用户名: 密码: 验证码:
三峡库区滑坡灾害风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自二十世纪初中期以来,随着社会经济的大规模发展,人类活动空间范围的逐渐扩展,以及重大工程活动对地质环境扰动程度的不断加剧,加之受到全球极端气候变化等因素的影响,滑坡事件发生的频率和强度均呈增长之势,所造成的人员伤亡和经济损失也不断加大。长江三峡库区地质条件复杂,人类工程活动强烈,滑坡等地质灾害广泛发育且频繁发生,对三峡水库调度运营及当地人民生命财产安全构成严重危害,直接或间接影响该区域经济发展和社会安定。因此,研究三峡库区滑坡灾害风险,以及预测未来气候、人类工程活动变化条件下滑坡灾害风险的变化情况及趋势,是实现库区防灾减灾战略及保障水库正常运营的重大而迫切需求,具有十分重要的科学和现实意义。
     论文以区域滑坡灾害风险评估的理论方法为基础,以地理信息系统、遥感、概率统计及数据挖掘方法为主要技术手段,以实现三峡库首区(秭归至巴东段)滑坡灾害风险评估为目的。在野外调查、相关数据资料收集及已有研究成果的基础上,从区域滑坡发育特征和典型滑坡专业监测变形特征分析入手,预测滑坡发生的空间位置、时间频率和强度以实现滑坡危险性评价。以承灾体易损性定义为出发点,建立灾害强度和抗灾能力评价指标体系并定义其计算公式,以此构建承灾体易损性评价模型。融合经济学方法核算承灾体价值,采用定量风险模型估算滑坡灾害生命和经济风险,并建立风险标准对风险分析结果进行评价。通过分析降雨和土地利用变化规律,预测中长期滑坡危险性及灾害风险的变化情况及趋势,最终实现三峡库首区滑坡灾害风险评估,取得的主要成果及结论如下:
     (1)提出了三峡库首区滑坡空间预测评价指标体系的粗糙集分析方法,在此基础上建立了遗传—支持向量机滑坡易发性预测耦合模型以及滑坡强度分析概率模型。分析结果表明孕育和影响土质滑坡的关键环境因素包括高程、坡度、坡向等16个因子,而岩质滑坡则包含高程、坡度、斜坡形态等17个因子,表明不同滑坡类型既受相同环境因素作用但又有各自不同的环境因素影响。滑坡易发性预测结果显示高易发区主要分布在长江干流的香溪至巴东段,以及支流归州河、童庄河、青干河沿岸和香溪河左岸。野外验证及模型质量评估表明预测结果与区域构造背景、工程地质条件、地形地貌等实际调查情况吻合,模型预测结果可靠,其中不确定性主要集中在中等易发区,而低易发区和高易发区的不确定性较小,土质和岩质滑坡的预测精度分别为86%和85%。滑坡强度分析结果显示发生5-6级强度的土质和岩质滑坡概率分别为0.48和0.35。滑坡危险性预测结果表明在多种构造行迹复合部位和新构造活动相对强烈地区,含有软弱面(带)的层状碎屑岩和有软弱基座的层状碳酸盐岩地层,以及河流顺褶皱轴向发育形成的顺向岸坡和人类工程活动强烈区是滑坡高危险性地段,例如新滩附近、树坪至范家坪、东壤口附近、巴东县城附近和归州河、童庄河、青干河沿岸及香溪河左岸,其滑坡发育具有空间密、频率高和强度大等特点。
     (2)建立了三峡库首区滑坡灾害的承灾体易损性分析模型,提出基于此模型的滑坡灾害风险评估方法。易损性分析结果表明三峡库首区内的人口、建筑物、生命线工程和土地资源等承灾体的易损性高,并且高易损性的承灾体主要集中在滑坡高危险性区内。滑坡灾害生命高风险区主要分布在巴东县城、东壤口、郭家坝等集镇和建有学校、企事业单位等人口密集的地区:经济高风险区主要集中在城镇和交通建设用地等经济价值大的地区。风险评价结果表明不可接受风险区主要分布在城镇和人口密集的村庄及经济价值大的建设用地区域,野外调查与验证表明滑坡灾害风险评价结果与实地灾害情况基本吻合。
     (3)预测了三峡库首区中长期降雨和土地利用变化条件下滑坡危险性和灾害风险的变化情况及趋势。预测结果显示21世纪前期该区年降雨量有所减少,而中后期则将增大。土地利用中建设用地和林地将持续性增长,耕地前期增多而后期有所减少,灌木林地持续性减少,水体基本维持稳定,并有少量增加。滑坡危险性整体上有增大趋势,而局部地区将有所降低,并且前期危险性变化主要集中在巴东地区,而后期则转移至秭归地区。滑坡灾害经济风险在2010至2050年将持续性增长,并且前二十年经济风险增长相对较大:生命风险在2010到2030年表现出增长态势,而后二十年则呈现出一定程度的降低。
Since the early and middle2th century, with the large-scale development of social economy, the space scope of human activities expands gradually. And the disturbance degree of major engineering activities to geological environment is deepening constantly. Combined with the influence of the global extreme climate change, the frequency and strength of occurred landslide is in a growing trend. And the caused casualties and economic losses are increasing continually. The complex geological conditions of the Yangtze river Three Gorges Reservoir, the severe human engineering activities, widely development and frequently happened geological disasters of landslide have posed a serious hazard for the Three Gorges Reservoir operation scheduling and the local people's life and property security, and affect the regional economic development and social stability directly or indirectly. So, to study the Three Gorges Reservoir area landslide risk and to predict the future risk situation and change tendency under the condition of climate changes and human engineering activities are the great and urgent demand of the implementation of disaster prevention and mitigation strategy and to ensure the normal operation of the reservoir. It is of great importance to scientific and realistic significance.
     The thesis takes the regional landslide risk assessment theory as the foundation, and adopts geographic information system, remote sensing, probability statistics and spatial data mining method as the main technical means, to achieve the purpose of the Three Gorges Reservoir head region (Zigui-Badong segment) landslide risk assessment. On the basis of field investigation, relevant data collection and existing research results, from the perspective of the regional distribution characteristics and typical landslide professional monitoring deformation characteristics analysis, the thesis predicts the landslide happening spatial location, temporal frequency and landslide magnitude to achieve the landslide hazard assessment. It takes vulnerability of elements at risk definition as the starting point, extracting hazard intensity and resistance ability evaluation index system and defining its calculation formula, so as to establish a vulnerability assessment model of elements at risk. It uses economics accounting method to calculate the value of elements at risk, using the quantitative risk model to estimate landslide life risk and economic risk, and to establish risk criteria and evaluate the risk result. Through the analysis of rainfall and land use change rule, the thesis forecasts the landslide hazard and risk change and trend under the condition of future changes, realizing the Three Gorges Reservior head region landslide risk assessment. The main conclusions and results are as follows:
     (1) The thesis establishes the Rough Sets analysis method of the Three Gorges area landslide spatial prediction and evaluation index system, the Genetic Algorithm-Support Vector Machine susceptibility prediction coupled model and lanslide magnitude analysis model. The results show that the key environmental factors which gestate and affect soil landslide include elevation, slope angle, slope aspect, etc.16factors. And rock landslide consists of17factors, such as elevation, slope angle, morphology of slope, and so on. It proves that different landslide types are affected both by the same environmental factors and different environmental factors. Landslide susceptibility prediction results show that high susceptibility prone are mainly distributed in the Yangtze river from Xiangxi to Badong, and tributary Guizhou river, Tongzhuang river, Qinggan River along the bank and the left bank of Xiangxi river. The field validation and model quality evaluation show that the predicted results are matched with the regional tectonic setting, engineering geological conditions, topography and field investigation situations, etc.. The model prediction results are reliable, and the uncertainty mainly concentrates in the medium susceptibility zones. And the uncertainty of low susceptibility prone and high susceptibility prone is small. The prediction accuracy of soil landslide and rock landslide are86%and85%respectively. Lanslide magnitude analysis results show that the probability of5-6magnitude soil landslide and rock landslide are respectively0.48and0.35. Landslide hazard prediction results show that in the varieties of structure trackway composite parts and new tectonic movement relatively strong area, the areas which contain weak surface (belt) of layered clastic rock and have a weak foundation layer of carbonate rock, as well as rivers along the fold axial development formation of the dip slope and strong human engineering activities are high hazard in landslide. For example, around the Xitan, Shuping to Fanjiapin, around Dongrangkou, near Badong town and Guizhou river, Tongzhuang river, Qinggan River along the bank and the left bank of Xiangxi river, their landslide development have the characteristics of spatial density, high frequency and magnitude, etc..
     (2) The thesis establishes the vulnerability analysis model of the Three Gorges Reservior head region landslide hazard. The vulnerability analysis results show that the population, buildings, lifeline engineering and land resources in the Three Gorges Reservior head region are high vulnerability. And the high vulnerability of elements at risk mainly focuses in the high hazard landslide area. The life high risk areas mainly distribute in the towns of Badong County, Dongxiangkou, Guojiaba and so on, and also in the densely populated areas such as schools, enterprises and institutions. The economic high risk areas mainly concentrate in areas of the large economic value:the urban and traffic construction land etc.. The risk assessment results show that the unacceptable risk area mainly distributes in towns and villages with a dense population and large economic value of construction land area. The field survey and verification show that the landslide risk assessment results are basically matched with the field disasters.
     (3) The thesis predicts the Three Gorges Reservior head region mid-and-long term landslide hazard and risk change and trend under the condition of rainfall and land use changes. The prediction results show that the annual rainfall will decrease in the early of the21st century and will increase in the middle and later period. Construction land and forest land will continue to grow. Cultivated land will first increase and then decrease. Shrub land will decrease continuously. The water area will remain stable basically, but there is a small amount of increase. Landslide hazard will be in an increasing trend on the whole, but part of the areas will reduce. And the early hazard changes will mainly concentrate in Badong area, later will transfer to Zigui region. The landslide economic risk will grow sustainably from2010to2050. And in the first twenty years, the economic risk growth is relatively large. The life risk is in a grow trend from2010to2030, and in a degree of drop in the later twenty years.
引文
[1]Nemcok A, Pasek J, Rybar J. Classification of landslides and other mass movements[J]. Rock Mechanics and Rock Engineering,1972,4(2):71-78.
    [2]Varnes D J. Slope movements:types and processes[M]//SCHUSTER R L, KRIZEK R J. Landslide analysis and control. Washington D. C.; National Academy of Sciences, Transportation Research Board Special Report 176.1978:11-33.
    [3]晏同珍,杨安顺,方云.滑坡学[M].武汉:中国地质大学出版社,1998.
    [4]Glade T, Crozier M J. The nature of landslide hazard impact[M]//GLADE T, ANDERSON M G, CROZIER M J. Landslide Hazard and Risk. England; John Wiley & Sons.2005:1-40.
    [5]Alcantara-Ayala I. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries[J]. Geomorphology,2002,47(2-4):107-124.
    [6]Alexander D. Principles of emergency planning and management[M]. New York:Oxford University Press,2002.
    [7]OFDA/CRED. EM-DAT International Disaster Database[R]. Brussels, Belgium; Universite Catholique de Louvain 2012.
    [8]中国地质环境监测院.全国地质灾害通报[R].2012.
    [9]郑国光,宋连春,陈鲜艳,等.三峡水利工程气候效应分析与评估[M]//王伟光,郑国光.应对气候变化报告(2011):德班的困境与中国的战略选择.北京:社会科学文献出版社.2011:227-237.
    [10]蔡庆华,刘敏,何永坤,等.长江三峡库区气候变化影响评估报告[M].北京:气象出版社,2010.
    [11]Leroi E. Landslide hazard-risk maps at different scales:objectives, tools and development [M]//SENNESET K. Proceedings of 7th International Symposium on Landslides. Trondheim, Norway.1996:35-52.
    [12]Trigila A, Iadanza C. Landslides in Italy-special report 2008[R].2008.
    [13]Lateltin O, Haemmig C, Raetzo H, et al. Landslide risk management in Switzerland[J]. Landslides,2005,2(4):313-320.
    [14]ERM-Hong Kong, Ltd. GEO Report No.75 Landslides and Boulder Falls from Natural Terrain: Interim Risk Guidelines[R].1998.
    [15]AGS. Landslide risk management concepts and guidelines[J]. Australian geomechanics society landslide taskforce landslide zoning working group Australian Geomechanics,2000,35(1): 49-92.
    [16]AGS. Guideline for landslide susceptibility, hazard and risk zoning for land use Management[J]. Australian geomechanics society landslide taskforce landslide zoning working group Australian Geomechanics,2007,42(1):13-36.
    [17]AGS. Practice Note Guidelines for Landslide Risk Management[J]. Australian geomechanics society landslide taskforce landslide zoning working group Australian Geomechanics,2007, 42(1):63-114.
    [18]AGS. A National Landslide Risk Management Framework for Australia[J]. Australian geomechanics society landslide taskforce landslide zoning working group Australian Geomechanics,2007,42(1):1-12.
    [19]Wise M P, Moore G D, Vandine D F. Landslide risk case studies in forest development planning and operations[M]. BC Ministry of Forests:Land Management Handbook 56,2004.
    [20]Kohler A, Julich S, Bloemertz L. Guidelines:Risk analysis-a basis for disaster risk management [M]. German Society for Technical Cooperation (GTZ), Federal Ministry for Economic Cooperation and Development (Germany),2004.
    [21]USGS. Landslide Hazards Program 5-Year Plan (2006-2011)[R].2006.
    [22]USGS. National Landslide Hazards Mitigation Strategy—A Framework for Loss Reduction[R]. 2003.
    [23]India. National disaster management guidelines-Management of landslides and snow avalanches [M]. A publication of the National Disaster Management Authority GOI. New Delhi.2009.
    [24]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[R].2006.
    [25]吴树仁,周平根,雷伟志,等.地质灾害防治领域重大科技问题讨论[J].地质力学学报,2004,10(1):1-6.
    [26]Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning[J]. Engineering Geology,2008,102(3-4):85-98.
    [27]International Organization for StandardizationISO. Risk management—principles and guidelines [R].2009.
    [28]Fell R. Landslide risk assessment and acceptable risk[J]. Canadian Geotechnical Journal/Revue Canadienne de Geotechnique,1994,31(2):261-272.
    [29]Dai F C, B C F L, Ngai Y Y. Landslide risk assessment and management:an overview[J]. Engineering Geology,2002,64(1):65-87.
    [30]Hungr O, Fell R, Couture R, et al. Landslide Risk Management[M]. London:Taylor & Francis, 2005.
    [31]Remondo J, Bonachea J, Cendrero A. A statistical approach to landslide risk modelling at basin scale:from landslide susceptibility to quantitative risk assessment[J]. Landslides,2005,2(4): 321-328.
    [32]Remondo J, Bonachea J, Cendrero A. Quantitative landslide risk assessment and mapping on the basis of recent occurrences[J]. Geomorphology,2008,94(3-4):496-507.
    [33]Abella E, Van Westen C. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation[J]. Landslides,2007,4(4):311-325.
    [34]Zezere J L, Garcia R a C, Oliveira S C, et al. Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal)[J]. Geomorphology,2008,94(3-4):467-495.
    [35]Jaiswal P, Westen C J V, Jetten V. Quantitative assessment of direct and indirect landslide risk along transportation lines in southern India[J]. Natural Hazards and Earth System Sciences,2010, 10(6):1253-1267.
    [36]Ghosh S, Van Westen C J, Carranza E J M, et al. Integrating spatial, temporal, and magnitude probabilities for medium-scale landslide risk analysis in Darjeeling Himalayas, India[J]. Landslides,2011,9(3):371-384.
    [37]Jaiswal P. Landslide risk quantification along transportation corridors based on historical information[D]. Enschede; University of Twente,2011.
    [38]Akgun A, Kincal C, Pradhan B. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey)[J]. Environmental Monitoring and Assessment,2012,184(9):1-18.
    [39]Bell R, Glade T. Quantitative risk analysis for landslides? Examples from Bldudalur, NW-Iceland[J]. Natural Hazards and Earth System Sciences,2004,4:117-131.
    [40]殷坤龙,陈丽霞,张桂荣.区域滑坡灾害预测预警与风险评价[J].地学前缘(中国地质大学(北京);北京大学),2007,14(6):85-97.
    [41]张桂荣,殷坤龙,陈丽霞.浙江省永嘉县区域滑坡灾害人口易损性评价和伤亡风险预测[J].地质科技情报,2007,26(4):70-75.
    [42]乔建平,石莉莉,王萌.基于贡献权重叠加法的滑坡风险区划[J].地质通报,2008,27(11):1787-1794.
    [43]王树丰,张茂省,唐亚明,等.延安宝塔山景区滑坡地质灾害风险评估[J].工程地质学报,2009,17(5):628-632.
    [44]刘希林,余承君,尚志海.中国泥石流滑坡灾害风险制图与空间格局研究[J].应用基础与工程科学学报,2011,19(5):721-731.
    [45]唐亚明,张茂省,薛强.一种大比例尺的滑坡风险区划方法—以延安市区黄土滑坡风险评价为例[J].地质通报,2011,30(1):166-172.
    [46]吴树仁,石菊松,张春山,等.地质灾害风险评估技术指南初论[J].地质通报,2009,28(8):995-1005.
    [47]汪华斌,吴树仁.滑坡灾害风险评价的关键理论与技术方法[J].地质通报,2008,27(11):1764-1770.
    [48]石菊松,石玲,吴树仁.滑坡风险评估的难点和进展[J].地质论评,2007,53(6):896-906.
    [49]石菊松,石玲,吴树仁,等.滑坡风险评估实践中的难点与对策[J].地质通报,2009,28(8):1020-1030.
    [50]王涛,吴树仁,石菊松.国际滑坡风险评估与管理指南研究综述[J].地质通报,2009,28(8):1006-1019.
    [51]陈丽霞,殷坤龙,汪洋.单体滑坡灾害风险预测[J].自然灾害学报,2008,17(2):65-70.
    [52]陈国金,宁国民,袁琴.长江三峡库区巴东黄土坡滑坡风险评价[J].资源环境与工程,2012,26(S1):90-96.
    [53]孟庆华,孙炜锋,张春山,等.陕西宝鸡地区胡家山滑坡风险性评价[J].地质通报,2011,31(7):1155-1165.
    [54]Blahut J. Debris flow hazard and risk analysis at medium and local scale[D]. Milano, Italy; University of Milano-Bicocca,2010.
    [55]Gares P A, Sherman D J, Nordstrom K F. Geomorphology and natural hazards[J]. Geomorphology,1994,10(1-4):1-18.
    [56]Varnes D J. Landslide hazard zonation:a review of principles and practice[M]. Paris:UNESCO Press,1984.
    [57]Guzzetti F, Carrara A, Cardinali M, et al. Landslide hazard evaluation:a review of current techniques and their application in a multi-scale study, Central Italy[J]. Geomorphology,1999, 31(1-4):181-216.
    [58]Carrara A, Cardinali M, Detti R, et al. GIS techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landforms,1991,16(5):427-445.
    [59]Van Westen C, Castellanos E, Kuriakose S. Spatial data for landslide susceptibility, hazard, and vulnerability assessment:An overview[J]. Engineering Geology,2008,102(3-4):112-131.
    [60]Montgomery D R, Dietrich W E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research,1994,30(4):1153-1171.
    [61]Borga M, Dalla Fontana G, Cazorzi F. Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index[J], Journal of Hydrology,2002,268(1-4):56-71.
    [62]Pack R, Tarboton D, Goodwin C. The SINMAP approach to terrain stability mapping[C].8th Congress of the International Association of Engineering Geology. Vancouver, British Columbia, Canada; International Association of Engineering.1998:21-25.
    [63]Baum R L, Savage W Z, Godt J W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0[R],2008.
    [64]Gokceoglu C, Aksoy H. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques[J]. Engineering Geology,1996,44(1-4):147-161.
    [65]Van Beek L P H, Van Asch T W J. Regional Assessment of the Effects of Land-Use Change on Landslide Hazard By Means of Physically Based Modelling[J]. Natural Hazards,2004,31(1): 289-304.
    [66]Frattini P, Crosta G B, Fusi N, et al. Shallow landslides in pyroclastic soils:a distributed modelling approach for hazard assessment J]. Engineering Geology,2004,73(3-4):277-295.
    [67]Xie M, Esaki T, Cai M. A time-space based approach for mapping rainfall-induced shallow landslide hazard[J]. Environmental Geology,2004,46(6-7):840-850.
    [68]兰恒星,伍法权,周成虎,等.GIS支持下的降雨型滑坡危险性空间分析预测[J].科学通报,2003,48(5):507-512.
    [69]Chacon J, Irigaray C, Fernandez T, et al. Engineering geology maps:landslides and geographical information systems[J]. Bulletin of Engineering Geology and the Environment,2006,65(4): 341-411.
    [70]A.Brenning. Spatial prediction models for landslide hazards:review, comparison and evaluation [J]. Natural Hazards and Earth System Sciences,2005,5(6):853-862.
    [71]王志旺,李端有,王湘桂.区域滑坡空间预测方法研究综述[J].长江科学院院报,2012,5(29):78-85.
    [72]吴益平,殷坤龙,陈丽霞.滑坡空间预测数学模型的对比及其应用[J].地质科技情报,2007, 26(6):95-100.
    [73]王念秦,王永锋,罗东海,等.中国滑坡预测预报研究综述[J].地质论评,2008,54(3):355-361.
    [74]Ercanoglu M, Gokceoglu C. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach[J]. Environmental Geology,2002,41(6): 720-730.
    [75]Saboya Jr F, Da Gloria Alves M, Dias Pinto W. Assessment of failure susceptibility of soil slopes using fuzzy logic[J]. Engineering Geology,2006,86(4):211-224.
    [76]Gorsevski P V, Jankowski P. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter[J]. Computers & Geosciences,2010, 36(8):1005-1020.
    [77]Ghosh J K, Bhattacharya D. Knowledge-Based Landslide Susceptibility Zonation System[J]. Journal of Computing in Civil Engineering,2010,24(4):325-334.
    [78]Akgun A, Sezer E A, Nefeslioglu H A, et al. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm[J]. Computers & Geosciences,2012,38(1):23-34.
    [79]唐川,周钜乾.云南崩塌滑坡危险度分区的模糊综合分析法[J].水土保持学报,1994,8(4):48-54.
    [80]樊晓一,乔建平,陈永波.层次分析法在典型滑坡危险度评价中的应用[J].自然灾害学报,2004,13(1):72-76.
    [81]朱阿兴,裴韬,乔建平,等.基于专家知识的滑坡危险性模糊评估方法[J].地理科学进展,2006,25(4):1-12.
    [82]陈晓利,祁生文,叶洪.基于GIS的地震滑坡危险性的模糊综合评价研究[J].北京大学学报:自然科学版,2009,44(3):434-438.
    [83]许冲,戴福初,姚鑫.GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J].岩石力学与工程学报2009,28(S2):3978-3985.
    [84]Akbar T, Ha S. Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan—by integration of GPS, GIS, and remote sensing technology[J]. Landslides,2011,8(4):527-540.
    [85]Carrara A. Multivariate Models for Landslide Hazard Evaluation[J]. Mathematical Geology, 1983,15(3):403-426.
    [86]Ayalew L, Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology, 2005,65(1-2):15-31.
    [87]Yesilnacar E, Topal T. Landslide susceptibility mapping:A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)[J], Engineering Geology,2005,79(3-4):251-266.
    [88]Lee S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data[J]. International Journal of Remote Sensing,2005, 26(7):1477-1491.
    [89]Gregory.C., Ohlmacher, Davis J C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J]. Engineering Geology,2003,69(3-4): 331-343.
    [90]Dai F C, Lee C F, Li J, et al. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong[J]. Environmental Geology,2001,40(3):381-391.
    [91]Pradhan B, Lee S. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia[J]. Landslides,2010,7(1):13-30.
    [92]Lee S, Ryu J H, Min K, et al. Landslide susceptibility analysis using GIS and artificial neural network[J]. Earth Surface Processes and Landforms,2003,28(12):1361-1376.
    [93]Chauhan S, Sharma M, Arora M K, et al. Landslide Susceptibility Zonation through ratings derived from Artificial Neural Network[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(5):340-350.
    [94]Kawabata D, Bandibas J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN)[J]. Geomorphology,2009,113(1-2): 97-109.
    [95]Yao X, Tham L, Dai F C. Landslide susceptibility mapping based on Support Vector Machine:A case study on natural slopes of Hong Kong, China[J]. Geomorphology,2008,101(4):572-582.
    [96]Xu C, Dai F C, Xu X W, et al. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China[J]. Geomorphology,2012,145-146:70-80.
    [97]Ballabio C, Sterlacchini S. Support vector machines for landslide susceptibility mapping:The Staffora river basin case study, Italy[J]. Mathematical Geosciences,2012,44(1):47-70.
    [98]Marjanovic M, Kovacevic M, Bajat B, et al. Landslide susceptibility assessment using SVM machine learning algorithm [J]. Engineering Geology,2011,123(3):225-234.
    [99]Gorsevski P V, Jankowski P. Discerning landslide susceptibility using rough sets[J]. Computers, Environment and Urban Systems,2008,32(1):53-65.
    [100]Komac M. Regional landslide susceptibility model using the Monte Carlo approach-the case of Slovenia[J]. Geological Quarterly,2012,56(1):41-54.
    [101]Nefeslioglu H A, Sezer E, Gokceoglu C, et al. Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey[J]. Mathematical Problems in Engineering,2010,1-15.
    [102]Shiuan W. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map[J]. Engineering Geology,2009,108(3-4):237-251.
    [103]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质大学出版社,2004.
    [104]吴树仁,张永双,石菊松,等.三峡库区重庆市丰都县滑坡灾害危险性评价[J].地质通报,2007,26(5):574-582.
    [105]石菊松,张永双,董诚,等.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报,2005,26(3):275-282.
    [106]李雪平,唐辉明.基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J].吉林大学学报:地球科学版,2005,35(3):361-365.
    [107]李雪平.基于GIS的区域斜坡稳定性评价Logistic回归模型研究[D].武汉:中国地质大 学,2005.
    [108]丛威青,潘懋,李铁锋,等.基于GIS的滑坡,泥石流灾害危险性区划关键问题研究[J].地学前缘,2006,13(1):185-190.
    [109]曾忠平,汪华斌,张志,等.地理信息系统/遥感技术支持下三峡库区青干河流域滑坡危险性评价[J].岩石力学与工程学报,2006,25(S1):2777-2784.
    [110]向喜琼,黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J].中国地质灾害与防治学报,2009,11(3):23-27.
    [111]胡德勇,李京,陈云浩,等.GIS支持下滑坡灾害空间预测方法研究[J].遥感学报,2007,11(6):852-859.
    [112]Guzzetti F, Reichenbach P, Cardinali M. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology,2005,72(1-4):272-299.
    [113]Jaiswal P, Van Westen C, Jetten V. Quantitative assessment of landslide hazard along transportation lines using historical records[J]. Landslides,2011,8(3):279-291.
    [114]Das I, Stein A, Kerle N, et al. Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India[J]. Landslides,2011,8(3):293-308.
    [115]Corominas J, Moya J. A review of assessing landslide frequency for hazard zoning purposes[J]. Engineering Geology,2008,102(3-4):193-213.
    [116]陈剑,杨志法,李晓.三峡库区滑坡发生概率与降水条件的关系[J].岩石力学与工程学报,2005,24(17):3052-3056.
    [117]高华喜.区域滑坡灾害危险性时间预测研究[J].湖南科技大学学报(自然科学版),2010,25(3):47-49.
    [118]Cardinali M, Reichenbach P, Guzzetti F, et al. A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy[J]. Natural Hazards and Earth System Sciences,2002,2(1-2):57-72.
    [119]Guzzetti F, Ardizzone F, Cardinali M, et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy[J]. Earth and Planetary Science Letters,2009,279(3-4):222-229.
    [120]Hungr O, Corominas J, Eberhardt E. Estimating landslide motion mechanism, travel distance and velocity[C]//HUNGR O, FELL R, COUTURE R, et al. Landslide Risk Management: Proceedings of the International Conference on Landslide Risk Management, Vancouver. Leiden; A.A. Balkema.2005:99-128.
    [121]Montoya L. Geo-data acquisition through mobile GIS and digital video:an urban disaster management perspective [J]. Environmental Modelling & Software,2003,18(10):869-876.
    [122]许强,张一凡,陈伟.西南山区城镇地质灾害易损性评价方法—以四川省丹巴县城为例[J].地质通报,2010,29(5):729-738.
    [123]杨存建,魏一鸣.基于遥感的洪水灾害承灾体神经网络的提取方法探讨[J].灾害学,1998,13(4):1-6.
    [124]李政国,张茂省,李林.面向对象的遥感影像承灾体边缘提取方法[J].水文地质工程地质,2011,38(1):128-132.
    [125]Crozier M J, Glade T. Landslide hazard and risk:issues, concepts and approach[M]//GLADE T, ANDERSON M G, CROZIER M J. Landslide Hazard and Risk. England; John Wiley & Sons. 2005:1-40.
    [126]O'Keefe P, Westgate K, Wisner B. Taking the naturalness out of natural disasters[J]. Nature, 1976,260(5552):566-567.
    [127]Westgate K, O'Keefe P. The Human and Social Implications of Earthquake Risk for Developing countries:Towards an integrated mitigation strategy[C]. Intergovernmental Conference on the Assessment and Mitigation of Earthquake Risk UNESCO. Paris.1976:24-29.
    [128]Hewitt K. Interpretations of Calamity from the Viewpoint of Human Ecology[M]. Boston:Allen & Unwin,1983.
    [129]Blaikie P, Terry C, Ian D, et al. At Risk:Natural hazards, People's vulnerability, and disasters[M], London:Routledge,1994.
    [130]郭跃.灾害易损性研究的回顾与展望[J].灾害学,2006,20(4):92-96.
    [131]Papathoma-Kohle M, Kappes M, Keiler M, et al. Physical vulnerability assessment for alpine hazards:state of the art and future needs[J]. Natural Hazards,2011,58(2):645-680.
    [132]Das I, Kumar G, Stein A, et al. Stochastic landslide vulnerability modeling in space and time in a part of the northern Himalayas, India[J], Environmental Monitoring and Assessment,2011, 178(1):25-37.
    [133]Uzielli M, Nadim F, Lacasse S, et al. A conceptual framework for quantitative estimation of physical vulnerability to landslides[J]. Engineering Geology,2008,102(3-4):251-256.
    [134]Ebert A, Kerle N, Stein A. Urban social vulnerability assessment with physical proxies and spatial metrics derived from air-and spaceborne imagery and GIS data[J]. Natural Hazards,2009, 48(2):275-294.
    [135]Li Z, Nadim F, Huang H, et al. Quantitative vulnerability estimation for scenario-based landslide hazards[J]. Landslides,2010,7(2):125-134.
    [136]Galli M, Guzzetti F. Landslide vulnerability criteria:A case study from Umbria, central Italy[J]. Environmental Management,2007,40(4):649-664.
    [137]Kaynia A M, Papathoma-Kohle M, Neuhauser B, et al. Probabilistic assessment of vulnerability to landslide:Application to the village of Lichtenstein, Baden-Wurttemberg, Germany[J]. Engineering Geology,2008,101(1-2):33-48.
    [138]曾敬,朱照宇,张金兰,等.基于高分辨率遥感影像评估县域地质灾害人口易损性—以广州市萝岗区为例[J].热带地理,2010,30(4):386-391.
    [139]张艳,刘丹强,周璐红.地质灾害土地资源易损性评价定量探讨[J].水文地质工程地质,2010,37(3):122-126.
    [140]刘希林,莫多闻,王小丹.区域泥石流易损性评价[J].中国地质灾害与防治学报,2001,12(2):7-12.
    [141]石莉莉,乔建平.基于GIS和贡献权重迭加方法的区域滑坡灾害易损性评价[J].灾害学,2009,24(3):46-50.
    [142]张立明.三峡工程库区地质灾害易损性评价与区划研究[D].长沙:中南大学,2008.
    [143]陈成名.西南山区城镇地质灾害易损性评价理论与实践[D].成都:成都理工大学,2010.
    [144]于翠芳,李永峰,吴利明,等.资产评估[M].徐州:中国矿业大学出版社,2006.
    [145]张梁,张业成,罗元华.地质灾害灾情评估理论与实践[M].北京:地质出版社,1998.
    [146]王树丰,张茂省,陈志新,等.基于滑坡风险管理的宝塔山景区景点价值核算[J].中国地质灾害与防治学报,2009,20(2):28-30.
    [147]Van Westen C, Van Asch T, Soeters R. Landslide hazard and risk zonation—why is it still so difficult? [J]. Bulletin of Engineering Geology and the Environment,2006,65(2):167-184.
    [148]Wong H N. Landslide risk assessment for individual facilities[C]. Proc for the International Conference on Landslide R isk Managemerit, Vancouver, Canada.2005:237-296.
    [149]唐亚明,张茂省,李林,等.滑坡易发性危险性风险评价例析[J].水文地质工程地质,2011,38(2):125-129.
    [150]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都:成都理工大学,2005.
    [151]谢全敏.滑坡灾害风险评价及其治理决策方法研究[D].武汉:武汉理工大学,2004.
    [152]薛东剑.RS与GIS在区域地质灾害风险评价中的应用[D].成都:成都理工大学,2010.
    [153]刘传正,刘艳辉,温铭生.长江三峡库区地质灾害成因与评价研究[M].北京:地质出版社,2007.
    [154]Blochl A, Braun B. Economic assessment of landslide risks in the Swabian Alb, Germany梤esearch framework and first results of homeowners'and experts'surveys [J]. Natural Hazards and Earth System Sciences,2005,5(3):389-396.
    [155]Saldivar-Sali A, Einstein H H. A Landslide Risk Rating System for Baguio, Philippines[J]. Engineering Geology,2007,91(2-4):85-99.
    [156]Kanungo D, Arora M, Gupta R, et al. Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas[J]. Landslides,2008,5(4):407-416.
    [157]Koirala N P, Watkins A T. Bulk appraisal of slopes in Hong Kong[C]//Bonnard C. Proc 5th International Symposium on Landslides. Lausanne; A A Balkema.1988:905-909.
    [158]赵洲,侯恩科,王建智,等.县域滑坡灾害风险管理信息系统研发与应用:以陕西省宁强县为例[J].工程地质学报,2012,20(2):170-182.
    [159]Ko Ko C, Flentje P, Chowdhury R. Quantitative Landslide Hazard and Risk Assessment:a case study[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2003,36(3):261-272.
    [160]Catani F, Casagli N, Ermini L, et al. Landslide hazard and riskmapping at catchment scale in the Arno River basin[J]. Landslides,2005,2(4):329-342.
    [161]Jaiswal P, Van Westen C J, Jetten V. Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India[J]. Natural Hazards and Earth System Sciences, 2011,11(6):1723-1743.
    [162]Erener A, Duzgun H B S. A regional scale quantitative risk assessment for landslides:case of Kumluca watershed in Bartin, Turkey[J]. Landslides,2012,1-19.
    [163]张茂省,李林,唐亚明,等.基于风险理念的黄土滑坡调查与编图研究[J].工程地质学报,2011,19(1):43-51.
    [164]张茂省,唐亚明.地质灾害风险调查的方法与实践[J].地质通报,2008,27(8):1205-1216.
    [165]曹鼎志,許文科,赖承震,等.土石流風險分析之建構應用[J].中興工程,2010,109:41-52.
    [166]何淑军.陕西宝鸡市渭滨区地质灾害风险评估研究[D].北京:中国地质科学院,2009.
    [167]Fischhoff B, Lichtenstein S, Slovic P, et al. Acceptable risk[M]. New York:Cambridge University Press,1981.
    [168]IUGS Working Group on Landslides, Committee on Risk Assessment. Quantitative risk assessment for slopes and landslides[M]. Landslide Risk Assessment. Rotterdam; Balkema.1997: 3-12.
    [169]United Nations International Strategy for Disaster Reduction Secretariat UNISDR. International Strategy for Disaster Reduction:2009 UNISDR Terminology on Disaster Risk Reduction. http://www.unisdr.org/we/inform/publications/7817 [J/OL] 2009.
    [170]Bell R, Glade T, Danscheid M. Challenges in defining acceptable risk levels [C]//W.AMMANN, DANNEMANN S. Coping with Risks Due to Natural Hazards in the 21st Century:"RISK 21". Monte Verita (CH); Balkema.2004.
    [171]Bell R, Glade T, Danscheid M. Risks in defining acceptable risk levels[C]//H.OLDRICH, FELL R, COULTURE R, et al. International Conference on Landslide Risk Management. Vancouver, Canada; Balkema.2005:38-44.
    [172]Finlay P, Fell R. Landslides:risk perception and acceptance[J]. Canadian Geotechnical Journal, 1997,34(2):169-188.
    [173]Leone F, Aste J, Leroi E. Vulnerability assessment of elements exposed to mass-movement: working toward a better risk perception; proceedings of the VII International Symposium on Landslide, Trondheim, Norway, F,1996[C]. A.A.Balkema.
    [174]Sjoberg L. Risk perception by the public and by experts:A dilemma in risk management [J]. Human Ecology Review,1999,6(2):1-9.
    [175]Cobum A W, Spence R J S, Pomonis A. Disaster mitigation[R],1994.
    [176]尚志海,刘希林.可接受风险与灾害研究[J].地理科学进展,2010,29(1):23-30.
    [177]岑慧贤,房怀阳,吴群河.可接受风险的界定方法探讨[J].重庆环境科学,2000,22(3):18-19.
    [178]张桂荣.基于WEBGIS的滑坡灾害预测预报与风险管理[D].武汉:中国地质大学,2006.
    [179]陈伟,许强.地质灾害可接受风险水平研究[J].灾害学,2012,27(1):23-27.
    [180]赵洲,侯恩科.中国地质灾害生命可接受风险标准研究[J].科技导报,2011,29(36):17-22.
    [181]地质矿产部编写组.长江三峡工程库岸稳定性研究[M].北京:地质出版社,1988.
    [182]湖北省地质矿产局.1:5万巴东县幅(H49E006010)、秭归县幅(H-49-42-A)、泄滩幅(H-49-30-C)、新滩幅(H-49-42-B)区域地质调查报告[R],1997.
    [183]叶润青.基于多源数据融合的三峡库区滑坡信息提取与分析[D].武汉:中国地质大学,2011.
    [184]邓清禄.斜坡变形构造:巴东新县城斜坡剖析[M].武汉:中国地质大学出版社,2000.
    [185]长江水利委员会.三峡工程地质研究[M].武汉:湖北科学技术出版社,1997.
    [186]郑都华,向勇.巴东县近60年降水量的气候变化特征分析[J].安徽农学通报,2011,17(18):169-170.
    [187]韩庆忠,向锋,马力,等.三峡库首典型区2001—2010年局地气象因子变化趋势分析[J].土壤,2012,44(6):1029-1034.
    [188]杜榕恒,刘新民,袁建模,等.长江三峡工程库区滑坡与泥石流研究[M].成都:四川科学 技术出版社,1991.
    [189]谢守益,徐卫亚.降雨诱发滑坡机制研究[J].武汉水利电力大学学报,1999,32(001):21-23.
    [190]易武,孟召平,易庆林.三峡库区滑坡预测理论与方法[M].北京:科学出版社,2011.
    [191]牛瑞卿,彭令,叶润青,等.基于粗糙集的支持向量机滑坡易发性评价[J].吉林大学学报(地球科学版),2012,42(2):430-439.
    [192]Dikau R. Entwurf einer geomorphographisch-analytischen Systematik von Reliefeinheiten[M]. Geograph. Inst. d. Univ.,1988.
    [193]李景富.基于GIS的斜坡结构图自动化制图方法研究[J].人民长江,2009,40(19):38-40.
    [194]张作辰.滑坡地下水作用研究与防治工程实践[J].工程地质学报,1996,4(4):80-85.
    [195]田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    [196]Pawlak Z. Rough sets[J]. International Journal of Parallel Programming,1982,11(5):341-356.
    [197]Bazan J G, Nguyen H S, Nguyen S H, et al. Rough set algorithms in classification problem [M]//POLKOWSKI L, TSUMOTO S, LIN T Y. Rough set methods and applications. Heidelberg, New York; Physica-Verlag.2000:49-88.
    [198]Vapnik V. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, Inc. 1995.
    [199]Holland J H. Adaptation in natural and artificial systems:an introductory analysis with applications to biology, control and artificial intelligence[M]. Cambridge:MIT press,1992.
    [200]Chang C C, Lin C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27.Software available at http://www.csie.ntu. edu.tw/-cjlin/libsvm.
    [201]李德毅,刘常昱,杜鹢,等.不确定性人工智能[J].软件学报,2004,15(11):1583-1594.
    [202]IUGS. Quantitative risk assessment for slopes and landslides-The state of the art[M]. Leiden: A a Balkema Publishers,1997.
    [203]谢守益,张年学,许兵.长江三峡库区典型滑坡降雨诱发的概率分析[J].工程地质学报,1995,3(2):60-69.
    [204]陈丽霞,殷坤龙,刘长春.降雨重现期及其用于滑坡概率分析的探讨[J].工程地质学报,2012,20(5):745-750.
    [205]Hungr O. Some methods of landslide hazard intensity mapping[J]. Landslide risk assessment Balkema, Rotterdam,1997,215-226.
    [206]李闽.地质灾害人口安全易损性区划研究[J].中国地质矿产经济,2002,15(8):24-27.
    [207]Spence R, Kelman I, Calogero E, et al. Modelling expected physical impacts and human casualties from explosive volcanic eruptions[J]. Natural Hazards and Earth System Sciences, 2005,7(6):1003-1015.
    [208]Papathoma-Kohle M, Neuhauser B, Ratzinger K, et al. Elements at risk as a framework for assessing the vulnerability of communities to landslides[J]. Natural Hazards and Earth System Sciences,2007,7(6):765-779.
    [209]李宏男,柳春光.生命线工程系统减灾研究趋势与展望[J].大连理工大学学报,2005,45(6):931-936.
    [210]Torres-Vera M A, Antonio Canas J. A lifeline vulnerability study in Barcelona, Spain[J]. Reliability Engineering and System Safety,2003,80(2):205-210.
    [211]Azevedo J, Guerreiro L, Bento R, et al. Seismic vulnerability of lifelines in the greater Lisbon area[J]. Bulletin of Earthquake Engineering,2010,8(1):157-180.
    [212]Einstein H H. Special lecture:Landslide risk assessment procedure[C]. Proceedings 5th international symposium on landslides. Lausanne, Switzerland; A.A. Balkema.1988:1075-1090.
    [213]Morgan G, Rawlings G, Sobkowicz J. Evaluating total risk to communities from large debris flows[C]. Proceedings of 1st Canadian Symposium on Geotechnique and Natural Hazards. Vancouver, BC, Canada; BiTech Publishers.1992:225-236.
    [214]Fell R, Ho K K S, Lacasse S, et al. A framework for landslide risk assessment and management [C]//HUNGR O, FELL R, COUTURE R. The International Conference on Landslide Risk Management. London; Taylor and Francis.2005:3-25.
    [215]Anderson L R, Bowles D S, Pack R T, et al. A risk-based method for landslide mitigation [CJ//SENNESET K. VII International Symposium on Landslide. Trondheim, Norway; A.A.Balkema.1996:135-140.
    [216]Ragozin A L. Modern problems and quantitative methods of landslide risk assessment [C]//SENNESET K. VII International Symposium on Landslide. Trondheim, Norway; A.A.Balkema.1996:339-344.
    [217]Ragozin A L, Tikhvinsky I O. Landslide hazard, vulnerability and risk assessment[C].8th International Sysmposium on Landslides. Cardiff, Wales; Thomas Telford Ltd.2000.
    [218]Leroi E. Landslide hazard-risk maps at different scales:objectives, tools and developments [C]//SENNESET K. VII International Symposium on Landslide. Trondheim, Norway; A.A.Balkema.1996:35-52.
    [219]Leroi E. Landslide risk mapping:problems, limitations and developments[M]//CRUDEN D, FELL R. Landslide risk assessment. Rotterdam; A.A. Balkema.1997:239-250.
    [220]Lee E M, Jones D K C. Landslide risk assessment[M]. London:Thomas Telford,2004.
    [221]徐广才,康慕谊,李亚飞.基于MLP-ANN与Markov Chain的土地利用变化预测方法—以锡林郭勒盟为例[J].生态环境学报,2010,19(10):2386-2392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700