用户名: 密码: 验证码:
基于近壁相干结构的湍流减阻主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湍流减阻一直是流体力学研究的热点问题。鉴于近壁相干结构和湍流高摩擦阻力的密切关系,通过干扰近壁相干结构的演化来达到减阻目的的主动控制方法,因其适用范围广、减阻率大和减阻效率高等特点成为国际湍流研究的前沿课题。近年来,MEMS技术的发展为主动控制的实现提供了可能性,而MEMS系统的设计必须以对减阻机理和控制方案的深刻认识为前提。本文利用槽道湍流的直接数值模拟,对基于近壁相干结构的湍流减阻机理和控制方案进行了研究,主要工作和成果如下:
     (1)从雷诺应力输运和脉动拟涡能输运的角度研究了反向控制抑制湍流的动力学机理。在雷诺应力输运中,压力相关项率先打破法向雷诺应力的输运平衡,并在湍流抑制中起着非常关键的作用。在脉动拟涡能输运中,涡量的拉伸被有效抑制,法向脉动涡量为脉动拟涡能的减小做出了重要贡献。
     (2)系统地研究了壁面可测信号(流向脉动摩擦应力τ wx、展向脉动摩擦应力τ wz和脉动压力p~_w)和近壁区流向涡的内在关系。发现τ wx与下游流向涡密切相关,而τ wz则反映了正上方流向涡对壁面的影响。 p~_w和近壁区流向涡的关系较为复杂:在探测点上游,高压区(p~'_w>0)对应着流体的下扫,低压区(p ' w<0)则对应着流体的上抛;在探测点,近壁区流向涡和正下方低压区存在强相关性;而在下游,壁面压力和上抛及下扫的对应关系与上游相反,这一发现弥补了现有认识的不足。考虑到主动控制和外界对流场的干扰,通过引入随机扰动对上述关系的鲁棒性进行了考察。在随机干扰下,τ wx和近壁流向涡的关系被打破,而p~_w和τ wz仍然可以可靠地反映近壁区流向涡,该发现可用于主动控制输入信号的选取。
     (3)提出了两种基于壁面局部信号τ wz和p~_w的湍流减阻主动控制新方案,并利用直接数值模拟,对“壁面吹吸”和“智能蒙皮”这两种典型致动方式下的减阻效果进行了考核。以τ wz为输入信号的控制方案,在“壁面吹吸”和“智能蒙皮”的致动方式下,分别获得了16%和5%的减阻率,以p~_w为输入信号的控制方案分别获得了11%和2%的减阻率。
     总之,本文工作加深了对湍流减阻机理的认识,揭示了壁面可测信号和近壁区流向涡的关系,提出了两种基于壁面局部可测信号的主动控制新方案,为实现基于相干结构的湍流减阻主动控制提供了有价值的思路和方法。
Turbulent drag reduction is always a hot topic in fluid mechanics. Due to the closerelationship between the near-wall coherent structures and high skin-friction in wallturbulence, the active drag-reduction control has been developed by instantaneouslyinterfering with the evolution of near-wall coherent structures. Active control ofturbulent coherent structures is an attractive research issue owing to its robustperformance, great potential and high efficiency. In recent years, the development of theMEMS technology provides us the possibility for the real practical application of activeturbulence control. As a prerequisite for the design of active control systems based onMEMS, the mechanism and control schemes for drag reduction should be deeplyunderstood. In this thesis, the mechanism and control schemes for drag reduction basedon the manipulation of the near-wall coherent structures are studied via direct numericalsimulation (DNS) of turbulent channel flow. The main work and results are as thefollowing:
     (1) The dynamical mechanism of turbulence suppression is explored via thetransient response of Reynolds stress and enstrophy transport to the opposition control.It is found that the balance of the Reynolds stress in the wall normal direction is firstbroken by the pressure-related term which plays a key role in the subsequent globalsuppression of turbulence. In the enstrophy transport, the stretching of the vorticity isattenuated and the wall normal vorticity makes a significant contribution to thesuppression of enstrophy.
     (2) The relationship between the measurable flow quantities (streamwise andspanwise wall shear stressτ wx,τ wzand wall fluctuating pressure p~_w) and thenear-wall streamwise vortices is studied using the DNS databases of fully developedturbulent channel flow. It is found that all the three wall quantitiesτ wx, p~_wandτ wzareclosely related with the near-wall streamwise vortices.τ wxcorresponds to the sweep andejection motions induced by the downstream streamwise vortices.τ wzis the spanwisefootprint of the above vortical structures. Compared with the wall shear stress, thecorrelation between p~_wand the near-wall streamwise vortices is more complex. In theupstream of the detecting point, the high pressure region (p~_w>0) corresponds to the sweep motion on the down-wash side of the streamwise vortices, while the low pressureregion (p~_w <0)corresponds to the ejection on the up-wash side of the structure; in themiddle, a low pressure region is formed just below the streamwise vortices; in thedownstream, the correspondence between p~_wand the sweep/ejection motions is inopposite to that in the upstream. Considering the practical requirement of turbulencecontrol, a random blowing/suction at the wall is introduced to examine the robustness ofthe relationship. The results show that the relationship based onτ wxis destroyed whilep~_wandτ wzstill exhibit an excellent correspondence with the near-wall streamwisevortices.
     (3) Two new control algorithms based onτ wzand p~_ware proposed for turbulencedrag reduction and realized by the two typical actuations “blowing/suction” and “smartskin”. The control schemes based onτ wzusing “blowing/suction” and “smart skin”obtained16%and5%drag reduction while the control scheme based on p~_wgets11%and2%drag reduction, respectively.
     In summary, the present work has deepened our understanding of the mechanismof turbulent drag reduction. The inner relationship between the wall-measurable flowquantities and the near-wall streamwise vortices has been disclosed. Two new controlschemes based on the wall-measureable local information have been constructed. Itprovides with us valuable ideas and methods for the development of active turbulencecontrol for drag reduction based on near-wall coherent structures.
引文
柯贵喜,潘光,黄桥高等.2009.水下减阻技术研究综述.力学进展,39(5):546-554.
    许春晓.1995.槽道湍流的直接数值模拟[博士学位论文].北京:清华大学工程力学系.
    徐丽娜.2009.神经网络控制.北京:电子工业出版社.
    王晋军.1998.沟槽面湍流减阻研究综述.北京航空航天大学学报.24(1):31-34.
    Abergel F, Temam R.1990. On some control problems in fluid mechanics. Theoretical andComputational Fluid Dynamics,1:303-325.
    Angelis V D, Lombardi P, Banerjee S.1997. Direct numerical simulation of turbulent flow over awavy wall. Physics of Fluids,9(8):2429-2442.
    Bewley T, Moin P.1994. Optimal control of turbulent channel flows. Active Control of Vibrationand Noise ASME DE75:221-227.
    Bewley T R, Liu S.1998. Optimal and robust control and estimation of linear paths to transition.Journal of Fluid Mechanics,365:305-349.
    Bewley T R, Temam R, Ziane M.2000. A general framework for robust control in fluid mechanics.Physica D,138:360-392.
    Bewley T R.2001. Flow control: new challenges for a new Renaissance. Progress in AerospaceSciences,37:21-58.
    Bewley T R, Moin P, Temam R.2001. DNS-based predictive control of turbulence: an optimalbenchmark for feedback algorithms, Journal of Fluid Mechanics,447:179-225.
    Bushnell D M, Mcginley C B.1989. Turbulence control in wall flows. Annual Review of Fluidmechanics,21:1-20.
    Cantwell B J.1981. Organized motion in turbulent flow. Annual Review of Fluid mechanics,13:457-515.
    Carlson H A, Berkooz G, Lumley J L.1995. Direct numerical simulation of flow in a channel withcomplex time-dependent wall geometries: a pseudospectral method. Journal of ComputationalPhysics,121:155-175.
    Cherukat P, Na Y, Hanratty T J.1998. Direct numerical simulation of a fully developed turbulentflow over a wavy wall. Theoretical and Computational Fluid Dynamics,11:109-134.
    Choi H, Moin P, Kim J.1994. Active turbulence control for drag reduction in wall-bounded flows.Journal of Fluid Mechaics,262:75-110.
    Choi H, Moin P, Kim J.1993a. Direct numerical simulation of turbulent flow over riblets. Journal ofFluid Mechanics,255:503-539.
    Choi H, Temam R, Moin P, Kim J.1993b. Feedback control for unsteady flow and its application tothe stochastic burgers equation. Journal of Fluid Mechanics,253:509-543.
    Choi J I, Xu C X, Sung H J.2001. Drag reduction by spanwise wall oscillations in wall-boundedturbulent flows. AIAA Journal,40(5):842-850.
    Chong M S, Perry A E, Cuntwell B J.1990. A general classification of three-dimensional flow fields.Physics of Fluids A,2(5):765-777.
    Cortelezzi L, Speyer L.1998. Robust reduced-order controller of laminar boundary layer transitions.Physical Review E,58(2):1906-1910.
    Dukowicz J K, Dvinsky A S.1992. Approximate factorization as a high order splitting for theimplicit incompressible flow equations. Journal of Computational Physics,102:336-347.
    Endo T, Kasagi N, Suzuki Y.2000. Feedback control of wall turbulence with wall deformation.International Journal of Heat and Fluid Flow,21:568-575.
    Fukagata K, Kasagi N.2003. Suboptimal turbulence control algorithm for the modification ofReynolds stress in the near-wall layer. Proceedings of the4thsymposium on smart control ofturbulence, Tokyo,123-130.
    Fukagata K, Iwamoto K, Kasagi N.2002. Contribution of Reynolds stress distribution to the skinfriction in wall-bounded flows. Physics of Fluids,14(11):L73-L76.
    Gad-el-Hak M.2002. Compliant coatings for drag reduction. Progress in Aerospace Sciences,38:77-79.
    Gad-el-Hak M.2007. The taming of shrew: Why is it so difficult to control turbulence? ActiveFlow Control NNFM,95:1–24.
    Gresho P M.1990. On the theory of semi-implicit projection methods for viscous incompressibleflow and its implementation via a finite element method that also introduces a nearly consistentmass matrix. Part1: Theory’’ International Journal for Numerical Methods in Fluids-1990,II:587-626
    Hamilton J M, Kim J, Waleffe F.1995. Regeneration mechanisms of near-wall turbulence structures.Journal of Fluid Mechanics,287:317-348.
    Hammond E P, Bewley T R, Moin P.1998. Observed Mechanisms for turbulence attenuationenhancement in opposition-controlled wall-bounded flows. Physics of Fluids,10(9):2421-2423.
    Hogberg M, Bewley T R, Henningson D S.2003. Linear feedback control and estimation oftransition in plane channel flow. Journal of fluid Mechanics,481:149-175.
    Hudson J D, Dykhno L, Hanratty T J.1996. Turbulence production in flow over a wavy wall.Experiments in Fluids,20:257-265.
    Hunt J C F, Wray A A, Moin P.1988. Eddies, streams, and convergence zones in turbulent flows.Center for Turbulence Research Report CTR-S88:193-208.
    Jeong J, Hussain F.1995. On the identification of a vortex. Journal of Fluid mechanics,285:69-94.
    Jeong J, Hussain F, Schoppa W, Kim J.1997. Coherent structures near the wall in a turbulentchannel flow. Journal of Fluid Mechanics,332:185-241.
    Johanson A V, Alfredsson P H, Kim J.1991. Evolution and dynamics of shear-layer structures innear-wall turbulence. Journal of Fluid Mechanics,224:459-599.
    Joshi S S, Speyer J L, Kim J.1997. A systems theory approach to the feedback stabilization ofinfinitesimal and finite-amplitude disturbance in plane Poiseuille flow. Journal of FluidMechanics,332:157-184.
    Joshi S S, Speyer J L, Kim J.1999. Finite dimensional optimal control of Poiseuille flow. AIAAJournal of Guidance, Control, and Dynamics,22(2):341-348.
    Kang S, Choi H.2000. Active wall motions for skin-friction drag reduction. Physics of Fluids,12(12):3301-3304.
    Karniadakis G E, Isreali M, Orszag S A.1991. High-order splitting methods for the incompressibleNavier-Stokes equations. Journal of Computational Physics,97(2):414-443.
    Kasagi N, Suzuki Y, Fukagata K.2009. Microelectromechanical Systems-Based feedback control ofturbulence for skin friction reduction. Annual Review of Fluid mechanics,41:231-251.
    Kim J.2003. Control of turbulent boundary layers. Physics of Fluids,15(5):1093-1105.
    Kim J, Bewley T R.2007. A linear systems approach to flow control. Annual Review of Fluidmechanics,39:383-417.
    Kim J, Choi J I, Sung H J.2002. Relationship between wall pressure fluctuations and streamwisevortices in a turbulent boundary layer. Physics of Fluids,14(2):898-901.
    Kim J, Moin P, Moser R.1987. Turbulence statistics in fully developed channel flow at lowReynolds number. Journal of Fluid Mechanics,177:133-166.
    Kleizer L, Schumman U.1980. Treatment of incompressibility and boundary conditions in3-Dnumerical spectral simulations of plane channel flow. In Proceedings of3rdGAMM Conference,165-173.
    Koumoutsakos P.1997. Active control of vortex-wall interactions. Physics of Fluids,9(12):3808-3816.
    Koumoutsakos P.1999. Vorticity flux control for turbulent channel flow. Physics of Fluids,11(2):248-250.
    Kravchenko A G, Choi H, Moin P.1993. On the relation of near-wall streamwise vortices to wallskin friction in turbulent boundary layers. Physics of Fluids A,5(12):3307-3309.
    Lamb H.1945. Hydrodynamics. Dover.
    Lugt H J.1979. The dilemma of defining a Vortex. In Recent Developments in Theoretical andExperimental Fluid Mechanics,309-321.
    Lee C, Kim J, Babcock D, Goodman R.1997. Application of neural networks to turbulence controlfor drag reduction. Physics of Fluids,9(6):1740-1747.
    Lee C, Kim J, Choi H.1998. Suboptimal control of turbulent channel flow for drag reduction.Journal of Fluid mechanics,358:245-258.
    Lee C, Cortelezzi L, Kim J, Speyer J.2001. Application of reduced-order controller to turbulentflows for drag reduction. Physics of Fluids,13(5):1321-1330.
    Lorang L V, Podvin B, Quere P L.2008. Application of compact neural network for drag reductionin a turbulent channel flow at low Reynolds numbers. Physics of Fluids,20(4):045104.
    Luo H, Bewley T R.2004. On the contravariant form of the Navier-Stokes equations intime-dependent curvilinear coordinate systems. Journal of Computational Physics,199:355-375.
    Mani R, Lagoudas D C, Rediniotis O K.2008. Active skin for turbulent drag reduction. SmartMaterials&Structures,17(3):035004.
    Marcus PS.1984. Simulation of the Taylor-Couette flow. Part1. Numerical methods and comparisonwith experiments. Journal of Fluid Mechanics,146:45-46
    Moin P, Mahesh K.1998. Direct numerical simulation: a tool in turbulence research. Annual Reviewof Fluid Mechanics,30:539-578.
    Orlandi P, Jimenez J.1994. On the generation of turbulent wall friction. Physics of Fluids,6(2):634-641.
    Orszag S A, Patterson G S.1972. Numerical simulation of three-dimensional homogeneous isotropicturbulence. Physical Review letters,28(2):76-79.
    Panton R L.2001. Overview of the self-sustaining mechanisms of wall turbulence. Progress inAerospace Sciences,37:341-383.
    Park J, Yoshino T, Suzuki Y et al.2004. Development of GA-based evolved system for feedbackcontrol of turbulence. Proceedings of the5th symposium on smart control of turbulence, Tokyo,111-117.
    Quadrio M, Ricco P.2003. Initial response of a turbulent channel flow to spanwise oscillation of thewalls. Journal of Turbulence,4:1-23.
    Rathnasingham R, Breuer K S.1997. System identification and control of turbulent boundary layer.Physics of Fluids,9(7):1867-1869.
    Rathnasingham R, Breuer K S.2003. Active control of turbulent boundary layers. Journal of FluidMechanics,495:209-233.
    Rebbeck H, Choi K S.2001. Opposition control of near-wall turbulence with a piston-type actuator.Physics of Fluids,13(8):2142-2145.
    Rebbeck H, Choi K S.2006. A wind-tunnel experiment on real-time opposition control of turbulence.Physics of Fluids,18(3)/035103:1-13.
    Robinson S K.1991. Coherent motions in the turbulent boundary layer. Annual Review of FluidMechanics,23:601-639.
    Schlichting H.1979. Boundary Layer Theory. New York.
    Schoppa W, Hussain F.2002. Coherent structure generation in near-wall turbulence. Journal of Fluidmechanics,453:57-108.
    Shen L, Zhang X, Yue D K P, Triantafyllou M S.2003. Turbulent flow over flexible wall undergoinga streamwise travelling wave motion. Journal of Fluid mechanics,484:197-221.
    Suzuki Y, Yoshino T, Kasagi N.2003. Evaluation of a GA-based feedback control system witharrayed micro sensors and actuators in a turbulent channel flow. Proceedings of the4thsymposium on smart control of turbulence, Tokyo,115-122.
    Tardu S, Doche O.2009. One-information suboptimal control repercussion on the fine structure ofwall turbulence. Computers&Fluids,38:637-647.
    Tsao T, Jiang F, Miller R, Tai Y C, Gupta B, Goodman R, Tung S, Ho C M.1997. An integratedMEMES system for turbulent boundary layer control. International Conference on Solid-StateSensors and Actuators, Chicago,315-318.
    Waleffe F.1997. On a self-sustaining process in shear flows. Physics of Fluids,9(4):883-900.
    Wallace J M, Eckelmann H, Brodkey R S.1972. The wall region in turbulent shear flow. Journal ofFluid mechanics,54:39-48.
    Wilmarth W W, Lu S S.1972. Structure of the Reynolds stress near the wall. Journal of Fluidmechanics,55:65-92.
    Xu, C, Huang W.2005. Transient response of Reynolds stress transport to spanwise wall oscillationin a turbulent channel flow. Physics of Fluids,17(1):018101.
    Xu C, Zhang Z, Nieuwstadt F T M et al.1996. Origin of high kurtosis levels in the viscous sublayer.Direct numerical simulation and experiment. Physics of Fluids,8(7):1938-1944
    Xu C X, Choi J I, Sung H J.2002. Suboptimal control for drag reduction in turbulent pipe flow.Fluid Dynamics Research,30:217-231.
    Yoshino T, Suzuki Y, Kasagi N.2008. Drag reduction of turbulence air channel flow with distributedmicro sensors and actuators. Journal of Fluid Science and Technology,3(1):137-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700