用户名: 密码: 验证码:
H5N1流感病毒感染孕鼠的机制以及养禽业人员禽流感感染风险调查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H5N1亚型禽流感病毒在欧亚大陆广泛流行,对公共卫生安全造成巨大威胁,且该病毒具有人间大流行的潜力,因此,研究H5N1病毒对哺乳动物的致病机制至关重要。妊娠是某些疾病加重的重要风险因素,由于目前H5N1病毒感染孕妇的病例较少,H5N1病毒对孕妇的致病性尚不清楚。本研究以孕鼠为模型动物,探究H5N1病毒感染妊娠期哺乳动物的致病性和病毒的垂直传播能力,对解析H5N1病毒感染妊娠妇女的致病机制具有重要借鉴意义。
     本研究以clade2.3.4分支H5N1禽流感病毒感染BALB/c孕鼠和非孕鼠,对病毒复制能力、机体先天性免疫反应、脏器病理损伤等方面进行了系统研究。结果表明,攻毒后第3天病毒在孕鼠肺脏中的复制滴度显著高于非孕鼠,并且孕鼠肺脏中病毒阳性的Ⅱ型肺泡上皮细胞数量较多。在病毒感染早期,孕鼠肺脏中与抗病毒相关的细胞因子IFN-γ和TNF-α表达量低于非孕鼠,而感染中后期,孕鼠肺脏中趋化因子MCP-1、MIP-1α和IL-6表达水平显著升高,并有大量炎性细胞浸润,造成严重的肺脏弥散性肺泡损伤。病毒感染后期孕鼠血氧饱和度显著下降,表现出严重的呼吸窘迫综合征症状。整个感染期中,孕鼠雌二醇、孕酮表达水平未见异常。该部分结果表明,H5N1病毒对妊娠期小鼠致病力高于普通雌鼠,病毒在孕鼠肺脏复制能力更强,诱导大量细胞因子表达和炎性细胞浸润,造成组织更严重的病理损伤,因此妊娠是造成H5N1病毒感染哺乳动物病情加重的危险因素。
     为揭示H5N1病毒在小鼠体内是否具有垂直传播的能力,将H5N1病毒感染BALB/c孕鼠,在攻毒后第3天病毒即出现肺外感染,第4天胎盘可分离到病毒,第5天胎儿可分离到病毒。感染胎盘组织的病毒主要分布在胎盘迷路滋养层内,尤其是母体与胎儿血管网交汇处的滋养细胞及巨噬细胞,在蜕膜层结缔组织间也有少量病毒分布,并且胎鼠肺泡上皮细胞、肝细胞也可检测到病毒,表明H5N1病毒具有经胎盘垂直传播的能力。病毒感染中后期,胎盘组织细胞因子IFN-γ、 TNF-α和IL-6水平显著升高,胎盘出现局灶性坏死,大量炎性细胞浸润,孕鼠出现流产及胎儿坏死等妊娠失败表现。为进一步揭示H5N1病毒发生垂直传播的机制,分别进行外周血单核细胞和多核细胞病毒感染情况、胎盘组织受体分布及胎盘滋养层细胞体外感染研究。结果表明,孕鼠感染H5N1病毒后血液中多核细胞和单核细胞均能被病毒感染,说明血细胞能够作为载体携带病毒到达胎盘组织。小鼠胎盘组织中血管内皮细胞、滋养细胞和绒毛膜板上皮细胞同时表达a-2,3和a-2,6两种唾液酸受体,并且病毒可以有效感染体外培养的原代小鼠胎盘滋养细胞并复制。该部分实验证明H5N1病毒可以以血细胞作为载体到达胎盘,并感染胎盘细胞,病毒对胎盘细胞的直接感染以及胎盘过强的炎症反应造成胎盘组织细胞坏死,结构完整性破坏,病毒得以突破胎盘屏障发生垂直传播,感染胎儿,进而导致妊娠失败。该研究为解析临床上H5N1病毒感染孕妇进而发生垂直传播的机制提供了理论依据。
     与禽类密切接触的养禽业人员被认为是禽流感感染的高危人群。为了评价该人群感染禽流感的风险,对北京地区的养禽业人员进行了禽流感病毒H5、H7和H9抗体血清学监测和问卷调查。所采集305份血清样本中,H5和H7抗体阳性血清均为0份,H9抗体阳性血清为14份,阳性率为4.59%,说明H9亚型禽流感对公共卫生安全具有一定的威胁性。通过问卷调查发现养禽人员对禽流感的公共卫生安全威胁性普遍认识不足。
     综上所述,通过对H5N1病毒感染孕鼠致病性和垂直传播机制的研究,以及养禽业人员禽流感病毒血清学调查和认知行为调查,丰富了H5Nl禽流感病毒对哺乳动物致病与传播机制的理论研究,对禽流感病毒跨种间传播的预防和控制具有指导意义。
H5N1avian influenza virus spreads widely in Eurasia. The pandemic potential of H5N1virus is a great threat to public health security. It would be helpful for the prevention of H5N1outbreak if we try to explore the pathogenesis of the virus. This study focused on the pathogenesis of H5N1virus infection during pregnancy. Pregnancy is a risk factor for some diseases. The pathogenicity of H5N1virus in pregnant women is not known yet. In this study,We used mouse as a model to research the effect of H5N1on pregnancy.
     The replication ability of H5N1virus, and body's innate immune response, organs pathological damage of pregnant and nonpregnant BALB/c mices were studied. The results showed that the virus titers in the lungs of pregnant mice were significantly higher than that of nonpregnant mice at3day post inoculation (dpi). And virus positive type II alveolar epithelial cells in the pregnant mice lungs were more than that of nonpregnant mice. In the early infection, antiviral cytokines IFN-y, TNF-a levels in pregnant mice lungs were significantly higher than that of nonpregnant ones. In the late infection, chemokine MCP-1, MIP-la and IL-6in pregnant mices were significantly increased, and caused lots of inflammatory cells infiltration, with lung diffuse alveolar damage. Oxygen saturation of pregnant mice significantly decreased in the middle and late periods of the infection, with severe symptoms of respiratory distress. H5N1virus infection did not affect the concentration of estradiol and progesterone in serum. The results showed that H5N1virus on pathogenicity in mice during pregnancy was higher than normal female and pregnancy was a risk factor to aggravate infection.
     To study the vertical transmission ability of H5N1virus, pregnant mice with day13gestation were infected H5N1virus. The viremia appeared at3dpi, viruses were isolated from placenta at4dpi, and fetuses could be infected since5dpi. Immunohistochemical staining showed that the viruses were mainly distributed in the labyrinthine trophoblast. The H5N1virus was found in the placental villus epithelial cells and macrophages in the interface of maternal blood-syncytiotrophoblast interface and a small amount of virus scattered at the decidual layer. Viral antigen was also detected in alveolar epithelial cells and liver cells of fetuses, suggesting that H5N1avian influenza virus transmited vertically through placenta and infected fetuses. Focal necrosis and inflammatory cell infiltration appeared in the placenta of the infected mice. Inflammatory cytokines IFN-y, TNF-a and IL-6in placenta were significantly increased in late virus infection. Pregnancy failure such as miscarriage and necrosis was observed. To explore the mechanism of the vertical transmission of the H5N1virus, we detected the virus in blood cells, receptors distribution in placenta, and virus infection ability in trophoblast cell. Mononuclear cells and multinucleated cells could both be infected by virus, indicating that blood cells could serve as carriers that transport virus to placental tissue. Both the SA-a2,6-Gal and SA-a2,3-Gal receptors were expressed in placental vascular endothelial cells, trophoblast cell, and epithelial cell in chorionic plate. The virus could infect and replicate in trophoblast cell cultured in vitro. The results proved that the H5N1virus could reach the placenta by infecting blood cells as carriers and infect placental cells. The damage induced directly by virus and inflammation caused placental tissue necrosis and structural integrity broken, which facilitated virus breaking through placental barrier and infected fetuses, leading to pregnancy failure.
     To evaluate the risk of avian influenza infection of poultry workers, we conducted an H5, H7, H9serological study and questionnaire survey in Beijing poultry farms.14persons in305(4.49%) were positive for H9. Questionnaire survey suggested that most of workers had not recognized the threat of bird flu.
     In summary, this study provides evidence for the transmissibility of the H5N1virus in mammal animal. Studies on the mechanism of the pathogenesis of H5N1virus is significant for avian influenza prevention and control.
引文
[1]Vasin A, Temkina O, Egorov V, et al. Molecular mechanisms enhancing the proteome of influenza Aviruses:An overview of recently discovered proteins. Virus research,2014,185:53-63.
    [2]Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza A virus from bats. National Acad Sciences. p.4269-4274.
    [3]Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza a viruses. PLoS pathogens, 2013,9(10):e1003657.
    [4]Weis W, Brown JH, Cusack S, et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature,1988 Jun 2,333(6172):426-431.
    [5]Hughson FM. Structural characterization of viral fusion proteins. Curr Biol,1995 Mar 1,5(3):265-274.
    [6]Whittaker Q Bui M, Helenius A. The role of nuclear import and export in influenza virus infection. Trends Cell Biol,1996 Feb,6(2):67-71.
    [7]Klumpp K, Ruigrok RW, Baudin F. Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. Embo J,1997 Mar 17,16(6):1248-1257.
    [8]Webster RQ Bean WJ, Gorman OT, et al. Evolution and ecology of influenza A viruses. Am Soc Microbiol; 1992. p.152-179.
    [9]Klenk HD, Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol,1994 Feb,2(2):39-43.
    [10]Stevens J, Blixt O, Glaser L, et al. Glycan microarray analysis of the hemagglutinins from modem and pandemic influenza viruses reveals different receptor specificities. Journal of molecular biology, 2006,355(5):1143-1155.
    [11]Wan H, Perez DR. Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology,2006,346(2):278-286.
    [12]Zhou J, Wang D, Gao R, et al. Biological features of novel avian influenza A (H7N9) virus. Nature, 2013,499(7459):500-503.
    [13]Liao HY, Hsu CH, Wang SC, et al. Differential receptor binding affinities of influenza hemagglutinins on glycan arrays. J Am Chem Soc,2010 Oct 27,132(42):14849-14856.
    [14]Nicholls J, Chan M, Chan W, et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature medicine,2007,13(2):147-149.
    [15]Van Riel D, Munster VJ, De Wit E, et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. The American journal of pathology, 2007,171(4):1215-1223.
    [16]Van Riel D, Munster VJ, De Wit E, et al. H5N1 virus attachment to lower respiratory tract. Sc ience, 2006,312(5772):399-399.
    [17]Zeng H, Pappas C, Belser JA, et al. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses:possible involvement in the pathogenesis of human H5N1 virus infection. Journal of virology,2012,86(2):667-678.
    [18]Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, et al. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proceedings of the National Academy of Sciences,2009,106(9):3455-3460.
    [19]Rimmelzwaan GF, Van Riel D, Baars M, et al. Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. The American journal of pathology,2006,168(1):176-183.
    [20]Claas EC, Osterhaus AD, van Beek R, et al. Human influenza A H5N1 virus related to a highly pathogenicavian influenza virus. The Lancet,1998,351(9101):472-477.
    [21]Xu C, Dong L, Xin L, et al. Human avian influenza A (H5N1) virus infection in China. Science in China Series C:Life Sciences,2009,52(5):407-411.
    [22]Wan XF, Dong L, Lan Y, et al. Indications that Live Poultry Markets Are a Major Source of Human H5N1 Influenza Virus Infection in China. J Virol,2011 Dec,85(24):13432-13438.
    [23]Wang H, Feng Z, Shu Y, et al. Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. The Lancet,2008,371 (9622):1427-1434.
    [24]Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science,2012,336(6088):1534-1541.
    [25]Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012,486(7403):420-428.
    [26]Lin Y, Shaw M, Gregory V, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences,2000,97(17):9654-9658.
    [27]于康震,付朝阳,崔尚金,等.我国禽流感防制研究进展.中国兽医学报,2001,21(1):103-106.
    [28]Guo Y, Li J, Cheng X. [Discovery of men infected by avian influenza A (H9N2) virus]. Zhonghua shi yan he lin chuang bing du xue za zhi= Zhonghua shiyan he linchuang bingduxue zazhi= Chinese journal of experimental and clinical virology,1999,13(2):105.
    [29]Yu Q, Liu L, Pu J, et al. Risk perceptions for avian influenza virus infction among poultry workers, China. Emerging infectious diseases,2013,19(2):313.
    [30]Fouchier RA, Schneeberger PM, Rozendaal FW, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA, 2004 Feb3,101(5):1356-1361.
    [31]Tweed SA, Skowronski DM, David ST, et al. Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis,2004 Dec,10(12):2196-2199.
    [32]Gao R, Cao B, Hu Y, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. New England Journal of Medicine,2013,368(20):1888-1897.
    [33]Li Q, Zhou L, Zhou M, et al. Preliminary report:epidemiology of the avian influenza A (H7N9) outbreak in China. New England Journal of Medicine,2013.
    [34]Chan MC, Chan RW, Chan LL, et al. Tropism and innate host responses of a novel avian influenza A H7N9 virus:an analysis of ex-vivo and in-vitro cultures of the human respiratory tract. The Lancet Respiratory Medicine,2013,1(7):534-542.
    [35]Chen Y, Liang W, Yang S, et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry:clinical analysis and characterisation of viral genome. The Lancet, 2013,381(9881):1916-1925.
    [36]Peiris JSM, De Jong MD, Guan Y. Avian influenza virus (H5N1):a threat to human health. Am Soc Microbiol; 2007. p.243-267.
    [37]Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology, 1999,258(1):1-20.
    [38]Katz J, Lu X, Frace A, et al. Pathogenesis of and immunity to avian influenza A H5 viruses. Biomedicine & Pharmacotherapy,2000,54(4):178-187.
    [39]Chen H, Bright RA, Subbarao K, et al. Poly genic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus research,2007,128(1):159-163.
    [40]Hsieh S-M, Chang S-C. Cutting edge:insufficient perforin expression in CD8+T cells in response to hemagglutinin from avian influenza (H5N1) virus. Am Assoc Immnol; 2006. p.4530-4533.
    [41]De Jong MD, Thanh TT, Khanh TH, et al. Oseltamivir resistance during treatment of influenza A (H5N1) infection. Mass Medical Soc; 2005. p.2667-2672.
    [42]Matsuoka Y, Swayne DE, Thomas C, et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. Journal of virology,2009,83(9):4704-4708.
    [43]Salomon R, Franks J, Govorkova EA, et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnan/1203/04. Rockefeller Univ Press; 2006. p. 689-697.
    [44]Li Z, Chen H, Jiao P, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Am Soc Microbiol; 2005. p.12058-12064.
    [45]Steel J, Lowen AC, Mubareka S, et al. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS pathogens,2009,5(1):e1000252.
    [46]Conenello GM, Zamarin D, Perrone LA, et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS pathogens,2007,3(10):e141.
    [47]Katz JM, Lu X, Tumpey TM, et al. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. Journal of virology,2000,74(22):10807-10810.
    [48]Song M-S, Pascua PNQ, Lee JH, et al. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. Am Soc Microbiol; 2009. p.12325-12335.
    [49]Song J, Feng H, Xu J, et al. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. Journal ofvirology,2011,85(5):2180-2188.
    [50]Finkelstein DB, Mukatira S, Mehta PK, et al. Persistent host markers in pandemic and H5N1 influenza viruses. Journal ofvirology,2007,81(19):10292-10299.
    [51]He Q Qiao J, Dong C, et al. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antiviral research,2008,77(1):72-76.
    [52]Fan S, Deng G, Song J, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology,2009,384(1):28-32.
    [53]李建丽,张万坡,毕丁仁.A型流感病毒NS1蛋白研究进展.微生物学报,2007,47(4):729-733.
    [54]Cheung C, Poon L, Lau A, et al. Induction of pro inflammatory cytokines in human macrophages by influenza A (H5N1) viruses:a mechanism for the unusual severity of human disease? The Lancet, 2002,360(9348):1831-1837.
    [55]Jackson D, Hossain MJ, Hickman D, et al. A new influenza virus virulence determinant:the NS1 protein four C-terminal residues modulate pathogenicity. Proceedings of the National Academy of Sciences, 2008,105(11):4381-4386.
    [56]Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. Journal of virology,2008,82(3):1146-1154.
    [57]Twu KY, Kuo R-L, Marklund J, et al. The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells. Journal of virology,2007,81(15):8112-8121.
    [58]Kumagai Y, Takeuchi O, Akira S. Pathogen recognition by innate receptors. Journal of Infection and Chemotherapy,2008,14(2):86-92.
    [59]Perrone LA, Plowden JK, Garcia-Sastre A, et al. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS pathogens,2008,4(8):e 1000115.
    [60]Herold S, Steinmueller M, von Wulffen W, et al. Lung epithelial apoptosis in influenza virus pneumonia:the role of macrophage-expressed TNF-related apoptosis-inducing ligand. The Journal of experimental medicine,2008,205(13):3065-3077.
    [61]Dawson TC, Beck MA, Kuziel WA, et al. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. The American journal of pathology, 2000,156(6):1951-1959.
    [62]Tate MD, Ioannidis LJ, Croker B, et al. The role of neutrophils during mild and severe influenza virus infections of mice. PLoS One,2011,6(3):e17618.
    [63]Barnard DL. Animal models for the study of influenza pathogenesis and therapy. Antiviral research, 2009,82(2):A110-A 122.
    [64]Cameron CM, Cameron MJ, Bermejo-Martin JF, et al. Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets. Am Soc Microbiol; 2008. p.11308-11317.
    [65]de Jong MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Publishing Group; 2006. p.1203-1207.
    [66]Chan MCW, Cheung CY, Chui WH, et al. Pro inflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. BioMed Central Ltd; 2005. p.135.
    [67]Sakabe S, Iwatsuki-Horimoto K, Takano R, et al. Cytokine production by primary human macrophages infected with highly pathogenic H5N1 or pandemic H1N12009 influenza viruses. Soc General Microbiol. p.1428-1434.
    [68]Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev,2001,14(4):778-809.
    [69]Kreijtz J, Fouchier R, Rimmelzwaan G. Immune responses to influenza virus infection. Virus research,2011,162(1):19-30.
    [70]Wright GJ, Cherwinski H, Foster-Cuevas M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. The Journal of Immunology,2003,171 (6):3034-3046.
    [71]Snelgrove RJ, Goulding J, Didierlaurent AM, et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nature immunology,2008,9(9):1074-1083.
    [72]Sun J, Madan R, Karp CL, et al. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nature medicine,2009,15(3):277-284.
    [73]Sun J, Dodd H, Moser EK, et al. CD4+T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nature immunology,2011,12(4):327-334.
    [74]Fukuyama S, Kawaoka Y. The pathogenesis of influenza virus infections:the contributions of virus and host factors. Current opinion in immunology,2011,23(4):481-486.
    [75]Gaunt G, Ramin K. Immunological tolerance ofthe human fetus. American journal of perinatology, 2001,18(06):299-312.
    [76]Raghupathy R. Th 1-type immunity is incompatible with successful pregnancy. Immunology today, 1997,18(10):478-482.
    [77]Jamieson DJ, Theiler RN, Rasmussen SA. Emerging infections and pregnancy. Emerging infectious diseases,2006,12(11).
    [78]Robbins JR, Bakardjiev A I. Pathogens and the placental fortress. Current opinion in microbiology, 2012,15(1):36-43.
    [79]Szekeres-Bartho J, Faust Z,Varga P, et al. The immunological pregnancy protective effect of progesterone is manifested via controlling cytokine production. American Journal of Reproductive Immunology,1996,35(4):348-351.
    [80]Polgar B, Nagy E, Miko E, et al. Urinary progesterone-induced blocking factor concentration is related to pregnancy outcome. Biology of reproduction,2004,71(5):1699-1705.
    [81]Krishnan L, Guilbert LJ, Russell AS, et al. Pregnancy impairs resistance of C57BL/6 mice to Leishmania major infection and causes decreased antigen-specific IFN-gamma response and increased production of T helper 2 cytokines. Am Assoc Immnol; 1996. p.644-652.
    [82]Marzi M, Vigano A, Trabattoni D, et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Wiley Online Library; 1996. p.127-133.
    [83]Nagamatsu T, Schust DJ. REVIEW ARTICLE:The Contribution of Macrophages to Normal and Pathological Pregnancies. Wiley Online Library, p.460-471.
    [84]臧鲁心,马保臣,董玉兰,等.妊娠期激素对Thl和Th2细胞因子的调控.动物医学进展,2006,27(1):24-27.
    [85]Chaouat G, Meliani AA, Martal J, et al. IL-10 prevents naturally occurring fetal loss in the CBA x DBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-tau. The Journal of Immunology,1995,154(9):4261-4268.
    [86]Kovats S, Carreras E, Agrawal H. Sex steroid receptors in immune cells. Sex hormones and immunity to infection:Springer; 2010. p.53-91.
    [87]Butts CL, Bowers E, Horn J, et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gender medicine,2008,5(4):434-447.
    [88]Jones LA, Kreem S, Shweash M, et al. Differential modulation of TLR3-and TLR4-mediated dendritic cell maturation and function by progesterone. The Journal of Immunology,2010,185(8):4525-4534.
    [89]Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Hormones and behavior,2012,62(3):263-271.
    [90]Hao S, Zhao J, Zhou J, et al. Modulation of 17β-estradiol on the number and cytotoxicity of NK cells< i> in vivo related to MCM and activating receptors. International immunopharmacology, 2007,7(13):1765-1775.
    [91]Rettew JA, Huet YM, Marriott I. Estrogens augment cell surface TLR4 expression on murine macrophages and regulate sepsis susceptibility in vivo. Endocrine Soc; 2009. p.3877-3884.
    [92]Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. ESHRE; 2005. p.411-423.
    [93]Paharkova-Vatchkova V, Maldonado R, Kovats S, Estrogen preferentially promotes the differentiation of CD11c+CD11bintermediate dendritic cells from bone marrow precursors. Am Assoc Immnol; 2004. p.1426-1436.
    [94]Bengtsson A, Ryan EJ, Giordano D, et al.17β-estradiol (E2) modulates cytokine and chemokine expression in human monocyte-derived dendritic cells. American Society of Hematology; 2004. p. 1404-1410.
    [95]Carreras E, Turner S, Paharkova-Vatchkova V, et al. Estradiol acts directly on bone marrow myeloid progenitors to differentially regulate GM-CSF or Flt3 ligand-mediated dendritic cell differentiation. Am Assoc Immnol; 2008. p.727-738.
    [96]Fish EN. The X-files in immunity:sex-based differences predispose immune responses. Nature Publishing Group; 2008. p.737-744.
    [97]Straub RH. The complex role of estrogens in inflammation. Endocrine Soc; 2007. p.521-574.
    [98]Fox HS, Bond BL, Parslow TG Estrogen regulates the IFN-gamma promoter. Am Assoc Immnol; 1991. p.4362-4367.
    [99]Suzuki T, Yu H-P, Hsieh Y-C, et al. Mitogen activated protein kinase (MAPK) mediates non-genomic pathway of estrogen on T cell cytokine production following trauma-hemorrhage. Cytokine, 2008,42(1):32-38.
    [100]Chadwick CC, Chippari S, Matelan E, et al. Identification of pathway-selective estrogen receptor ligands that inhibit NF-κB transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America,2005,102(7):2543-2548.
    [101]Robinson DP, Lorenzo ME, Jian W, et al. Elevated 17β-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. PLoS pathogens,2011,7(7):e1002149.
    [102]Tulchinsky D, Hobel CJ, Yeager E, et al. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. Ⅰ. Normal pregnancy.1972. p.1095.
    [103]Whitacre CC. Sex d ifferences in autoimmune disease. NATURE AMERICA INC 345 PARK AVE SOUTH, NEW YORK, NY 10010-1707 USA; 2001.
    [104]Palaszynski KM, Loo KK, Ashouri JF, et al. Androgens are protective in experimental autoimmune encephalomyelitis:implications for multiple sclerosis. Journal of neuroimmunology, 2004,146(1):144-152.
    [105]Harris JW. Influenza occurring in pregnant women:a statistical study ofthirteen hundred and fifty cases. Journal of the American Medical Association,1919,72(14):978-980.
    [106]Nuzum JW, Pilot I, Stangl F, et al. Pandemic influenza and pneumonia in a large civil hospital. Journal of the American Medical Association,1918,71(19):1562-1565.
    [107]Freeman D, Bamo A. Deaths from Asian influenza associated with pregnancy. Obstetrical & Gynecological Survey,1960,15(2):212-213.
    [108]Siston AM, Rasmussen SA, Honein MA, et al. Pandemic 2009 influenza A (H1N1) virus illness among pregnant women in the United States. Jama,2010,303(15):1517-1525.
    [109]Neuzil KM, Reed GW, Mitchel EF, et al. Impact of influenza on acute cardiopulmonary hospitalizations in pregnant women. American journal of epidemiology,1998,148(11):1094-1102.
    [110]Mullooly JP, Barker W H, Nolan Jr TF. Risk of acute respiratory disease among pregnant women during influenza A epidemics. Public health reports,1986,101 (2):205.
    [111]Shu Y, Yu H, Li D. Lethal avian influenza A (H5N1) infection in a pregnant woman in Anhui Province, China. Mass Medical Soc; 2006. p.1421-1422.
    [112]韩明锋,葛阳,冉献贵,等.安徽省阜阳市首例H5N1型人禽流感临床报告.中华传染病杂志,2007.25(1):35-37.
    [113]Le MT, Wertheim HF, Nguyen HD, et al. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam. PLo S One, 2008,3(10):e3339.
    [114]程丰,龚国富,卫琴,等.湖北省鄂州市首例孕妇患H5N1型人禽流感的临床报告.临床肺科杂志,2011,16(4).
    [115]Gordon C, Johnson P, Permezel M, et al. Association between severe pandemic 2009 influenza A (H1N1) virus infection and immunoglobulin G2 subclass deficiency. Clinical infectious diseases, 2010,50(5):672-678.
    [116]Marcelin Q Aldridge JR, Duan S, et al. Fatal outcome of pandemic H1N12009 influenza virus infection is associated with immunopathology and impaired lung repair, not enhanced viral burden, in pregnantmice. Journal of virology,2011,85(21):11208-11219.
    [117]Pazos MA, Kraus TA, Munoz-Fontela C, et al. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnantmice. PLoS One,2012,7(7):e40502.
    [118]Xu L, Bao L, Deng W, et al. Highly pathogenic avian influenza H5N1 virus could partly be evacuated by pregnant BALB/c mouse during abortion or preterm delivery. Virology journal,2011,8(1):1-3.
    [119]Hardy JM, Azarowicz EN, Mannini A, et al. The effect of Asian influenza on the outcome of pregnancy, Baltimore,1957-1958. American Journal of Public Health and the Nations Health, 1961,51(8):1182-1188.
    [120]Coffey V, Jessop W. Maternal influenza and congenital deformities:A Follow-up Study. The Lancet,1963,281(7284):748-751.
    [121]Uchide N, Ohyama K, Bessho T, et al. Possible roles of proinflammatory and chemoattractive cytokines produced by human fetal membrane cells in the pathology of advene pregnancy outcomes associated with influenza virus infection. Mediators of inflammation,2012,2012.
    [122]Yates L, Pierce M, Stephens S, et al. Influenza A/H1Nlv in pregnancy:an investigation of the characteristics and management of affected women and the relationship to pregnancy outcomes for mother and infant. Health TechnolAssess,2010,14(34):109-182.
    [123]Satpathy HK, Lindsay M, Kawwass JF. Novel H1N1 virus infection and pregnancy.2009. p. 106-112.
    [124]Banhidy F, Puho E, Czeizel AE. Maternal influenza during pregnancy and risk of congenital abnormalities in offspring. Birth Defects Research Part A:Clinical and Molecular Teratology, 2005,73(12):989-996.
    [125]Kwan ML, Metayer C, Crouse V, et al. Maternal illness and drug/medication use during the period surrounding pregnancy and risk of childhood leukemia among offspring. American journal of epidemiology, 2007,165(1):27-35.
    [126]Ebert T, Kotler M. Prenatal exposure to influenza and the risk of subsequent development of schizophrenia. IMAJ-RAMAT GAN-,2005,7(1):35.
    [127]Takahashi M, Yamada T. Viral etiology for Parkinson's disease--a possible role of influenza A virus infection. Jpn J Infect Dis,1999,52(3):89-98.
    [128]Zou S. Potential impact of pandemic influenza on blood safety and availability. Transfusion Medicine Reviews,2006,20(3):181-189.
    [129]Irving W, James D, Stephenson T, et al. Influenza virus infection in the second and third trimesters of pregnancy:a clinical and seroepidemiological study. BJOG:An International Journal of Obstetrics & Gynaecology,2000,107(10):1282-1289.
    [130]Edwards MJ. Review:Hyperthermia and fever during pregnancy. Birth Defects Research Part A: Clinical and Molecular Teratology,2006,76(7):507-516.
    [131]Moretti ME, Bar-Oz B, Fried S, et al. Maternal hyperthermia and the risk for neural tube defects in offspring:systematic review and meta-analysis. Epidemiology,2005,16(2):216-219.
    [132]Shi L, Tu N, Patterson PH. Maternal influenza infection is likely to alter fetal brain development indirectly:the virus is not detected in the fetus. International Journal of Developmental Neuroscience, 2005,23(2):299-305.
    [133]邵小光,毕丽华.病毒垂直传播的认知现状.现代妇产科进展,2002,3:033.
    [134]Maltepe E, Bakardjiev Al, Fisher SJ. The placenta:transcriptional, epigenetic, and physiological integration during development. The Journal of clinical investigation,2010,120(4):1016.
    [135]Benyo DF, Miles TM, Conrad KP. Hypoxia Stimulates Cytokine Production by Villous Explants from the Human Placenta 1. Journal of Clinical Endocrinology & Metabolism,1997,82(5):1582-1588.
    [136]Goldenberg RL, Culhane JF, lams JD, et al. Epidemiology and causes of preterm birth. The Lancet, 2008,371(9606):75-84.
    [137]Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood.The Lancet,2008,371(9608):261-269.
    [138]Fisher S, Genbacev O, Maidji E, et al. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero:implications for transmission and pathogenesis. Journal of virology, 2000,74(15):6808-6820.
    [139]Koi H, Zhang J, Makrigiannakis A, et al. Syncytiotrophoblast is a barrier to maternal-fetal transmission of herpes simplex virus. Biology of reproduction,2002,67(5):1572-1579.
    [140]Robbins JR, Skrzypczynska KM, Zeldovich VB, et al. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.PLoS pathogens,2010,6(1):e1000732.
    [141]Robbins JR, Zeldovich VB, Poukchanski A, et al. Tissue barriers of the human placenta to infection with Toxoplasma gondii. Infection and immunity,2012,80(1):418-428.
    [142]Lecuit M, Nelson DM, Smith SD, et al. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes:role of internalin interaction with trophoblast E-cadherin. Proceedings of the National Academy of Sciences of the United States of America,2004,101(16):6152-6157.
    [143]Brown L, Lacey H, Baker P, et al. E-cadherin in the assessment of aberrant placental cytotrophoblast turnover in pregnancies complicated by pre-eclampsia. Histochemistry and cell biology, 2005,124(6):499-506.
    [144]Mor G, Cardenas I. Review Article:The immune system in pregnancy:a unique complexity. American Journal of Reproductive Immunology,2010,63(6):425-433.
    [145]Crocker 1, Tanner O, Myers J, et al. Syncytiotrophoblast degradation and the pathophysiology of the malaria-infected placenta. Placenta,2004,25(4):273-282.
    [146]Fried M, Duffy PE. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science,1996,272(5267):1502-1504.
    [147]Duaso J, Rojo Q Jana F, et al. Trypanosoma cruzi induces apoptosis in ex vivo infected human chorionic villi. Placenta,2011,32(5):356-361.
    [148]Le Monnier A, Autret N, Join-Lambert OF, et al. ActA is required for crossing of the fetoplacental barrier by Listeria monocytogenes. Infection and immunity,2007,75(2):950-957.
    [149]Ferro E, Silva D, Bevilacqua E, et al. Effect of Toxoplasma gondii infection kinetics on trophoblast cell population in Calomys callosus, a model of congenital toxoplasmosis. Infection and immunity,2002,70(12):7089-7094.
    [150]Buendia AJ, Sanchez J, Martinez MC, et al. Kinetics of infection and effects on placental cell populations in a murine model of Chlamydia psittaci-induced abortion. Infection and immunity, 1998,66(5):2128-2134.
    [151]Kim S, Lee DS, Watanabe K, et al. Interferon-y promotes abortion due to Brucella infection in pregnant mice. BMC microbiology,2005,5(1):22.
    [152]Chattopadhyay A, Robinson N, Sandhu JK, et al. Salmonella enterica serovar Typhimurium-induced placental inflammation and not bacterial burden correlates with pathology and fatal maternal disease. Infection and immunity,2010,78(5):2292-2301.
    [153]Pereira L, Maidji E, McDonagh S, et al. Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. Journal of virology, 2003,77(24):13301-13314.
    [154]Yawn DH, Pyeatte JC, Joseph JM, et al. TransplacentaJ transfer of influenza virus. Jama, 1971,216(6):1022-1023.
    [155]McGregor JA, Burns JC, Levin MJ, et al. Transplacental passage of influenza A/Bangkok (H3N2) mimicking amniotic fluid infection syndrome. American journal of obstetrics and gynecology, 1984,149(8):856-859.
    [156]Gu J, Xie Z, Gao Z, et al. H5N1 infection of the respiratory tract and beyond:a molecular pathology study. The Lancet,2007,370(9593):1137-1145.
    [157]Lieberman RW, Bagdasarian N, Thomas D, et al. Seasonal influenza A (H1N1) infection in early pregnancy and second trimester fetal demise. Emerging infectious diseases,2011,17(1):107.
    [158]Monif Q Sowards D, Eitzman D. Serologic and immunologic evaluation of neonates following maternal influenza infection during the second and third trimesters of gestation. American journal of obstetrics and gynecology,1972,114(2):239.
    [159]Siem R, Ly H, Imagawa D, et al. Influenza virus infections in pregnant mice. Journal of Neuropathology & Experimental Neurology,1960,19(1):125-130.
    [160]Williams K, Mackenzie JS. Influenza infections during pregnancy in the mouse. Cambridge Univ Press; 1977. p.249-257.
    [161]Aronsson F, Lannebo C, Paucar M, et al. Persistence of viral RNA in the brain of offspring to mice infected with influenza A/WSN/33 virus during pregnancy. Journal of neurovirology,2002,8(4):353-357.
    [162]侯小强,高玉伟,王承宇,等.H5N1禽流感病毒对孕鼠的感染研究.中国畜牧兽医学会2009学术年会论文集(上册),2009.
    [163]ANZIC II, Australasian MOSS. Critical illness due to 2009 A/H1N1 influenza in pregnant and postpartumwomen:population based cohort study. BMJ (Clinical research ed),2010,340:c 1279.
    [164]Honarvar B, Asadi N, Ghaffarpasand F, et al. Pregnancy outcomes among patients infected with pandemic H1N1 influenza virus in Shiraz, Iran. International Journal of Gynecology & Obstetrics, 2010,111(1):86-87.
    [165]Guidelines for the Obstetric and Neonatal specialist services for the management of Influenza-like illness during the influenza pandemic associated with the influenza A (H1N1) 2009 virus. Government of Western Australia Department of Health,2009:1-7.
    [166]Likos A M, Kelvin DJ, Cameron CM, et al. Influenza viremia and the potential for blood-borne transmission. Transfusion,2007,47(6):1080-1088.
    [167]Tse H, To KK, Wen X, et al. Clinical and virological factors associated with viremia in pandemic influenza A/H1N1/2009 virus infection. PLoS One,2011,6(9):e22534.
    [168]Oughton M, Dascal A, Laporta D, et al. Evidence of viremia in 2 cases of severe pandemic influenza A H1N1/09. Diagnostic microbiology and infectious disease,2011,70(2):213-217.
    [169]Rasmussen SA, Jamieson DJ, Bresee JS. Pandemic influenza and pregnant women. Emerging infectious diseases,2008,14(1):95.
    [170]Gao P, Watanabe S, Ito T, et al. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol,1999 Apr,73(4):3184-3189.
    [171]Ward AC. Virulence of influenza Avirus for mouse lung. Virus Genes,1997,14(3):187-194.
    [172]陈力,黎檀实.肺泡上皮细胞在ALI, ARDS中的研究进展.世界急危重病医学杂志,2006,3(4):1409-1413.
    [173]徐晓明,李秋玲,刘彩霞.甲型H1N1流感孕妇外周血中炎症因子及激素水平分析.天津医药,2011,39(10):963-964.
    [174]Farley K, Wang L, Razavi H, et al. Effects of macrophage inducible nitric oxide synthase in murine septic lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2006,290(6):L1164-L1172.
    [175]Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology,2004,202(2):145-156.
    [176]Peiris J, Cheung C, Leung C, et al. Innate immune responses to influenza A H5N1:friend or foe? Trends In Immunology,2009.
    [177]Yu H, Gao Z, Feng Z, et al. Clinical Characteristics of 26 Human Cases of Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in China. PLoS ONE,2008,3(8):e2985.
    [178]Mok KP, Wong CHK, Cheung CY, et al. Viral Genetic Determinants of H5N1 Influenza Viruses That Contribute to Cytokine Dysregulation. Journal Of Infectious Diseases,2009,200(7):1104-1112.
    [179]Park C, Ishinaka M, Takada A, et al. The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice. Archives of virology,2002,147(7):1425-1436.
    [180]Zhou J, Law HK, Cheung CY, et al. Differential expression of chemokines and their receptors in adult and neonatal macrophages infected with human or avian influenza viruses. Journal of Infectious Diseases,2006,194(1):61-70.
    [181]Yen H-L, Aldridge JR, Boon AC, et al. Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proceedings of the National Academy of Sciences, 2009,106(1):286-291.
    [182]Schrauwen EJ, Herfst S, Leijten LM, et al. The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. Journal of virology, 2012,86(7):3975-3984.
    [183]Shi L, Fatemi SH, Sidwell RW, et al. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. The Journal of Neuroscience,2003,23(1):297-302.
    [184]Catalano Jr L, Sever J. The role of viruses as causes of congenital defects. Annual Reviews in Microbiology,1971,25(1):255-282.
    [185]Cappucci Jr D, Johnson D, Brugh M, et al. Isolation of avian influenza virus (subtype H5N2) from chicken eggs during a natural outbreak. Avian diseases,1985:1195-1200.
    [186]Narayan O, Lang G, Rouse B. A new influenza A virus infection in turkeys. Archiv fur die gesamte Virusforschung,1969,26(1-2):149-165.
    [187]Promkuntod N, Antarasena C, Prommuang P, et al. Isolation of avian influenza virus A subtype H5N1 from internal contents (albumen and allantoic fluid) of Japanese quail (Cotumix coturnix japonica) eggs and oviduct during a natural outbreak. Annals of the New York Academy of Sciences, 2006,1081(1):171-173.
    [188]Peiris J,Yu W, Leung C, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. The Lancet,2004,363(9409):617-619.
    [189]Peiris M, Yuen K, Leung C, et al. Human infection with influenza H9N2. The Lancet, 1999,354(9182):916-917.
    [190]陈宗遒,陆剑云,肖新才,等.广州地区2006-2012年人感染H5/H7/H9亚型禽流感病毒风险监测.中华流行病学杂志,2013,34(009):900-905.
    [191]孔利群,高烨,蒋杰辰,等.上海市人群甲型流感病毒H1、H3、H5、H9抗体血清学监测.上海预防医学,2003,15(1):10-12.
    [192]Bridges CB, Lim W, Hu-Primmer J, et al. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong,1997-1998. Journal of Infectious Diseases,2002,185(8):1005-1010.
    [193]Rowe T, Abernathy RA, Hu-Primmer J, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. Journal of clinical microbiology, 1999,37(4):937-943.
    [194]Lu CY, Lu JH, Chen WQ, et al. Potential infections of H5N1 and H9N2 avian influenza do exist in Guangdong populations of China. Chin Med J (Engl),2008 Oct 20,121(20):2050-2053.
    [195]Wang M, Fu CX, Zheng BJ. Antibodies against H5 and H9 avian influenza among poultry workers in China. N Engl J Med,2009 Jun 11,360(24):2583-2584.
    [196]Jia N, de Vlas SJ, Liu Y-X, et al. Serological reports of human infections of H7 and H9 avian influenza viruses in northern China. Journal of Clinical Virology,2009,44(3):225-229.
    [197]Matrosovich MN, Krauss S, Webster RG H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology,2001,281(2):156-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700