rozzi J C, Sanders J K, Chen W B. The Experimental and TheoreticalEvaluation of an Indirect Cooling system for Machining[J]. The ASME Journalof Heat Transfer,2011,133(3):031006.
    [48] Vicentin G C, Sanchez L E A, Scalon V L, Abreu G G C. A SustainableAlternative for Cooling the Machining Processes Using a Refrigerant Fluid inRecirculation Inside the Toolholder[J]. Clean Technology Environment Policy,2011,13:831-840.
    [49] Jeffries N P, Zerkle R D. Thermal Analysis of an Internally-CooledMetal-Cutting Tool[J]. International Journal of Machine Tool Design andResearch,1970,10(3):381-399.
    [50] Jeffries N P. Internal Cooling of Metal-cutting Tools[J]. Industrial lubricationand tribology,1972,24(4):179-181.
    [51] Uhlmann E, Roeder M. Internal Cooling of Cutting Tools, Proceedings of the9thInternational Conference and Exhibitionon Laser Metrology, Machine Tool,CMM and Robotic Performance, London, UK,2009.
    [52] Uhlmann E, Furstmann P, Roeder M, Richarz S, Sammler F. Tool Wear Beaviourof Internally Cooled Tools at Different Cooling Liquid Temperatures.Proceedings of the10th Global Conference on Sustainable Manufacturing,Istanbul, Turkey,2012.
    [53] Sun X, Bateman R, Cheng K, Ghani S C. Design and Analysis of an InternallyCooled Smart Cutting Tool for Dry Cutting[J]. Journal of EngineeringManufacture,2012,226(4):585-591.
    [54] Ferri C, Minton T, Ghani S C, Cheng K. Internally-Cooled Tools and CuttingTemperature in Contamination-Free Machining[J]. Proceedings of the Institutionof Mechanical Engineers Part C: Journal of Mechanical Engineering Science,2014,228:135-145.
    [55] Ferri C, Minton T, et al. Efficiency in Contamination-free Machining UsingMicrofluidic Structures[J]. CIRP Journal of Manufacturing Science andTechnology,2014,7(2):97-105.
    [56] Minton T, Ghani S C, Sammler F, et al. Temperature of Internally-cooledDiamond-coated Tools for Dry-cutting Titanium[J]. International Journal ofMachine Tools and Manufacture,2013,75:27-35.
    [57]刘战强,黄传真,万熠,艾兴.切削温度测量方法综述[J].工具技术,2002,36(3):3-6.
    [58]常兴,陈五一,吕彦明.半人工热电偶瞬态切削温度测量装置[J].中国机械工程,1995,6:120-122.
    [59] Takeshi Y, Takayuki O, Hiroyuki S. Temperature Measurement of Cutting Tooland Machined Surface Layer in Milling of CFRP[J]. International Journal ofMachine Tools and Manufacture,2013,70:63-69.
    [60] Davies M A, Ueda T, et al. On The Measurement of Temperature in MaterialRemoval Processes[J]. Annals of the CIRP.2007,56(2):581-604.
    [61] Ulutan D, I Lazoglu, Dinc C. Three-dimensional Temperature Predictions inMachining Processes Using Finite Difference Method[J]. Journal of MaterialsProcessing Technology.2009,209:1111-1121.
    [62] Werschmoeller D, Ehmann K, Li X C. Tool Embedded Thin Film Microsensorsfor Monitoring Thermal Phenomena at Tool-Workpiece Interface DuringMachining[J]. Transactions of the ASME, Journal of Manufacturing Science andEngineering,2011,133:021007(1-8).
    [63] Werschmoeller D, Li X C, Ehmann K. Measurement of Transient Tool-InternalTemperature Fields During Hard Turning by Insert-embedded Thin FilmSensors[J]. Transactions of the ASME, Journal of Manufacturing Science andEngineering,2012,134:061004(1-9).
    [64] Bastia A, Obikawa T, Shinozukab J. Tools with Built-in Thin FilmThermocouple Sensors for Monitoring Cutting Temperature[J]. InternationalJournal of Machine Tools&Manufacture,2007,47:793-798.
    [65] Biermann B, Kirschner M, Pantke K, et al. New Coating System forTemperature Monitoring in Turning Processes. Surface and Coatings Technology.2013,215:376-380.
    [66] Tay A A O. A Review of Methods of Calculating Machining Temperature[J].Journal of Materials Processing Technology,1993,36:225-257.
    [67] Ismail Lazoglu, Yusuf Altintas. Prediction of Tool and Chip Temperature inContinuous and Interrupted Machining[J]. International Journal of MachineTools and Manufacture,2002,42:1011-1022.
    [68] List G, Sutter G, Bouthiche A. Cutting Temperature Prediction in High SpeedMachining by Numerical Modelling of Chip Formation and its Dependence withCrater Wear[J]. International Journal of Machine Tools and Manufacture,2012,54(55):1-9.
    [69] Lin Jehnming. Inverse Estimation of the Tool-work Interface Temperature inEnd Milling[J]. International Journal of Machine Tools and Manufacture,1995,35(5):751-760.
    [70] Carvalho S R, Lima E S, et al. Temperature Determination at the Chip-toolInterface Using an Inverse Thermal Model Considering the Tool and ToolHolder[J]. Journal of Materials Processing Technology,2006,179:97-104.
    [71] Lipman M P, Nevis B E, Kane G E. Remote Sensor Method for DeterminingAverage Tool-chip Interface Temperatures in Metal Cutting[J]. Transactions ofthe ASME, Journal of Engineering for Industry,1967,89(2):333-338.
    [72] Raman S, Cohen P H. Remote Sensing for On-line Temperature Estimation inMachining: A Basic Framework[J]. Journal of Materials Processing Technology.1993,38:613-632.
    [73] Li KuanMing, Wang Chia, Chu WeiYing. An Improved Remote SensingTechnique for Estimating Tool-chip Interface Temperatures in Turning[J].Journal of Materials Processing Technology,2013,213(10):1772-1781.
    [74] Abhay B, Helmi A, Vargas R. Wear mechanisms of WC coated and uncoatedtools in finish turning of Inconel718[J]. Tribology International,2010,43:1113-1121.
    [75] Hu J W, Chou Y K. Characterizations of cutting tool flank wear-land contact[J].Wear,2007,263:1454-1458.
    [76] Kadirgamaa K, Abou-El-Hosseinb K A, Noor M M, et al. Tool life and wearmechanism when machining Hastelloy C-22HS[J]. Wear,2011,270:258-268.
    [77] Almond E A. Towards Improved Tests Based on Fundamental Properties.Proceedings of the International Conference on Improved Performance of ToolMaterials, The National Laboratory and the Metals Society, Teddington,Middlesex, April28-29,1981.
    [78] Takeyama H, Murata R. Basic Investigation of Tool Wear[J]. Transactions of theASME, Journal of Engineering for Industry,1963,85(1):33-37.
    [79] Edward M. Trent, Paul K. Wright. Metal Cutting[M]. Fourth edition.Butterworth-Heinemann, Oxford, Uk,2000.
    [80]陈雷明,杨润泽,张治.刀具检测方法综述[J].机械制造与研究,2011,40(1):49-50,144.
    [81] Abdul B S, Shivakumar R. Detection of tool flank wear using acoustic signatureanalysis[J]. Wear,1987,115(3):265-272.
    [82] Tlusty J, Andrews G C. A Critical Review of Sensors for UnmannedMachining[J]. CIRP Annals-Manufacturing Technology,1983,32(2):563-572.
    [83] Dimla E. Dimla S. Sensor Signals for Tool Wear Monitoring in Metal CuttingOperations-A Review of Methods[J]. International Journal of Machine Toolsand Manufacture,2000,40:1073-1098.
    [84] Dutta S, Pal S K, Mukhopadhyay S, Sen R. Application of Digital ImageProcessing in Tool Condition Monitoring: A Review[J]. CIRP Journal ofManufacturing Science and Technology,2013,6(3):212-232.
    [85] Jurkovic J, Korosec M, Kopac J. New Approach in Tool Wear MeasuringTechnique Using CCD Vision System[J]. International Journal of Machine Toolsand Manufacture,2005,45:1023-1030.
    [86] Pfeifer T, Wiegers L. Reliable Tool Wear Monitoring by Optimized Image andIllumination Control in Machine vision[J]. Measurement,2000,28(3):209-218.
    [87] Luthje H, Bandorf R, Biehl S, Stint B. Thin Film Sensor for Wear Detection ofCutting Tools[J]. Sensors and Actuators A,2004,116(1):133-136.
    [88] Rene de Jesus R T, Gilberto H R, Ivan T V, et al. Driver Current Analysis forSensorless Tool Breakage Monitoring of CNC Milling Machines[J].International Journal of Machine Tools and Manufacture,2003,43:1529-1534.
    [89] Salgadoa D R, Alonso F J. An Approach Based on Current and Sound Signalsfor In-process Tool Wear Monitoring[J]. International Journal of Machine Toolsand Manufacture,2007,47:2140-2152.
    [90] Choudhury S K, Rath S. In-process Tool Wear Estimation in Milling UsingCutting Force Model[J]. Journal of Materials Processing Technology,2000,99:113-119.
    [91] Oraby S E, Hayhurst D R. Tool Life Determination Based on the Measurementof Wear and Tool Force Ratio Variation[J]. International Journal of MachineTools and Manufacture,2004,44:1261-1269.
    [92]范伟,王敏,谢政,邵华.基于红外温度的铣刀磨损在线监测[J].工具技术,2008,42:92-95.
    [93] Groover M P, Karpovich R J, Levy E K. Study of the Relationship BetweenRemote Thermocouple Temperatures and Tool Wear in Machining[J].International Journal of Production Research,1977,15(2):129-141.
    [94] Marksberrya P W, Jawahirb I S. A Comprehensive Tool-wear/Tool-lifePerformance Model in the Evaluation of NDM (near dry machining) forSustainable Manufacturing[J]. International Journal of Machine Tools andManufacture,2008,48:878-886.
    [95] Attanasioa A, Ceretti E, Fiorentino A, et al. Investigation and FEM-basedSimulation of Tool Wear in Turning Operations with Uncoated Carbide Tools[J].Wear,2010,269:344-350.
    [96] Li Bin. A Review of Tool Wear Estimation Using Theoretical Analysis andNumerical Simulation Technologies[J]. International Journal of RefractoryMetals and Hard Materials,2012,35:143-151.
    [97] Leone C, D. D’Addona, R. Teti. Tool Wear Modelling Through RegressionAnalysis and Intelligent Methods for Nickel Base alloy Machining[J]. CIRPJournal of Manufacturing Science and Technology,2011,4:327-331.
    [98] Segreto T, Simeone A, Teti R. Multiple Sensor Monitoring in Nickel AlloyTurning for Tool Wear Assessment Via Sensor Fusion[J].8th CIRP Conferenceon Intelligent Computation in Manufacturing Engineering,2013,12:85-90.
    [99] Rizal M, Ghania J A, et al. Online Tool Wear Prediction System in the TurningProcess Using an Adaptive Neuro-fuzzy Inference System[J]. Applied SoftComputing,2013,13:1960-1968.
    [100]Moufki A, Molinari D, Dudzinski D. Modelling of Orthogonal Cutting with aTemperature Dependent Friction Law[J]. Journal of the Mechanics and Physicsof Solids,1998,46(10):2103-2138.
    [101]Frank P. Incropera, David P. Dewitt. Introduction to Heat Transfer[M].6th ed.,John Wiley&Sons, New York,2007.
    [102]Machinability Data Center Technical Staff. Machining Data Handbook[M].Techsolve Inc Cincinnati,1980.
    [103]Friedman M Y, Lenz E. Analysis of Temperature Field in Chip[J]. Journal ofManufacturing Science and Engineering,1973,95(1):317-320.
    [104]Bahi S, Nouaria M, Moufki A, et al. Hybrid Modeling of Sliding-sticking Zonesat the Tool-chip Interface under Dry Machining and Tool Wear Analysis[J]. Wear,2012,286-287:45-54.
    [105]Trigger K J, Chao B T,1956, The Mechanism of Crater Wear of CementedCarbide Tools, Transactions of the ASME,78:1119-1126.
    [106]Usui E, Shirakashi T, Kitagawa T. Analytical Prediction of Three DimensionalCutting Process. Part3: Cutting Temperatures and Crater Wear of CarbideTool[J]. Transaction ASME,1978,100:236-243.
    [107]Usui E, Shirakashi T. Analytical Prediction of Cutting Tool Wear[J]. Wear,1984,100:129-151.
    [108]Kramera B M, B.F. von Turkovich. A Comprehensive Tool Wear Model[J]. CIRPAnnals-Manufacturing Technology,1986,35(1):67-70.
    [109]Wong T, Kim W, Kwon P. Experimental Support for a Model-based Prediction ofTool Wear[J]. Wear,2004,257:790:798.
    [110]Nouari M, Molinari A. Experimental Verification of a Diffusion Tool WearModel Using a42CrMo4Steel with an Uncoated Cemented Tungsten Carbide atVarious Cutting Speeds[J]. Wear,2005,259:1151-1159.
    [111]Luo X, Cheng K, Holt R, Liu X. Modelling Flank Wear of Carbide Tool Insert inMetal Cutting[J]. Wear,2005,259:1235-1240.
    [112]Attanasio A, Ceretti E, Rizzuti S, et al.3D Finite Element Analysis of Tool Wearin Machining[J]. CIRP Annals-Manufacturing Technology,2008,57:61-64.
    [113]Leshock C E, Shin Y C. Investigation on Cutting Temperature in Turning by aTool-work Thermocouple Technique[J]. Transactions of the ASME, Journal ofManufacturing Science and Engineering,1997,119:502-508.
    [114]Taylor J. The Tool Wear-time Relationship in Metal Cutting[J]. InternationalJournal of Machine Tool Design and Research,1962,2(2):119-152.
    [115]Zhang R, Wu S, Lu R, et al. Predictive Control Optimization Based PID Controlfor Temperature in an Industrial Surfactant Reactor[J]. Chemometrics andIntelligent Laboratory Systems,2014,135:48-62.
    [116]Tore H. A Unified Discussion on Signal Filtering in PID Control[J]. ControlEngineering Practice,2013,21:994-1006.
    [117]Hong-Tsu Young. Cutting Temperature Responses to Flank Wear[J]. Wear,1996,201:117-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700