用户名: 密码: 验证码:
湿空气透平(HAT)循环中的工质热物性计算模型和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题直接关系到国家经济发展和国防建设,随着石油资源日益紧张,如何高效节能地利用有限的化石资源是目前阶段的重要课题。现代燃气轮机技术被认为是高效洁净利用化石资源的很好技术,尤其是湿空气透平(HAT)循环被誉为21世纪的新型动力循环。HAT循环的工质是在传统工质中注入水或水蒸气,湿化后可以提高循环的比功和效率,降低污染物的生成。
     HAT循环处于高温和高压的工况下,目前已经可以达到1773K和40atm。在这样宽广的温度和压力范围下,湿空气和湿燃气的热物性还没有很完善的计算模型,人们对于传统工质与水蒸气混合而形成的湿工质(湿空气和湿燃气)的研究还很不足,尤其是对于传统工质与水蒸气的混合规律还没有准确的认识与把握。而对于HAT循环的热力学过程的研究和模拟都紧密依赖于准确的工质热物性,但是目前的湿工质热物性研究都还不能满足如此宽广的温度和压力范围。
     以往的研究可以分为两大类。第一类是理想混合气体模型,优点是充分利用已有的单组分气体(如干空气、水蒸气、二氧化碳等)的性质,缺点是没有考虑不同组分气体的相互作用和影响,因此结果不够准确。第二类是经验和半经验模型,都把混合气体当作一种假想的纯组分气体,优点是拥有自己的气体状态方程和充分考虑不同组分气体的相互作用,缺点是需要大量的实验数据进行验证和拟合,并且往往只能在较为狭窄的温度和压力范围内适用,不易外推。
     本文就HAT循环中的湿空气和湿燃气的热物性的计算模型展开研究,揭示了传统工质(干空气和干燃气)与水蒸气的混合规律,并在上述的宽广的温度和压力范围内提出了准确计算湿工质热物性的方法,其精度与现有的实验数据相比较,比焓、比熵和比容的差别均小于0.1%,因此完全符合工程上的要求。本文的贡献主要在以下四个方面。
     首先,本文聚焦于饱和湿空气,利用“半透膜”模型和“实际效果压力”的概念,首次从理论上证明,饱和湿空气中的饱和水蒸气组分的“实际效果压力”正好等于相同温度下的饱和水蒸气的压力。本文首次发现,尽管饱和湿空气中的饱和水蒸气组分与相同温度下独占此相同容积中的饱和水蒸气的“对应状态”相同,即拥有相同的“实际效果压力”和相同的温度,但是两种饱和水蒸气的摩尔数并不相同,前者始终比后者的大一些,这种摩尔数的差别正是由于干空气与饱和水蒸气的相互作用造成的。本文首次提出“改进因子”用于描述干空气对于独占容积的水蒸气的“改进效果”,定量刻画干空气与水蒸气的相互作用的强弱。本文进而提出各个组分气体的“实际效果压力”之和等于总压力的“修正道尔顿分压定律”,并加以论证。一方面,从压力的宏观意义的角度对“修正道尔顿分压定律”进行了理论证明;另一方面,利用数值方法将计算结果与现有的实验数据相比较,从而对“修正道尔顿分压定律”进行了数值证明。
     第二,本文将“修正道尔顿分压定律”推广到其他的不饱和湿空气的情形。通过对“改进效果”的物理意义的理解,不饱和湿空气的“改进因子”可以通过合理的计算公式得到。通过对不饱和湿空气的“改进因子”随温度变化的规律,发现“截止温度”是一个极为重要的温度值。“截止温度”为本文首次提出,在数值上等于此时的湿空气总压力所对应的饱和水蒸气的饱和温度。当湿空气温度逐渐升高并且接近于“截止温度”时,“改进因子”会逐渐趋向于1.0000,当温度等于或高于“截止温度”后,“改进因子”始终为1.0000。本文首次发现,当湿空气的温度高于“截止温度”后,干空气与水蒸气的相互作用可以忽略,此时只需要考虑这两种组分气体各自的独占状态即可。至此,所有状态的湿空气热物性都可以计算了。
     第三,本文进而研究湿燃气,求解并得到湿燃气的“截止温度”。湿燃气除了含有干空气组分,还含有大量水蒸气和二氧化碳两种实际气体组分,它们都偏离理想气体性质较远。研究发现,在湿燃气总压力恒定的情况下,总压力所对应的饱和水蒸气的饱和温度总是远远高于总压力所对应的饱和二氧化碳的饱和温度。也就是说,随着湿燃气温度的上升,二氧化碳总是比水蒸气更早地体现出“改进因子”趋近于1.0000的特点。因此,湿燃气的“截止温度”可以由总压力所对应的饱和水蒸气的饱和温度决定。当湿燃气的温度高于“截止温度”时,“修正道尔顿分压定律”可以适用于湿燃气,此时各个组分气体的相互作用都可以忽略,而只须考虑各种组分气体的独占状态即可。
     第四,本文将湿空气热物性运用于饱和器的计算,将湿燃气热物性运用于透平膨胀做功的计算,得到的计算结果与过去使用的理想模型的计算结果进行详细比较,发现热物性的选择对于循环的计算至关重要,由于热物性模型的选择不同,对于循环的数值模拟的各个结果也会产生各种差异。
     总体而言,全文对于饱和湿空气、不饱和湿空气、湿燃气的热物性进行了层层深入的探讨,利用“半透膜”模型对湿空气和湿燃气的热物性进行了解释。其中,“实际效果压力”、“改进因子”、“截止温度”为本文首次提出,着重描述了不同组分气体之间的相互作用,并且结合“修正道尔顿分压定律”及其重要推论,充分利用已有的完备的单组分气体的热物性,本文完整地提供了湿空气和湿燃气的热物性的计算方法。本文研究的结果也适用于其他使用湿空气和湿燃气作为工质的动力机械的热力过程模拟。
National economic development and national defense are both heavily dependent on energy.With the short supply of petroleum resources, how to utilize fossil resources in an efficient andenergy-saving way becomes an imperative task. Modern gas turbine is regarded as an efficient andclean technology to make use of fossil resources. Specifically, Humid Air Turbine (HAT) cycle isregarded as a new type of dynamic cycle in the21stcentury. The working medium of HAT cycle isformed by injecting water or steam into traditional working medium. After humidification, thepower rate and efficacy of the dynamic cycle can be improved, and the formation of pollutantsmay be reduced as well.
     The working condition for HAT is at high temperature and high pressure, which alreadyreaches1773K and40atm respectively for current HAT in operation. To date, there is still nosatisfactory calculation model for humid working medium (i.e. humid air and humid combustiongas mixture) in such wide temperature and pressure ranges. The researches on humid workingmedium are not adequate. Specifically, scientists don’t comprehend the behaviors of traditionalworking medium and water vapor in the humid mixture very well. Both study and simulation ofHAT cycle are tightly reliant on accurate thermodynamic properties of humid working medium.However, the current researches on humid working medium do not meet the requirement of suchwide temperature and pressure ranges.
     Two types of models are usually applied by past researchers. The first type is the ideal gasmixture model. It fully utilizes the properties of each gas component (e.g. dry air, water vapor andCO2). However, it omits the interactions between different gas components. The thermodynamicproperties obtained by this type of model may not be accurate due to such omissions. The secondtype includes empirical and semi-empirical models. They regard the gas mixture as a pseudo-puregas, which has its own state equation. The results are more accurate because the interactionsbetween different gas components are taken into account. However, the establishment of suchmodel requires a large number of experimental data. This type of model can only be applied inthose experiment-proved temperature and pressure ranges. It cannot be extended to other widerranges.
     This thesis studies the thermodynamic properties of humid working medium in HAT cycle,demonstrates the behaviors of dry working medium (i.e. dry air and dry combustion gas mixture)and water vapor in the humid gas mixture, and proposes a new calculation model for humidworking medium in the above-mentioned wide temperature and pressure ranges in HAT cycle. Theerror of my proposed model is less than0.1%compared to existing experimental data, so it fullymeets the engineering standard. The main contributions of this thesis are in the following fouraspects.
     First, this thesis focuses on saturated humid air. It establishes the semi-permeable membranemodel and the concept of “actual effective pressure”. It is for the first time to prove the “actualeffective pressure” of water vapor in the saturated humid air exactly equal to the saturationpressure of existing alone saturated water vapor at the same temperature. Furthermore, it isdiscovered that although the saturated water vapor in the saturated humid air is at “CorrespondingState” to the saturated water vapor existing alone in the same volume at the same temperature, themol numbers of two types of saturated water vapor are different. The mol number of saturatedwater vapor in the saturated humid air is always larger than the mol number of the saturated watervapor existing alone. The difference of mol numbers are attributed to the interaction between dryair and water vapor.“Improvement Factor” is proposed to describe the “Improvement Effect” ofmol number increase of the existing alone water vapor caused by dry air quantitatively. Then theRevised Dalton’s Partial Pressure Law proposes that the summation of “actual effective pressures”of each gas component equals the total pressure. This law is proved on two hands. On the onehand, it is proved by the macro physical meaning of pressure. On the other hand, it is proved bythe numerical calculation results of my model compared to existing experimental data.
     Second, this thesis extends the Revised Dalton’s Partial Pressure Law to unsaturated humidair. In accordance to the physical meaning of “Improvement Effect”, the “Improvement Factors”for unsaturated humid air can be obtained in reasonable ways. Through the study of “Improvement Factors” in unsaturated humid air with the increase of temperature, it is discovered that “CuttingOff Temperature” is a crucial benchmark.“Cutting Off Temperature” is proposed for the first time,the value of which is exactly equal to the saturation temperature of the existing alone saturatedwater vapor corresponding to the total pressure of humid air. When the temperature of humid airincreases and approaches the “Cutting Off Temperature”, the “Improvement Factors” will movetowards1.0000. When the temperature is equal to or higher than the “Cutting Off Temperature”,the “Improvement Factor” will always be1.0000. It is for the first time to discover that theinteraction between dry air and water vapor may be omitted when the temperature of humid air ishigher than “Cutting Off Temperature”. Under such circumstances, it is only required to considerthe existing alone status of each gas component. Thus, thermodynamic properties of all kinds ofhumid air are able to be calculated smoothly.
     Third, this thesis studies humid combustion gas mixture and obtains its “Cutting OffTemperature”. Humid combustion gas mixture contains not only dry air but also large amount ofwater vapor and CO2, both of which are real gas components and deviate from ideal gas behaviorsnotably. Through in-depth research, it is found out that when the total pressure of humidcombustion gas mixture is fixed, the saturation temperature of existing alone saturated water vaporcorresponding to the fixed total pressure is always much higher than the saturation temperature ofexisting alone saturated CO2corresponding to the same total pressure. In other words, in thehumid combustion gas mixture, the “Improvement Factor” of CO2always approaches1.0000much earlier than that of water vapor. Therefore, the “Cutting Off Temperature” of humidcombustion gas mixture can be determined by the saturation temperature of existing alonesaturated water vapor corresponding to the total pressure. When the temperature of humidcombustion gas mixture is higher than the “Cutting Off Temperature”, Revised Dalton’s PartialPressure Law can be applied. Under such circumstances, the interaction between different gascomponents may be omitted. As long as the existing alone status of each gas component isobtained, the thermodynamic properties of humid combustion gas mixture can be thoroughlysolved.
     Fourth, this thesis applies the thermodynamic properties of humid air developed by my modelto the saturator calculation and applies the thermodynamic properties of humid combustion gasmixture to the turbine calculation. The calculation results obtained by my model are compared tothe results by ideal gas mixture model in detail. It is found that the selection of an accurate modelfor thermodynamic properties of working medium is of vital importance. By means of differentmodels, the simulation results of many output parameters in HAT cycle will be different to variousextents.
     In conclusion, this thesis studies saturated humid air, unsaturated humid air and humidcombustion gas mixture step by step. The semi-permeable membrane model is fully utilized toexplain the thermodynamic behaviors of humid air and humid combustion gas mixture. Suchconcepts as “actual effective pressure”,“Improvement Factor” and “Cutting Off Temperature” areproposed for the first time. This thesis describes the interaction between different gas componentsin detail. The proposition and proof of Revised Dalton’s Partial Pressure Law and the importantdeductive relationship of this law are both crucial. They provide the theoretical foundation to linkthe thermodynamic behavior of the humid gas mixture and the thermodynamic behaviors of its gascomponents. Thus, we can may full use of the well-equipped thermodynamic properties of eachexisting alone gas component to get the thermodynamic properties of humid gas mixture. Thisthesis provides a complete model for calculation of thermodynamic properties of humid air andhumid combustion gas mixture. The results of this thesis may also be fit for other types ofthermodynamic process simulation whose working mediums are humid air or humid combustiongas mixture.
引文
[1]许红星,我国能源利用现状与对策[J].中外能源,2010.1:3-14.
    [2]杨敏英,当前世界各国能源发展战略的特点及影响[J].中国能源,2007.5:5-9
    [3]沙之杰,低碳经济背景下的中国节能减排发展研究[D].西南财经大学,2011
    [4]苏俊林,潘亮,朱长明,富氧燃烧技术研究现状及发展[J].工业锅炉,2008.3:1-4
    [5]王辅臣,于广锁,龚欣,大型煤气化技术的研究与发展[J].化工进展,2009.2:183-190
    [6]仇松柏,利用生物质基合成气制备清洁生物燃料的研究[D].中国科学技术大学,2011
    [7]牛卫东,热力过程中工质热物性的确定方法讨论[J].汽轮机技术,2005.1:34-35
    [8]朱健行,王雪瑜,燃气轮机工作原理及性能[M],北京,科学出版社,1992
    [9]林汝谋,方刚,HAT循环性能分析研究[J].工程热物理学报,1993(2):129-132
    [10] Stecco S. S. Humid Air Turbine Cycle: A possible optimization. International gas turbine andaroegine congress and exposition, Cincinnati, Ohio USA, May24-27,93-GT-178,1993
    [11] Wang Zidong, Chen Hanping, Weng Shilie, New calculation method for thermodynamicproperties of humid air in humid air turbine cycle-The general model and solutions for saturatedhumid air [J], Energy58:606-616,2013
    [12] Wang Zidong, Chen Hanping, Weng Shilie, Revised Dalton’s method for calculation ofthermodynamic properties of unsaturated humid air and gas mixture after combustion in humid airturbine cycle [J], Energy58:594-605,2013
    [13] HAT cycle technology development program, DOE Contract Number DE-AC21-96MC33084
    [14] Andrea Lazzaretto, Fabio Segato, Athermodynamic approach to the definition of the HATcycle plant structure [J]. Energy conversion&management,2002,43:1377-1391
    [15]尚德敏,王永青,湿化器的传热传质机理和性能分析[J].热能动力工程,2000(5):229-231
    [16]王永青,严家碌,闻学友,湿空气透平(HAT)循环的研究发展现状[J].热能动力工程,1998,13(78):387-391
    [17]焦树建,段志鹏,HAT循环热力参数的优化选择[J].燃气轮机技术,1995,2:25-30
    [18] Enick R. M., Klara S. M., A robust algorithm for high-pressure gas humidification [J].Computer chemistry engineering,1995,19:1051-1061
    [19] Span, R., Lemmon, E.W., Jacobsen, R.T, Wagner, A Reference Quality ThermodynamicProperty Formulation for Nitrogen. J. Phys. Chem. Ref. Data,29(6):1361-1433,2000.
    [20] Schmidt, R. and Wagner, W., A New Form of the Equation of State for Pure Substances andits Application to Oxygen. Fluid Phase Equilibria,19:175-200,1985
    [21] Wagner, W. and Pruss, A., The IAPWS Formulation1995for the Thermodynamic Propertiesof Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data,31(2):387-535,2002
    [22] Chiesa P., Lozza G., An assessment of the thermodynamic performance of mixed gas steamcycles: Part B–Water injected and HAT cycle [J], Journal of engineering for gas turbine andpower,1995, Vol.117,499-509
    [23]王永青,严家碌,一种新的热力循环性能的估算方法和HAT循环的性能估算公式[J].热能动力工程,1998,13(5):345-347
    [24] Rao A. D., Day W. H., HAT Cycle status report. Eleventh conference on gasification powerplants, San Francisco, California USA, Oct.21-23,1992
    [25]江亿,谢晓云,刘晓华,湿空气热湿转换过程的热学原理[J].暖通空调,2011.3:51-64
    [26]张琳,冷却塔布置中湿空气回流干扰的计算[J],工业用水与废水,2002.3:41-43
    [27]张壁光,王喜平,赵忠信,湿空气参数对除湿干燥机能耗的影响[J],林产工业,1994.3:13-14
    [28] Mori. Y, Highly efficient regenerative gas turbine system by new method of heat recoverywith water injection, International gas turbine congress,1983, Oct.23-29
    [29] Rao A D., Process for producing power [P]. U.S. Patent, No.4829765,1989
    [30] Nakamura H. Regeneratve gas turbine cycles [P]. US. Patent, No.4537023,1983
    [31] Cook D.T., Rao A. D. HAT Cycle Simplifies Coal Gasification Power. Mps. May,1991
    [32] Day W. H., Rao A.D., Ft4000HAT with Natrual Gas Fuel, Turbomachinery International [J],1993(2).
    [33] Victor D. B., CHAT Rivals51%combined cycle plant efficiency at20%less capital cost.Gas turbine world, May-June,1995
    [34]肖云汉,林汝谋,蔡睿贤,HAT循环的系统优化[J].工程热物理学报,1994
    [35]林汝谋,蔡睿贤,跨世纪的HAT热力循环[J].燃气轮机技术,1993,6(2):1-6
    [36]王龙文,宋华芬,HAT循环研究发展概况[J],节能与环保2004.8:26-29
    [37]翁史烈,臧述升,蒲强,燃气轮机HAT循环性能的理论与试验,新形势下长三角能源面临的新挑战和新对策——第八届长三角能源论坛论文集2011.11
    [38]孙晓红,王永泓,翁史烈,湿空气透平循环流程优化分析[J],上海交通大学学报,1999.3:65-68
    [39]孙博,整体煤气化湿空气透平(IGHAT)循环关键部件的特性建模与实验研究,上海交通大学,2012
    [40]刘青荣,阮应君,任建兴,冷热电三联产系统节能减排效果的理论分析[J],华东电力,2010.2:267-270
    [41] Farnosh Dalili, Humidification in Evaporative Power Cycles [D], Royal Institute ofTechnology, Stockholm, Sweden,2003
    [42] Department of Energy, U.S., HAT cycle technology development program, DOE contractnumber DE-AC21-96MC33084
    [43] Niklas D. A. New humidifier concept in evaporative gas turbine cycle. TAIES, Beijing, Feb.1997
    [44]靳海明,蔡颐年,蔡睿贤,饱和器底部温差对HAT循环性能的影响[J].西安交通大学学报,1996(5):80-85,1996
    [45] Waldyr L. R., A comparison between the HAT cycle and other gas turbine based cyclesefficiency, specific power and water consumption [J]. Energy Conversion&Management,1997,38:1595-1604
    [46]林汝谋,注蒸汽燃气轮机循环及其特点分析[J].工程热物理学报,1986,7(3):20-25
    [47] Jonsson M, Yan J,. Economic assessment of evaporative gas turbine cycles with optimizedpart flow humidification systems [C], Proceedings of ASME turbo expo, Atalanta, U.S., June16-19,2003
    [48]吴伟亮,陈汉平,HAT循环饱和器传热传质过程及相似分析[J],热能动力工程,2004(1):38-41
    [49]王玉璋,王永泓,翁史烈,逆流式空气湿化器实验系统的研制[J],燃气轮机技术,2004,17(2):41-45
    [50]王玉璋,翁史烈,李一兴,逆流式空气湿化器加湿性能的实验研究[J],中国电机工程学报,2004,24(7):152-156
    [51] Agren N., Advanced gas turbine cycle with water-air mixtures as working fluid [D], Ph. Dthesis, ISSN1104-3466, Royal Institute of Technology, Stockholm, Sweden,2000
    [52]陈安斌,湿空气热力性质计算方法[J].哈尔滨工业大学学报,2001,33(6):799-801
    [53]赵丽凤,张世铮,HAT循环关键部件空气湿化器的初步实验性能[J].工程物理学报,1999(6):677-680
    [54] Meyer J. L., Grienche G., An experimental study of steam injection in an aeroderivative gasturbine [J]. ASME97:506,1997
    [55] Blevins L. G., Roby R. J., An experimental study of NOx reduction in laminar diffusionflames by addition of high levels of steam [J], ASME96:327,1995
    [56] Touchton G. L., Influence of gas turbine combustor design and operating parameters oneffectiveness of NOx suppression by injected steam or water [J], ASME84:3,1985
    [57] Miyauchi Y., Mori Y., Yamaguchi T., Effect of steam addition on NO formation, Eighteenthsymposium on combustion [C], the Combustion Institute, Pittsburgh, PA,1981
    [58] Dryer F. L. Water addition to practical combustion systems concepts and applications,Sixteenth symposium con combustion [C], the Combustion Institute, Philiadelphia, PA,1993
    [59] Med Colket, William Sowa, Kent Casleton, An experimental modeling study of humid airpremixed flames [J], Journal of engineering for gas turbines and power,122:405,2000
    [60]曾丹苓,熬越,朱克雄,工程热力学(第二版),北京,高等教育出版社,1996
    [61] Anuj Bhargava, Med Colket, William Sowa, An experimental modeling study of humid airpremixed flames [J], ASME journal of engineering for gas turbines and power,122:406-411,2000
    [62]顾欣,臧述升,葛冰,湿空气非预混火焰的稳定性[J].2007(04):320-324
    [63]顾欣,臧述升,葛冰,湿空气扩散燃烧火焰结构特性研究[J].2006(02):343-346
    [64]刘刚,王永泓,饱和器热力过程数学模型[J].船舶工程,2000(1):38-40
    [65] Yunhan Xiao, Rumou Lin, Ruixian Cai, System optimization of humid turbine cycle. ASME,Netherlands, June13-16,1994,94-GT-240
    [66]张美根,胡非,邹捍,大气边界层物理与大气环境过程研究进展[J],大气科学,2008(04):923-934
    [67]宋德强,粟东,空气调节概述[Z].中国暖通空调制冷年鉴,2001
    [68]刘桂玉,刘志刚,阴建民,工程热力学,北京:高等教育出版社,1998
    [69]华自强,张忠进,工程热力学(第三版)[M],北京:高等教育出版社,1999
    [70]沈维道,蒋淡安,童均耕,工程热力学(第三版),北京:高等教育出版社,2001
    [71]严家碌,余晓福,水和水蒸气热力性质图表,北京:高等教育出版社,1995
    [72]张志富,希爽,关于露点温度计算的探讨[J].干旱区研究,2011(02):275-281
    [73]童景山,流体的热物理性质[M].北京:中国石化出版社,1996
    [74]徐大中,糜振琥,热工测量与实验数据整理[M].上海,上海交通大学出版社:1991
    [75]蔡祖恢,工程热力学,北京:高等教育出版社,1994
    [76] Michael J. M., Howard N. S., Fundamentals of engineering thermodynamics,2nd ed. NewYork: John Wiley,1992
    [77]丁皓,吉晓燕,高温高压下饱和湿空气焓与湿度的预测[J].化工学报,2002(8):879-882
    [78] Melling A.,Noppenberger S, Still M., Interpolation correlation for fluid properties of humidair in the temperature range100℃to200℃[J]. J. Phys. Chem. Ref. Data,26,1111-1123,1997
    [79] Giacomo P., Equation for determination of the density of moist air[J]. Metrologia1983:18:33-40
    [80] Davis R.S., Equation for determination of the density of moist air.[J] Metrologia:1992:29:67-70
    [81] Hyland R. W., Wexler. Formulations for the thermodynamic properties of dry air from173.15K to473.15K and of saturated moist air from173.15K to372.15K, at pressures to5MPa[J].ASHRAE Transactions89(2):520-535,1983
    [82] Carotenuto A,, Isola D. M. Simplified relationships for the enhancement and compressibilityfactor of moist air[J]. ASHRAE Transactions,102:242-246,1996
    [83] Mason E. A. and Monchick I. Survey of the equation of state and transport properties of moistgases, Humidity and Moisture [M]. Reinhold: New York,3,257-272,1965
    [84] Hyland R. W. and Wexler A., The second interation cross virial coefficients for moist air [J],Journal of Research of the National Bureau of Standards-Physics and Chemistry77(A):133-1471973
    [85] Rabinovich V. A., Beketowl V. G., Moist gases, thermodynamic properties [M]. Begell House,1995
    [86] Wylie. R. G., Fisher R.S., Molecular interaction of water vapor and air[J]. Chem. Eng. Data,41(1):133-142,1996
    [87] Hyland R. W. and Wexler A., The enhancement of water vapor in carbon dioxide free air at30,40and50℃[J], Journal of Research of the National Bureau of Standards-Physics and Chemistry77A:115-131,1973
    [88] Ji. X., X. Lu, Yan J., Survery of experimental data and assessment of calculation methods ofproperties for the air water mixture[J]. Appl. Therm. Eng.23:2213-2228,2003
    [89] Perry R. H., Green D. W. Perry’s chemical engineering handbook,7th edition [M],McGraw-Hill,1997
    [90] ASHRAE. Fundamentals Handbook [M], ASHRAE, Atlanta, GA,1993
    [91] Abbott M. M., Van Ness H. C. Thermodynamics.2nd edition, New York, Schaum’s OutlineSeries,1989
    [92] Spencer H. M. Empirical haeat capacity equations of various gases [J] Journal of Amercialchemisty society67:1859-1860,1945
    [93] Hyland, R. W., Wexler, A., Formulations for the thermodynamic properties of the saturatedphases of water from173.15K to473.15K [C]. ASHRAE Transactions,89(2A):400-519,1983
    [94] Hatsopoulos, G.N., Keenan J.H., Principles of general thermodynamics. Melbourne, KriegerPublishing Co.,1981
    [95] Goff J. A., Gratch S., Pa P. Thermodynamic properties of moist air, Heating, Piping and AirConditioning [R]. ASHVE J. Section17,334-347,1945
    [96] Goff J. A., Standardization of thermodynamic properties of moist air-Final report of workingsubcommittee, International joint committee on psychrometric data, Heating, Piping and AirConditioning [R]. ASHVE J. Section21,118-128,1949
    [97] Hyland R. W., Mason E. A., Third virial coefficient for air water vapor mistures [J], Journalof Research of the National Bureau of Standards-A Physics and Chemistry,71:219-224,1967
    [98] Luks K. D., Fitzgibbon P., Banchero J. T., Correlation of the equilibrium moisture content ofair and of the mixture of oxygen and nitrogen for temperatures in the range of230to600K atpressure up to200atm[J]. Ind. Eng. Chem. Process:15(2),326-332,1976
    [99] Chaddock J. B., Moist air properties from tabulated virial properties, Humidity and Moisture,Reinhold: New York,3:273-284,1965
    [100] Tsonopoulos C., An empirical correlation of second Virial coefficients [J]. AICHE20(2),1974
    [101] Richards P., Wormald C. J., Yerlett T. K., The excess enthalpy of water and nitrogen vapor[J], Jounal of chemical thermodynamics,13:623-628,1981
    [102] Ji. X., Lu. X., Yan. Yan. J., Saturated humidity, entropy and enthalpy for the nitrogen watersystem at elevated temperature and pressure [J]. International journal of thermophysics,24(6):1681-1696,2003
    [103] Japas M. L., Franck E. U., High pressure phase equilibria and PVT data of the waternitrogen system to673K and250MPa [J]. Physical chemistry,89:793-800,1985
    [104] Ji. X., Yan J., Saturated thermodynamic properties for the air water system at elevatedtemperature and pressure [J]. Chemical Engineering Science,58(22),5069-5077,2003
    [105] Aspen Plus. User Guide [M]. Aspen tech. Inc.:Cambridge, MA, USA,1999
    [106] Johnson J. W., Oelkers E. T., Helgeson H. C. A software package for calculating the standardthermodynamic properties of minerals, gases, aqueous, and reactions from1to5000bar and0to1000℃[J], Computers and Geosciences,18:899,1992
    [107] Ji X., Lu X., Yan J., Phase equilibria for the oxygen water system at elevated temperaturesand pressures [J]. Fluid phase equilibria,222-223,2004
    [108] Ji X., Yan J., Thermodynamic properties for humid gases from298to573K and up to200bar [J]. Applied thermal engineering,26(2):251-258,2006
    [109] Yan J., Ji X., Jonsson M., Thermodynamic property models for the simulation of advancedwet cycles. ASME Paper GT-GT2003-38298,2003
    [110]王明德,压缩因子与气体可压缩性[J],化学通报,2002(05):358-360
    [111] Su. G. J, Modified law of corresponding states[J], Ind. Eng. Chem.38:803,1946
    [112]陈玉云,对比压力和对比温度的简易计算法[J],化肥设计,1982(06):113-114
    [113]高保娇,薛永强,对应状态原理及其应用[J],华北工学院学报,1997(4):370-373
    [114] Wang Zidong, Chen Hanping, Weng Shilie, Partial Pressures of humid air in wide pressureand temperature ranges [J], Frontiers In Energy: Vol.7(3),2013, DOI:10.1007/s11708-013-0281-7
    [115]孙鹏,任静,蒋洪德,先进燃气轮机的特征及发展趋势[C],中国动力工程学会透平专业委员会2011年学术研讨会论文集,中国四川德阳,2011-10-21,1-8
    [116]陈安斌,湿燃气热力性质的计算方法[J],哈尔滨工业大学学报,2001(06):799-801
    [117]翁史烈,陈汉平,湿空气透平循环的基础研究,上海交通大学出版社,2008年
    [118]李孝堂,现代燃气轮机技术[B],航空工业出版社,2006年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700