用户名: 密码: 验证码:
西藏沃卡温泉形成条件及对隧道工程影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以西藏自治区桑日县沃卡盆地温泉为研究对象,在分析区域地热地质背景的基础上,结合研究区温泉出露特征,水化学及同位素特征,对沃卡温泉的受控因素和形成条件进行了分析研究。温泉的出露呈北东向带状展布,与沃卡盆地西边界断裂的方向相似,区内温泉的分布与断裂构造的关系密切。根据水化学特征与氢氧稳定同位素地球化学特征分析表明,研究区温泉的主要阳离子成分为Na+,阴离子主要成份为SO42-,Cl-的含量与温泉温度有紧密的相关性,热水微量元素含量与西藏热水总体背景值相近,且明显高于地表水。根据与西南大气降水线对比,温泉水主要来源与大气降水补给,利用同位素特征推算补给区年平均温度为-9℃,补给高程在5000~5300m之间。利用多种地球化学温标及混合模型计算法估算出沃卡温泉热储温度介于77~133℃之间。
     本文通过对研究区地热形成条件及地热梯度的计算,温泉增温与区域内传导热流所能提供热量基本相当,说明沃卡温泉热量主要来源与深循环中吸收围岩热量,并无特殊的外加热源,热储类型主要为断裂带型即温泉主要储存于断裂破碎带中,区内温泉类型主要为断裂深循环型。通过对沃卡温泉形成条件分析,温泉的水源主要来源于增久曲与墨竹曲分水岭地带,大气降水在补给区,沿基岩裂隙网络下渗,汇集于沃卡盆地西缘边界断裂中进行深部循环,地下水在漫长的循环过程中充分吸收了岩石深处的热能形成地下热水,然后在沃卡韧性剪切带等阻水断层相交部位的构造破碎带上升,最后在地质构造的有利部位上涌出露。
     结合前述分析资料,为对隧道施工各段位岩温进行较为准确预测,建立温泉多种循环模式并结合区域大地热流值对沃卡地区的地温梯度估算,并对拉隆隧道各段岩温进行预测,地热对隧道可能会产生一定影响,估测结果显示无中等危险区,仅在埋深较大及穿越沃卡盆地区域评级为微危险区,占隧道全长的49%,仅需做加强通风进行处理。研究区地热发育具有明显规律,地热异常带发育明显受断层控制,根据沃卡温泉的形成特征,由于东西向阻水断层的阻隔,隧址区地下水系统由于水力条件限制,地下水循环深度无法供应充足热量形成高热流体,即隧道开挖过程中遇到高热地热流体的可能性不大。沃卡温泉地下水系统与拉隆隧道穿越区地下水系统联系不紧密,拉隆隧道的开挖而引起对沃卡温泉的袭夺的可能性不大。因此,以现拟选线路方案穿越沃卡盆地,虽会对地下水系统有一定影响,但是产生较大范围的地下水疏干及对沃卡温泉泉群的袭夺的可能性不大。穿越沃卡盆地的方案是较为可行的。
This paper chooses the voca hot-springs in Tibet autonomous region as research object.Though analyzing the region geothermal and geologic background, do some researchs on the hot-springs distribution characteristics and its control factors,that find the springs appear on the zonal distribution along the esat-south,the direction as same as the west-border of voca basin,which show the distribution of springs has intimate connection with the fractures.Across the study of hydrochemical and isotope geochemical characteristics, Hot Springs is the main cation Na+, the main ingredients of anions SO42-, and the content of Cl- and hot temperatures are closely correlated. Hot-springs trace elements are close to background values in Tibet, and it significantly higher than surface water. With the comparison to Southwest meteoric water line, the main source of hot spring water from rainfall.the projected average annual temperature of recharge area -9℃, and supplies region between 5000 ~ 5300m elevation. Geochemical temperature scale and mixed use model calculations to estimate the storage temperature range of hot Voca 77 ~ 133℃between.
     Based on the geothermal gradient of the formation conditions and the calculation of geothermal, hot spring temperature and heat flow within the region can provide the heat conduction is roughly equal, it is mean that the main heat source of hot springs absorbing surrounding heat though deep-cycle, no special additional heat.The heat storage is fault type that is mainly stored in the hot spring fractured zone, and the area consists mainly of spring break deep cycle type. The forming conditions by analysis of hot spring water,comes mainly from Zengjiu river and bamboo river by watershed area, precipitation in the recharge area, infiltration along the bedrock fracture network, bringing together the western margin of the basin boundary fault Voca conducted deep circulation of groundwater circulation in the long process of fully absorb the heat of the rock formation deep underground hot water, then water blocking Voca ductile shear zone and other parts of the structural fault fracture zone intersected up, the last part in the favorable geological structure exposed on the emission.
     Integration of the aforementioned analysis of data for the construction of the tunnel for the more accurately predict the rock temperature.geothermal gradient was estimated though circulation patterns of Hot Springs with the regional heat flow value on the Voca area. La Long tunnel sections to predict rock temperatures.There are no medium-risk areas ,and only in the depth of the area and across the Voca area rated as slightly dangerous, accounting for 49% of total length of the tunnel, only to do processing to enhance ventilation.geothermal and the tunnel may have an impact. Geothermal development in the study area has a significant distribution, with the development of geothermal anomaly was controlled by faults, the formation of features according to Voca springs, water was blocked by east-west faults of the barrier. Voca hot water systems and the tunnel through the area belong to different hydrogeological units.With the limite of hydraulic conditions, water can not absorb a lot of heat for deep cycle and the formation of high heat flow, the heat encountered during tunnel excavation geothermal fluid is unlikely . Voca hot water systems and groundwater systems Lalong tunnel was through contact does not close.Lalong tunnel excavation of the tunnel caused the capture of Voca Spa is unlikely. Therefore, it is proposed to select the program through the Voca basin, groundwater system though will have some influence, but have a greater range of groundwater dewatering and hot spring on the Voca Capture group is unlikely.The program through the Voca basin is more feasible.
引文
[1]任福弘,沈照理.1993.水文地球化学.中国大百科全书一地质学[M].北京:中国大百科全书出版社,507~508;
    [2] Werner F Giggenbach,Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J] ,Geochimica et Cosmochimica Acta, Volume 52, Issue 12, December 1988, Pages 2749-2765;
    [3] Werner F Giggenbach,Geothermal mineral equilibria[J] ,Geochimica et Cosmochimica Acta, Volume 45, Issue 3, March 1981, Pages 393-410;
    [4]叶思源等,水文地球化学研究现状和进展[J].地球学报,2002;23卷,5期;
    [5]钱会,陕西华清池温泉热储温度的估算[J],长安大学学报,1989;01期;
    [6]万登堡,腾冲热海温泉群化学特征与形成机理研究[J],地震研究,1998, 21(4);388-396;
    [7]刘久荣,潘小平,杨亚军等,北京城区地热田某地热井热水地球化学研究[J],现代地质,2002,16 ( 3 ): 318-321
    [8]王广才,张作辰,汪民等.延怀盆地地下热水与稀有气体的地球化学特征[J],地震地质,2003,25(3):421-429
    [9]柳春晖,周训,白庙温泉、赤城温泉及塘子庙温泉的水化学及同位素研究[D],中国地质大学;
    [10]杨妍妍,周训,广西博白温罗温泉形成演化与钙化沉积机制研究[D],中国地质大学;
    [11]沈敏子,地热的开发和研究—纵谈1985-1990年的国际进展[J],地球科学进展,1991;04期;
    [12]孙占学,江西低温地热水的同位素水化学地球特征[J],东华理工学院学报,1992;03期;
    [13]王东升,王经兰.中国地下热水的基本类型和成因特征[J].第四纪研究,1996,(02);
    [14]王基华.张家口南部地区温泉形成的氢氧稳定同位素及气体组成特征[J].水文地质工程地质,2000,(04);
    [15]杨彪.瑞丽热田水化学及同位素特征研究[J].中国煤田地质,1999,(01);
    [16]徐步台,章秋芳,周树根.浙江武义盆地地热水同位素地球化学研究[J].地球学报,中国地质科学院院报, 1999,(04);
    [17]王兆荣.中国东部温泉水和井水的氢氧同位素初步研究[J].中国科学技术大学学报, 1993,(02)
    [18]朱家玲,王坤.环境同位素在研究地热资源形成过程中的应用[J].太阳能学报,2008.(03);
    [19]马致远,王心刚.陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J].地质通报,2008,(06);
    [20]卫克勤,林瑞芬.西藏羊八井地热水的氢氧稳定同位素组成及氚含量[J].地球化学,1983,
    [21] Eckstein Y. M aurath G, Ferry R A. Modeling the themeal evolution of an active geothemval system[J ] .Journal of Geodynanics, 1985, 4: 149-163;
    [22] Violette S,Ledoux E, Goblet P, et al Hydrologic and thermal modeling of an active volcano: the Piton de la Frournaise,Reunion [J].Journal of Hydrology.1997, 191: 171-I 85;
    [23]薛禹群,谢春红,张志辉等.三维非稳定流含水层储能的数值模拟研究[J].地质论评,1994. 40(1),74-81;
    [24]张勇,薛禹群,谢春红等.考虑温度变化的地下水运动方程及其在储能模型中的应用[J].地质论评,1999 ,45(1): 209-217;
    [25]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007;
    [26]周训,陈明佑,李慈君.深层地下热水运移的三维数值模拟[M].北京:地质出版社,2001;
    [27]薛传东,刘星,杨浩等.昆明市地热田越流含水系统中地下热水的数值模拟[J].地球科学进展,2003. 18 (6): 899-903;
    [28]陈尚秋,黄润秋.深埋隧洞地温场的数值模拟研究.地质灾害与环境保护[J],1995;6卷,2期
    [29]王贤能,黄润秋.深埋隧洞温度场的评价预测.水文地质工程地质[J], 1996;6期
    [30]陈永萍,谢强等.秦岭隧道岩温预测经验公式的建立.隧道建设[J],2003;23卷,1期
    [31]舒磊,楼文虎等.羊八井隧道地温分析.冰川冻土[J],2003,增刊24~28
    [32] Fournier, 1981. R.O. Fournier, Application of water geochemistry to geothermal exploration and reservoir engineering. In: L. Rybach and P. Muffler, Editors, Geothermal Systems: Principles and Case Histories, John Wiley, London (1981), pp. 109–143;
    [33]多吉等.典型高温地热系统—羊八井地热田特征.中国工程科学[J],2002,
    [34]王成善,戴紧根,刘志飞,朱利东,李亚林,贾国东.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J].地学前缘,2009,(03)
    [35]潘裕生,方爱民.中国青藏高原特提斯的形成与演化[J].地质科学.2010,(1):92-101.
    [36]吴冲龙,李星.盆地地热场模拟的若干问题探讨[J].石油实验地质, 2001,(02) .
    [37]韩同林.喜马拉雅岩石圈构造演化:西藏活动构造.北京:地质出版社.1987.
    [38]唐哲明,韩同林.青藏高原地体的初步划分及构造特征简述[J].地球学报, 1990,(02):中国地质科学院院报,1990, 21:121-128.
    [39]曾融生,孙为国.青藏高原及其邻区的地震活动性和震源机制以及高原物质东流的讨论[J].地震学报,1992,(S1):531-563.
    [40]田立德,姚檀栋,蒲健辰,杨志红.拉萨夏季降水中氧稳定同位素变化特征[J].冰川冻土,1997,(04):295-301.
    [41]田立德,姚檀栋,孙维贞.M. Stievenard,J. Jouzel.青藏高原南北降水中δD和δ18O关系及水汽循环[J].中国科学D辑,2001,(03):214-220.
    [42]章新平,中尾正义,姚檀栋,韩健康,谢自楚.青藏高原及其毗邻地区降水中稳定同位素成分的时空变化[J].中国科学D辑, 2001,(05):353-361.
    [43]佟伟,章铭陶,张知非,廖志杰.西藏地热[M].北京:科学出版社,1980,
    [44]廖志杰,赵平.滇藏地热带-地热资源和典型地热系统[M].北京:科学出版社,1999.
    [45]韩宝平,郑世书.煤矿开采诱发的水文地质效应研究.中国矿业大学学报[J].1994.9:70-77.
    [46]许劼,王国权,李晓昭.城市地下空间开发对地下水环境影的初步研究.工程地质学报[J].1999.3:15-19.
    [47]刘丹,杨立中,于苏俊.华蓥山隧道排水的生态环境问题及效应.西南交通大学学报[J].2001;36(3):308-313.
    [48]庄乾城,罗国煜,李晓昭等.地铁建设对城市地下水环境影响的探讨.水文地质工程地质[J].2003:102-105.
    [49]杨晓婷,张徽,王文科.地下工程建设对城市地下水环境的影响分析.铁道工程学报[J].2008(11):6-10.
    [50]陈爱侠,杨晓婷,王文科.城市快速轨道交通建设对地下水环境影响分析—以西安市城市轨道交通二号线为例.西北大学学报[J].2008,38(2):313-317.
    [51]高宝玉.太中银铁路吕梁山隧道对水环境影响的探讨[J].山西水利科技.2008,(4):68-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700