用户名: 密码: 验证码:
表面活性剂减阻流体减阻机理与传热性能的实验与数值计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水中添加少量的阳离子表面活性剂可以降低湍流流体的流动阻力,进而降低循环系统中泵的功耗。近年来,对表面活性剂减阻流体在区域供热/冷系统中的应用成为人们关心的热点问题,然而对添加剂表面活性剂减阻流体的减阻机理仍不明确,对表面活性剂减阻流体的传热特性研究也甚少。本文以研究表面活性剂减阻流体的减阻机理和传热特性为目标,用氯化十六烷基三甲基季铵盐(cetyltrimethyl ammonium chloride,CTAC)阳离子表面活性剂作添加剂,制定了详细的表面活性剂流体湍流实验和数值模拟方案。
     本文研究主要包括:表面活性剂CTAC减阻流体减阻性能实验研究;表面活性剂CTAC减阻流体湍流流场结构和湍动能结构实验研究;表面活性剂CTAC蒸馏水溶液流变实验研究;描述表面活性剂减阻流体剪切稀化特性对减阻作用的纯粘性剪切稀化模型计算研究;描述表面活性剂减阻流体粘弹性对减阻作用的Giesekus粘弹性直接数值模拟(direct numerical simulation,DNS)研究;表面活性剂减阻流体传热实验研究。
     对表面活性剂CTAC减阻流体减阻性能进行实验研究表明,第一临界雷诺数随表面活性剂浓度的增大而增大,完全减阻区内CTAC减阻流体减阻存在一个最佳浓度。
     用相位多普勒非接触式测量技术对CTAC减阻流体充分发展湍流流场特性进行实验研究,观测到表面活性剂减阻流体湍流流场结构和湍动能结构都发生了改变。具体表现为表面活性剂CTAC减阻流体过渡层明显增厚,对数区曲线向上偏移;轴向湍流强度峰值比水大,出现峰值的位置向流道中心处偏移;表面活性剂CTAC减阻流体雷诺剪切应力出现亏空(Reynolds stress deficit),说明由添加剂产生的附加表面活性剂剪切应力在总的平均剪切应力中起到重要作用;表面活性剂CTAC流体湍动能产生项则被整体抑制,且曲线峰值向流道中心处偏移,添加剂CTAC的加入导致湍动能结构的显著改变。
     用AR-G2控制应力流变仪对六种浓度的表面活性剂蒸馏水溶液进行了流变实验研究。通过流变实验分析,本文发现出现剪切诱导结构(shear induced structure,SIS)的表面活性剂溶液存在临界浓度。表面活性剂溶液中的剪切诱导结构(SIS)并不是添加剂表面活性剂减阻流体出现减阻必要条件。工业应用上表面活性剂减阻存在一个最佳浓度。
     剪切稀化特性是表面活性剂溶液流变性的一个重要特征。用纯粘性剪切稀化Carreau-Bird模型对减阻溶液中剪切稀化特性对减阻的作用进行模拟。计算显示出比PDA实验小的减阻率,但澄清了高浓度减阻流体湍流强度整体被抑制,较低浓度却是发生了改变的这一现象。
     用Giesekus粘弹性非牛顿流体本构方程对减阻流体中的粘弹性特性对减阻的作用进行直接数值模拟( direct numerical simulation,DNS)。计算显示出与PDA实验接近的减阻率,说明计算浓度范围内的减阻流体中粘弹性对减阻起到了主导作用。直接数值模拟出的减阻流体瞬时速度脉动图清楚地显示,添加剂减阻流体近壁处猝发明显降低,瞬时脉动涡结构整体被拉伸,近壁处涡结构显示有从右向左流动的流体,减阻流体湍流流场中存在低速拉伸的轴向条纹速度带,且间距比牛顿流体的大。同时减阻流体湍动能结构与水相比也完全发生了改变。
     基于减阻实验与数值计算,建立了减阻流体减阻机理模型。
     表面活性剂减阻流体传热性能实验说明,单位体积的减阻流体温度升高1℃所需的热量比单位体积的水温度升高1℃所需的热量大。CTAC减阻流体的平均温度分布曲线显示,减阻流体的主要热阻发生在过渡层,粘性底层却显示很小的热阻发生,而水的主要热阻是发生在粘性底层。CTAC减阻流体的温度脉动频率比水小,且随着y+的改变而有所不同。CTAC减阻流体温度脉动与速度脉动有相似的分布趋势,其峰值都向流道中心处偏移。CTAC热流体湍流温度脉动强度对轴向热流量的贡献更大,使得轴向热流量的最大值出现在靠近温度脉动强度最大值出现的位置。CTAC减阻流体温度脉动与壁面垂直方向速度脉动相关性降低,使得CTAC减阻流体的轴向湍流热流量小于水的,产生传热下降率(heat transfer reduction,HTR)。类似于,添加剂表面活性剂导致减阻流体的轴向速度脉动和壁面垂直方向速度脉动相关性降低,显示为减阻流体的雷诺剪切应力小于水的,产生减阻率(drag-reduction,DR)。
A small amount of surfactant of Cetyltrimethyl Ammonium Chloride (CTAC) and NaSal dramatically depresses the turbulent friction, which can apply in circle system to reduce pumping power application. The research on the addition of drag-reducing additives to the circulating water of distinct heating and cooling system is becoming promising work in recent years, however, the mechanism of surfactant drag-reducing flow is not clear and the research on its heat transfer characteristics is not much. In order to study the drag-reducing mechanism and heat transfer characteristics of surfactant solution flows, the detailed experimental and calculated projects are implemented of CTAC drag-reducing flow.
     Present research mainly consists of following sections: the experiments of drag-reducing performances for CTAC fluid flow; the experiments of the turbulent structure and the turbulent kinetic energy structure for CTAC drag-reducing flow and water; the experiments of rheological characteristics of distilled surfactant solutions; the calculated study by using shear-thinning model (Carreau-Bird model) for surfactant solution flows; the direct numerical simulation (DNS) using Giesekus viscoelastic model for surfactant solution flows; the experiments of heat transfer characteristics of surfactant fluid flow.
     The experimental study of surfactant solution performances show that the first critical Reynolds number is increased as the concentration. There is optimal concentration of surfactant solution in completely drag-reducing region.
     The changes in turbulence structure and turbulent kinetic structure of surfactants have been obtained, such as a thickening of the buffer layer, corresponding to an offset of the logarithmic region. The peak of the streamwise turbulence intensity (or rms of the streamwise velocity fluctuations) is substantially larger for the drag-reducing flow than for water, while the position is shifted wall-outward. The turbulent shear stress profiles for the drag-reducing flow are decreased with respect to water, and show a Reynolds stress deficit. This means that the surfactants have a significant contribution to the shear stress. The production of turbulent kinetic energy of the drag-reducing flow is depressed totally. The peak position of the production of turbulent kinetic energy is shifted wall-outward.
     The shear viscosities of turbulent drag-reducing surfactant solution have been measured as a function of concentration, shear rate and temperature by using AR-G2 rheometer. The conclusions of the appearance critical concentration with SIS in surfactant solutions and the SIS is not the necessary condition for drag-reducing fluid have been proposed for the first time. There is the optimal concentration of surfactant solution in the application of heating and cooling system.
     One of the key properties for drag reduction by surfactant additives is shear-thinning. The simulation with the viscous shear-thinning Carreau-Bird model has been shown, that the shear-thinning has effects on the drag reduction except for lower drag reduction than that of the experiments. This is clear up the question that turbulent intensities of surfactant solution with higher concentration are all depressed, however, the turbulent intensities of surfactant solution with lowerer concentration are changed.
     Another key property for drag reduction by surfactant additives is viscoelasticity. A direct numerical simulation using viscoelastic Giesekus model shows that the closely drag reduction to that experimental study, which further conclude that viscoelasticity has a mainly effects on the surfactant solution flow. The instantaneous fields of velocity fluctuation of surfactant solution flow show that the vortex structure becomes elongated in the streamwise direction,especially in the region near the wall. The low speed streaks become more elongated and the average spacing of the streaks becomes wider. The turbulent kinetic energy of CTAC drag-reducing fluid flow has been changed completely compared to that of water.
     Based on the experimental and calculated analysis, the model of drag-reducing mechanism has been established.
     The heat transfer performances experiments show that the surfactant solution need more heat flux compared to water for heating the same fluid. The experiments for measuring temperature field show that the larger mean temperature gradient and smaller thermal diffusivity of the surfactant solution flows in the buffer layer while the main heat resistance of the water exits in the viscous sublayer. The frequency of temperature fluctuation is small and the characteristics of the temperature vary with the variation of distance from the wall for surfactant solution flows. The mean temperature fluctuations and velocity fluctuations have the similar tendency and the peak values are out of the wall. Temperature fluctuation governs the streamwise turbulent heat flux more than the velocity fluctuation does and the peak value is located close to the peak of the temperature fluctuation. The decorrelation between streamwise velocity fluctuation and wall-normal velocity fluctuation shows the depression of Reynolds shear stress and directly results in DR. Similarly, the decorrelation between temperature fluctuation and wall-normal velocity fluctuation shows the depression of wall-normal turbulent heat flux and directly results in HTR.
引文
[1]候晖昌.减阻力学[B].北京:科学出版, 1987,p13.
    [2] H.S.Hele-Shaw. Experiments on the nature of the surface resistance in pipes and ships[J]. Trans. Inst. Naval Architects, 1897,39:145-156.
    [3] H.S.Hele-Shaw. Investigation of the nature of surface resistance of water and of stream-line motion under certain experimental conditions[J]. Trans. Inst. Nav. Archit, London, 1898,40:21-46.
    [4] B.A.Toms. Some observations on the flow of linear Polymer solutions through straight tubes at large Reynolds numbers[A]. Proc Int Congress on Rheology[C], North Holland, Amsterdam,1948,135-141.
    [5] K.J.Mysels. Flow of thickened fluids[P]. United States. Patents Number, 2492173. 1949,12,27.
    [6] M.O.Kramer. Boundary layer stabilisation by distributed damping[J]. J.Aero.Sci.,1957,24:459-460.
    [7] M.O.Kramer. Boundary layer stabilisation by distributed damping[J]. J.Am.Soc.Nav. Engr., 1960, 72:25-33.
    [8] M.O.Kramer. The dolphin's secret[J]. J. Am. Soc. Nav. Engr.,1961,73:103-107.
    [9] M.O.Kramer. Boundary Layer Stabilisation by Distributed Damping[J]. J. Am. Soc. Nav. Engr., 1962,74:341-348.
    [10] K.S.Choi. Breakdown of the Reynolds analogy over drag reducing reblets surface[J]. Appl. Sci. Res. 1993,51:149-155.
    [11] P.Luchini, G.Trombetta. Effect of ribelts upon flow stability[J]. Appl. Sci. Res. 1995,54:313-321.
    [12] J.B.Anders. LEBU drag reduction in high Reynolds number boundary layers[C]. The 2nd Shear Flow Conference, Tempe, AZ, 1989,3:11.
    [13] K.S.Choi.Turbulent drag-reduction mechanisms-strategies for turbulence management[J]. CISM Courses and Lectures, 2001,415:161-212.
    [14] K.S.Choi, R.Brian. Clayton the mechanism of turbulent frag reduction with wall oscillation[J]. International Journal of Heat and Fluid Flow, 2001,22(1):1-9.
    [15] A.A.Fontaine, S.Deutsch, et al. Drag reduction by couples system: microbubble injection with homogeneous polymer and surfactant solutions[J], Experiments in Fluids, 1999,26:397-403.
    [16] P.S.Virk, E.W.Mickley. et al. The ultimate asymptote and mean flow structure in Tom’s phenomenon[J]. ASME J.Appl.Mech.,1970,37:480-493.
    [17] P.S.Virk. Drag reduction fundamentals[J], AICHE J.,1975,21:625.
    [18] P.K.Ptasinski, F.T.M.Brule, et al. Experiments in turbulent pipe flow with polymer additives at maximum drag reduction[J]. Flow Turbulence and Combustion, 2001,66:159-182.
    [19] U.S.Choi, K.E.Kasza. Long-term degradation of dilute polyackylamide solution in turbulentpipe flow[J]. Drag-Reduction in Fluid Flows:Techniques for Friction Control, Chichester,Ellis Horwood Limited,1989,163-170.
    [20] G.C.Garwood, E.S.Winkel, et al. Drag reduction by a homogenous polymer solution in large diameter high shear pipe flow[C]. Proc.2nd Int Symp. Seawater Drag Reduction, Busan, Korea, 2005.
    [21] T.S.Luchi, W.G.Tiederman. Turbulent structure in low-concentration drag-reduction channel flows[J]. J. Fluid Mech., 1988,190:241-263.
    [22] K.J.Harder, W.G.Tiederman, Drag reduction and turbulent structure in two-dimensional channel flows[J]. Phil.Trans.T.Soc.Lond, 1991, A336:19-34.
    [23] M.D.Warholic, H.Massah, et al. Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing[J]. Exp.Fluids, 1999,27:461-472.
    [24] M.D.Warholic, D.K.Heist, et al. A study with particle image velocimetry of the influence of drag reducing polymers on the structure of turbulence[J]. Exp.Fluids, 2001,31:474-483.
    [25] A.Gyr, H.W.Bewersdorff. Drag reduction of turbulent flows by additives[B]. London: Kluwer Academic publishers, 1995.
    [26] C.D.Dimitropoulos, R.Sureshkumar, A.N.Beris. Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters[J]. J. Non-Newton. Fluid Mech., 1998, 79: 433-468.
    [27] P.S.Virk, D.L.Wagger. Aspects of mechanisms in type B drag reduction[C]. In IUTAM Symp. on Structure of Turbulence and Drag Reduction, Zurich/Switzerland, 1990,201-213.
    [28] A.Yoshizawa. Turbulence-viscosity reduction mechanism based on anisotropic turbulence effects[J]. Phys.Fluids, 2003,15:3875.
    [29] D.D.Joseph. Fluid dynamics of viscoelastic liquids[B]. Springer-Verlag, New York, 1990.
    [30] T.Min, J.Y.Yoo, et al. A role of elastic energy in turbulent drag reduction by polymer additives. turbulence and shear flow phenomena[C]. Second International Symposium, KTH, Stockholm, 2001,3:35-50.
    [31] J.M.J.Den Toonder, M.A.Hulsen, G.D.C.Kuiken, et al. Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments[J], J. Fluid Mech., 1997,337:193-231.
    [32] A.Beris, R.Sureshkumar. Simulation of time-dependent viscoelastic channel poiseuille flow at high Reynolds numbers[J]. Chemical Engineering Science, 1996,51(9):1451.
    [33] R.Sureshkumar, A.Beris, R.A.Handler. Direct numerical simulation of the turbulent channel flow of a polymer solution[J]. Phys. Fluids, 1997, 9(3):73.
    [34] C.Dimitropoulos, R.Sureshkumar, A.Beris, et al. Budget of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow[J]. Phys. Fluids, 2001,13(4):1016.
    [35] A.Beris, C.Dimitropoulos. Pseudospectral simulation of turbulent viscoelastic channel Flow[J]. Comput. Methods Appl. Engrg., 1999,180:365.
    [36] P.K.Ptasinski, B.J.Boersma, F.T.M Nieuwstadt, et al. Turbulent channel flow maximum drag reduction: simulations experiments and mechanisms[J]. J. Fluid Mech., 2003,490:251-291.
    [37] E.D.Angelis, C.M.Casciola, V.S.Lvov, et al. Drag reduction by polymers in turbulent channelflows: Energy redistribution between invariant empirical modes[J]. Phys Rev.E., 2003,67: 056312.
    [38] A.Baron, S.Sibilla. DNS of the turbulent channel flow of dilute polymer solution flow[J]. Turbulence and Combustion, 1997,59(4):331-352.
    [39] S.Sibilla, A.Baron. Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution[J]. Phys. Fluids, 2002,14(3),1123-1136.
    [40] Y.Dubief, S.K.Lel. Direct numerical simulation of polymer flows[J]. Annual Research Briefs, Center for Turbulence Research, 2001,197-208.
    [41] Y.Dubief. Numerical Simulation of Turbulent polymer solutions[J]. Annual Research Briefs, Center for Turbulence Research, 2002,377-388.
    [42] Y.Dubief. Numerical simulation of high drag reduction in a turbulent channel with polymer Additives[J]. Annual Research Briefs, Center for Turbulence Research, 2003, 439-448.
    [43] Y.Dubief, G.Iaccatino, S.K.Lele. A turbulence model for polymer flows[J]. Annual Research Briefs, Center for Turbulence Research, 2004a, 63-73.
    [44] Y.Dubief, C.M.Terrapon, V.E.Shaqfeh, et al. On the coherent drag-reducing and turbulence–enhancing behavior of polymers in wall flows[J]. J.Fluid Mech., 2004b,514:271-280.
    [45] Y.Dubief, V.E.Terrapon, C.M.Shaqfeh, et al. New answers on the interaction between polymers and vortices in turbulent flows[J]. Flow, turbulence and combustion, 2005,74(4):311-329.
    [46] J.Jimenez, A.Pinelli. The autonomous cycle of near-wall turbulence[J]. J. Fluid Mech., 1999,389:335-359.
    [47] C.D.Dimitropoulos, Y.Dubief, et al. Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow[J]. Phys. Fluids., 2005,17:011705.
    [48] J.S.Paschkewitz, C.D.Dimitropoulos, et al. An experimental and numerical investigation of drag reduction in a turbulent boundary layer using a rigid rod-like polymer[J]. Phys Fluids., 2005,17:0805101.
    [49] J.S.Paschkewitz, Y.Dubief, C.D.Dimitropoulos, et al. Numerical simulation of turbulent drag reduction using rigid fibers[J]. J. Fluid Mech.,2004, 518:281-317.
    [50] J.S.Paschkewitz, Y.Dubief,et al. The dynamic mechanism for turbulent drag reduction using rigid fibers based on Lagrangian conditional statistics[J]. Phys Fluids., 2005b,17:063102.
    [51] D.O.A.Cruz, F.T.Pinho. Turbulent pile flow predictions with a low Reynolds k-εmodel for drag reducing fluids[J]. J .Non-Newtonian.Fluid Mech., 2003,114:109-148.
    [52] D.O.A.Cruz, F.T.Pinho, P.R.Resende. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow[J]. J. Non-Newtonian.Fluid Mech., 2004,121:127-141.
    [53] P.R.Resende, M.P.Escudier, et al. Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers[J]. International Journal of Heat and Fluid Flow, 2006,27:204-219.
    [54] R.Leighton, D.T.Walker,et al. Reynolds stress modeling for drag reducing viscoelastic flows[C]. Preceeding of the ASME FEDSM, Honolulu,Hawaii,USA, 2003.
    [55] P.A.Durbing. Seperated flow computations with the k-ε-v2 model[J]. AIAA J., 1995,33:659-664.
    [56] K.Schmitt, P. O.Brunn, F.Durst. Scaling-up correlations for drag reducing surfactants[J]. Rheol. Acta., 1988,26:249–252.
    [57] H.Rehage, H.Hoffman. Rheological properties of viscoelastic surfactant systems[J]. J.Phys.Chem., 1988,92:4712-4719.
    [58] E.Roelants, E.Gelade, J.Smid, et al. A study of temperature dependence of the mean aggregation number and the kinetic parameter of quenching in CTAC and TTAC micelles[J]. Journal of Colloid and Interface Science, 1985,107(2):337-344.
    [59] T.J.Hall. An experimental investigation of rotational shear flows with application to turbulent drag-reducing surfaces and liquids[Dissertation]. University of Minnesota,1999.
    [60] H.W.Bewersdorff. Drag reduction in surfactant solutions[C], Proceedings of IUTAM Symposium, Structure of Turbulence and Drag Reduction, Edited by A. Gyr, Zurich/Switzerland, 1989, 293-312.
    [61] J.G..Savins. A stress-controlled drag-reduction phenomenon[J]. Rheologica Acta. 1967,6:323.
    [62] P.Debye, E.W.Anacker. A microscopy structure of surfactant solution with salt[J]. J I Phys Coll Chem., 1951,55:644-647.
    [63] N.Piloel. The relationship between rheologic characteristic and microscopy structure-study of surfactant additive[J]. Trans Faraday Sco.,1966,62:2941.
    [64] M.Fichman, G.Hetsroni. Electrokinetic aspects of turbulent drag reduction in surfactant solutions[J]. Physics of fluids, 2004,16(12):4346-4352.
    [65] Y.S.Indartono, H.Usui, H.Suzuki. et al. Temperature and diameter effect on hydrodynamic characteristic of surfactant drag-reducing flows[J]. Korea-Australia Rheology Journal, 2005,17(4):157-164.
    [66] M.D.Michael, G..Schmidt, et al. The influence of a drag-reducing surfactant on a turbulent velocity field[J]. J. Fluid Mech., 1999,388:1-20.
    [67] H.W.Bewersdorff, D.Ohlendorf. The behaviour of drag-reducing cationic surfactant solutions[J]. Colloid & Polymer Science, 1988,266: 941-953.
    [68] YT.Hu, EF.Matthys. Characterization of micellar structure dynamics for a drag-reducing surfactant solution under shear: normal stress studies and flow geometry effects[J]. Rheological Acta, 1995,34:450-460.
    [69] YT.Hu, EF. Matthys. Effect of metal ions and compounds on the rheological properties of the drag-reducing cationic surfactant solution exhibiting shear-induced structure formation[J]. Journal of Colloid and Interface Science, 1997,186:352-359.
    [70] J. Myska, J.L.Zakin. Comparison of flow behaviors of polymeric and cationic surfactant drag reducing additives[C]. Proceed Fluids Engineering Div. Conference ASME, 1996,2:165.
    [71] J. Myska, J.L.Zakin, Z.Chara. Viscoelasticity of a surfactant and its drag-reducing ability[J]. Applied Scientific Research, 1996,55:297-310.
    [72] S.Hofmann, P.Stern, J.Myska. Rheological behavior and birefringence investigations on drag-reducing surfactant solutions of tallow-(tris-hydroxyethyl)-ammonium acetate/sodiumsalicylate mixtures[J]. Rheologica Acta,1994,33:419-430.
    [73] J.Myska, P.Stern. Significance of shear induced structure in surfactants for drag reduction[J]. Colloid Polym Sci., 1998,276:816-823.
    [74] Zhiqing Lin, Bin Lu, J.L.Zakin, et al. Influence of surfactant concentration and counterion to surfactant ratio on rheology of wormlike micelles[J]. Journal of Colloid and Interface Science, 2001,239:543-554.
    [75] M.Rudman, H.M.Blackburn, et al. Turbulent pipe flow of shear-thinning fluids[J]. J. Non-Newtonian Fluid Mech., 2004,118:33–48.
    [76] J.Myska, Zhiqing Lin, et al. Influence of salts on dynamic properties of drag reducing surfactants[J]. J. Non-Newtonian Fluid Mech., 2001,97:251-266.
    [77] Y. Kawaguchi, J.J.Wei, et al. Rheological characterization of drag-reducing cationic surfactant solution-shear and elongational viscosities of dilute solutions[C]. Fluids Engineering Division Summer Meeting, Honolulu,Hawaii, 2003,7:215-233.
    [78] J.L.Zakin, J.Myska, Z.Chara. New limiting drag reduction and velocity profile asymptotes for nonpolymeric additives systems[J]. AICHE Journal, 1996,42(12):3544-3546.
    [79] K.Gasljevic, G.Aguilar, E.F.Matthys. On two distinct types of drag-reducing fluids, diameter scaling, and turbulent profiles[J]. J. Non-Newtonian Fluid Mech., 2001,96:405–425.
    [80] H.Usui, T.Itoh, T.Saeki. On pipe diameter effects in surfactant drag-reducing pipe flows[J]. Rheol Acta, 1998,37:122-128.
    [81] H.Suzuki, GG.Fuller, T.Nakayama, H.Usui. Development characteristics of drag-reducing surfactant solution flow in a duct[J]. Rheol Acta , 2004,41:232-239.
    [82] H.Suzuki, H-P.Nguyen, T.Nakayama, H.Usui. Development characteristics of fluctuating velocity field of drag-reducing surfactant solution flow in a duct[J]. Rheol Acta , 2005,44:457-464.
    [83] D.W.Michael, M.S.Gavin, J.H,Thomas. The influence of a drag-reducing surfactant on a turbulent velocity field[J]. J. Fluid Mech., 1999,388:1-20.
    [84] R.Gurka, A.Liberzon, G.Hetsroni. Characterization of turbulent flow in a flume with surfactant[J]. Journal of Fluids Engineering, 2004,126(11):1054-1057.
    [85] Peiwen Li, Y.Kawaguchi. Heat transfer enhancement to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet[J]. Journal of Heat Transfer, 2001,123(8):779-789.
    [86] F.-C.Li, D.-Z.Wang, Y.Kawaguchi, et al. Simultaneous measurements of velocity and temperature fluctuations in thermal boundary layer in a drag-reducing surfactant solution flow[J]. Experiments in Fluids, 2004,36:131-140.
    [87] F.-C.Li, Y.Kawaguchi. Structural analysis of turbulent transport in a heated drag-reducing channel flow with surfactant additives[J]. International Journal of Heat and Mass Transfer, 2005,48:965-973.
    [88] F.-C.Li, Y.Kawaguchi. Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive by stereoscopic particle image velocimetry[J]. Experiments in Fluids, 2006,40: 218-230.
    [89] K.Gasljevic, G.Aguilar, E.F.Matthys. Measurement of temperature profiles in turbulent pipe flow of polymer and surfactant drag-reducing solutions[J]. Physics of Fluids. 2007,19:083105.
    [90]王锡良,夏长生.高雷诺数下缝喷聚合物溶液的降阻理论和实验研究[J].力学学报, 1978,4:78-83.
    [91]陈拥军,沈自求.添加表面活性剂减阻的试验研究[J].化学工业与工程,1999, 16(2):110-114.
    [92]蔡书鹏,李大美. CTAB表面活性剂水溶液的减阻特性[J].石油化工高等学校学报2006,19(4):68-71.
    [93]魏进家,川口靖夫.零下温度时二维通道内界面活性剂减阻流动的实验研究[J].西安交通大学学报, 2006,40(1):79-83.
    [94]乔振亮,熊党生.减阻表面活性剂的研究进展[J],精细化工, 2007,24(1):39-43.
    [95]许鹏,王德忠等.低浓度CTAC减阻流体流动性能试验研究[J].热能动力工程,2002,17(6):585-588.
    [96]官锋,许鹏,王德忠,等.氯化十六烷基三甲基季铵盐减阻流体试验[J].上海交通大学学报, 2002, 36(2):193-197.
    [97]王德忠,胡友情,王松平,等.表面活性剂减阻流体湍流空间结构试验研究[J].热能动力工程, 2004,19(2):140-144.
    [98] Hongxia Zhang, Dezhong Wang, Hanping Chen,et al. Development characteristics of velocity transports in an isothermal heated drag-reducing surfactant solution flow[C]. AIP Conf. Proc.,ASME, 2007,914:566-573.
    [99]王燕萍,顾卫国,张红霞,王德忠,陈汉平. CTAC减阻流体湍流高阶矩的研究[J].节能技术, 2007,141(25):10-13.
    [100]张红霞,王德忠,等.供热水系统CTAC减阻流体减阻与传热性能研究[J].暖通空调, 2007,37(9):45-49.
    [101]张杰,王德忠,董正方,张红霞.添加网格对增强表面活性剂减阻流体传热性能的试验研究[J].水动力学研究与进展, 2005,20(6):743-749.
    [102]董正方,顾卫国,张红霞,王德忠.表面活性剂减阻流体传热与阻力关系试验研究[J].水动力学研究与进展, 2006,21(4):494-498.
    [103] Bo Yu, Y.Kawaguchi. Parametric study of surfactant-induced drag-reduction by DNS[J]. International Journal of Heat and Fluid Flow, 2006,27:887-894.
    [104] M.Rudman, H.M.Blackburn. Direct numerical simulation of turbulent non-Newtonian flow using a spectral element method[J]. Applied Mathematical Modelling, 2006, 30:1229-1248.
    [105] M.R. Malin. Turbulent pipe flow of power-law fluids[J], Int. Commun. Heat Mass Transfer, 1997,24(7): 977-988.
    [106] A.Pinarbasi, C.Ozalp. Effect of viscosity models on the stability of a non-Newtonian fluid in a channel with heat transfer[J]. Int. Comm. Heat Mass Transfer, 2001,28(3):369-378.
    [107]沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社, 1989.p41.
    [108] Y.Kawaguchi. H.Daisaka. A.Yabe. Turbulent characteristics in transition region of dilute surfactant drag reducing flows[C]. Proc.11th int.sym, turbulent shear flows, Grenoble, 1997,9:49-54.
    [109]王德忠,胡友情,王松平,等.低浓度表面活性剂减阻流体的性能[J].上海交通大学学报,2005,39(2):225-233.
    [110] R.B.Dean. Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow[J]. Journal of fluid engineering, 1978,100:215-223.
    [111] Y.Yeh, H.Z.Cummins. Applied Physics Letters, 1964,4:176-178.
    [112] Meyers J.F., Laser velocimetry: the elusive third component[C]. 9th International Invitational Symposium on the Unification of Finite Elements Finite Differences and Calculus of Variations, Worcester, Massachusetts, 1987.
    [113] Particle Dynamics Analyzer. Dantec Technical Handbook.
    [114] H.Tennekes, J.L.Lumley. A first course in turbulence[B]. MITpress: 1972,p212.
    [115] J.L.Lumley, H.A.Panofsky. The structure of atmospheric turbulence. Interscience publishers.
    [116]王松平.添加筛网增强CTAC减阻流体传热特性的试验研究[学位论文].上海交通大学,2005.
    [117] T.Wei. W.W.Willmarth. Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows[J]. J.Fluid mech., 1992,45:619-641.
    [118] H-W.Bewersdorff. Rheology of drag reducing surfactant solutions[C], FED-Vol. 237, Fluids Engineering Division Conference, ASME, 1996,2:25-29.
    [119] B.Lu, Y.Zheng, HT.Davis, LE.Scriven, Y.Talmon, JL.Zakin. Effect of variations in counterion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems[J]. Rheol. Acta, 1988,37:528-548.
    [120] Y.Zhang, J.Schmidt, Y.Talmon, J.L.Zakin. Co-solvent effects on drag reduction rheological properties and micelle microstructures of cationic surfactants[J]. Journal of Colloid and Interface Science, 2005,286:696-709.
    [121] H.Giesekus. A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility[J]. Journal of Non-Newtonian Fluid Mechanics, 1982,11:69-109.
    [122] Fluent Inc., FLUENT User’s Guider. Fluent Inc., 2003.
    [123] C.J.Chen, S.Y.Jaw. Fundamentals of turbulence modeling[B]. Taylar & Francis, Washington, 1998.
    [124] J.D.Anderson,JR.计算流体力学入门[B].清华大学出版社, 1995,p85.
    [125] F.-C.Li, Y.Kawaguchi, T.Segawa. Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by particle image velocimetry[J]. Physics of fluids, 2005,17:075104.
    [126] H.Usui, T.Itoh, T.Saeki. Drag-reducing pipe flow of surfactant solutions[J]. FED-Vol 237 proc 1996, Fluid Eng DivConf ASME 2:159-163.
    [127] T.Min, Y.Y.Jung, H.Choi, D.D.Joseph. Drag reduction by polymer additives in a turbulent channel flow[J]. J. Fluid Mech.,2003, 486:213-238.
    [128] D.O.A.Cruz, F.T.Pinho, P.J.Oliveira. Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution[J]. J. Non-Newtonian Fluid Mech., 2005,132:28–35.
    [129] C-F Li, R.Sureshkumar, B.Khomami. Influence of rheological parameters on polymer induced turbulent drag reduction[J]. J. Non-Newtonian Fluid Mech., 2006,140: 23-40.
    [130] K.D.Housiadas, A.N.Beris. Viscoelastic effects on higher order statistics and on coherent structures in turbulent channel flow[J]. Physics of Fluids, 2005,17:035106.
    [131] J.Zhu, W.A.Rodi. A low dispersion and bounded convection scheme[J]. Computer methods in applied mechanics and enginnering, 1991,21:87-96.
    [132] S.McKee, M.F.Tomé., V.G.Ferreira. et al. The MAC Method[J]. Computers & Fluids, In Press, Accepted Manuscript, Available online, 2007,11.24.
    [133] C.Petit, P.Gajan, J.C.Lecorfier, P.Paranthoen. Frequency response of fine wire thermocouple[J]. J.Phys.E:Sci.Instrum., 1982,15:760–764.
    [134] S.Whitaker. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles[J]. AIChE Journal,1972, 18(2):361-371.
    [135] K.Gasljevic, E.F.Matthys. Experimental investigation of thermal and hydrodynamic development regions for drag reducing surfactant solution[J]. Trans. Amer. Soc. Mech. Eng., J Heat Transfer, 1997, 119: 80-88.
    [136]杰姆斯苏赛克[美].传热学(下册)[M].北京:人民教育出版社, 1981,p150.
    [137] M.Kostic, J. P. Hartnett. Heat transfer to water flowing turbulently through a rectangular duct with asymmetric heating[J]. Int. J. Heat Mass Transfer, 1986,29:1283.
    [138] B. A. Kader. Temperature and concentration profiles in fully turbulent boundary layers[J]. Int. J Heat Mass Transfer, 1981,24:1541-1544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700