用户名: 密码: 验证码:
罗汉果转录组、表达谱的高通量测序及甜苷V生物合成关键酶的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗汉果Siraitia grosvenorii (Swingle) C. Jeffrey是我国特有珍贵药用和甜料植物,为葫芦科(Cucurbitaceae)罗汉果属(Siraitia)多年生藤本植物,具有止咳祛痰、凉血舒胃、润肠通便等作用。其主要成分甜苷V是世界上最强的非糖甜味物质之一,为蔗糖甜度的300-400倍,是一种低热量、纯天然的甜味剂及理想的保健品,此外还有抗氧化、免疫调节、抗癌、降血糖等作用。甜苷V目前还不能化学合成,主要依靠提取获得。罗汉果对生境要求苛刻,只适宜在广西生长,且栽培中不能连作,果实中甜苷V含量低,无法满足市场需求,因此亟待探索提高甜苷V含量的新途径、新方法。本论文利用高通量测序技术对罗汉果果实的转录组和表达谱进行了研究,从分子水平阐释罗汉果甜苷V生物合成的分子机理,大规模寻找罗汉果功能基因,并在此基础上克隆了甜苷V生物合成相关基因的全长。主要研究结果如下:
     1.罗汉果授粉后30天到50天之间主要以苦味成分苷ⅡE为主,70天时含量急剧下降,检测不到苷ⅡE。苷Ⅲ只在50天果实中出现。苷V含量在50天之前含量低,在50天至70天之间急剧增长了25.9倍,至85天增长到最高含量。葡萄糖含量在30天和50天变化不明显,而70天下降了3.24倍。葡萄糖含量与苷ⅡE、苷V含量的变化存在一定的消长关系。
     2.应用Solexa高通量测序技术对罗汉果果实进行转录组测序,得到3.41G的原始数据,通过拼接得到43891条Unigenes。与次生代谢相关的unigenes有739条,其中涉及萜类骨架合成的Unigenes有60条。利用转录组数据发现了罗汉果甜苷V生物合成通路中几乎所有的基因,涉及到20种基因。另外还得到了80条P450基因Unigenes、72条glycosyltransferase基因的Unigenes和90条glucosyltransferase基因的Unigenes。这些Unigenes是今后对罗汉果三萜皂苷生物合成进行全面调控的重要基因资源。
     3.在3d、50d、70d表达谱中均得到了300万条以上Clean tags,去冗余后得到85000条以上不同种类的Tags。通过分析发现占mRNA总量近73-76%的是种类不到5.1-5.9%的少数mRNA,而占种类56-59%的mRNA全部加起来不到mRNA,总量的3.9-4.1%。对差异基因进行统计发现在3d/50d中,有2119个基因上调,2642个基因下调;3d/70d中,2150个基因上调,2797个基因下调;50d/70d中,1078个基因上调,1422个基因下调。
     4.利用表达谱对罗汉果甜苷V生物合成途径涉及的20种基因在各个时期的表达水平进行分析发现除AACT、MVD、CMK、HDS、SQS基因表达量在3个时期中未见明显变化外,其余16个基因都有各自的变化规律。授粉后3天到50天之间,DXS、DXR、MCS、IDS下调,其余12种基因均上调。50天到70天之间,HMGR、MCS、IDS、IPP, GPS、FPS、CAS下调外,其余9种个基因均上调。从3天幼果到70天接近成熟果实,各个基因表达的总体趋势是:除DXR、MCS、IDS、IPP-I表现下调外,HMGS、HMGR、MK, PMK、MCT、IPI-Ⅱ、GPS、FPS、SQS、CAS和CS基因均上调。其中SQE和CS变化最大,70天比3d的表达量分别提高了8.89倍和9.69倍。
     5.通过对80条Cytochrome P450Unigenes和90条glucosyltransferase Unigenes基因表达水平变化规律进行研究,推测Unigene23541、Unigene24189、Unigene26598和Unigene43109等4条候选的P450基因和Unigene4016、Unigene8672、 Unigene13633、Unigene15400、Unigene35056和Unigene38974等6条候选的UDPG基因可能参与甜苷V骨架生物合成。
     5.利用RACE技术首次克隆了14条罗汉果甜苷V生物合成相关的基因全长和4条5’或3’片段。其中MVA途径有6条:AACT、HMGS、HMGR、MK、PMK、MVD;共同代谢途径中IPI、GPS、FPS、SQS、CAS、CS等6条,以及SQE5’端;MEP途径中MCT和IDS基因的全长、DXS和HDS的5’端以及MCS的3’端。此外还得到了2条糖基转移酶的全长。并对所有全长基因进行了序列分析,它们均为首次从罗汉果中报道的全长或部分片段序列。
     本论文首次利用Solexa高通量测序技术对罗汉果果实的转录组及不同时期的表达谱进行分析,得到了大量的罗汉果基因信息,并克隆了涉及罗汉果甜苷V生物合成相关的基因全长。这为罗汉果功能基因组学以及甜苷V生物合成分子机理研究打下了坚实的基础。
Summary
     The fruit of Siraitia grosvenorii, which belongs to the family Cucurbitaceae, has long been used in traditional Chinese medicine as a pulmonary demulcent and emollient for the treatment of dry cough, sore throat, dire thirst and constipation. The main ingredient is mogroside V, it is one of the most sweet material in non-sugar sweet in the world, as300-400times the sweetness as that of sucrose, and it is a low-calorie, natural sweetener and an ideal health care products, in addition to have antioxidant, immunomodulatory, anticancer, lowering blood sugar effect. In order to reveal the mechanism of mogroside V biosynthesis from molecular level, Look for function genes in large-scale and full-length cDNA cloning, a transcriptom and three expression profiles with the high-throughput sequencing technology in Siraitia grosvenorii are studied. The major findings are as follows:
     1. The mainly content is mogroside Ⅱ E between30d and50d. It sharp declined on70d, no mogroside ⅡE is detected. Mogroside Ⅲ only appears in50d. Mogroside V is very low before50d, but it is dramatically increased25.9times from50d to70d, and it comes up to the highest levels till85d. The content of glucose did not change significantly in30d and50d, but decreased3.24times at70d. There shall be a certain degree of fluctuation relations between the content of glucose and that of mogroside ⅡE, and mogroside V.
     2. With Solexa high-throughput sequencing technology for transcriptome studying,3.41G of the raw data is obtained, and also obtained43,891Unigenes. There are739Unigenes, of which60Unigenes involve in the synthesis of terpenoid skeleton, associated with secondary metabolism. With the usage of transcriptome data, it found that almost all genes are related to the mogrosides V biosynthesis pathway. Also discovered80P450s,72glycosyltransferases, and90glucosyltransferases. These Unigenes are important genetic resources in the regulation for mogrosides biosynthesis in the future.
     3. In the3d,50d,70d expression profiles obtained more than3million clean tags, after removing the redundancy, more than85,000different types of tags were obtained. The analysis shows that mRNA, which is less than5.1-5.9%of the types of mRNA, accounts for nearly73-76%of the total ammount, but all which accounts for56-59%of types, is less than3.9-4.1%of total amount mRNA. Statistics on the differential expression genes found that, in the3d/50d genes, there are2119genes up-regulated,2642genes were down-regulated; in the3d/70d, the2150genes gone up-regulated,2797genes were down-regulated; in the50d/70d, the1078genes up-regulated,1422Genes down-regulated.
     4. Analysis on21genes expression levels involved in mogroside V skeleton biosynthesis through three expression profiles, it finds that there are no significant change on AACT, MVD, CMK, HDS, SQS gene expression in the three period, the remaining16genes are all have their own variation. In3d and50d, DXS, DXR, MCS, IDS come down, the remaining12genes go up-regulated. In50d and70d, except HMGR, MCS, IDS, IPP, GPS, FPS, CAS that come down, the other9genes go up. From3d to70d, the overall trend of each gene is:in addition to DXR, MCS, IDS, IPP-I come down in the expression, HMGS, HMGR, MK, PMK, MCT, IPI-II, GPS, FPS, SQS, CAS, and CS genes are up-regulated. Among these, SQE and CS genes changes mostly, the expression of70d increased8.89times and9.69times respectively than the3d.
     5. Studying on the gene expression of80cytochrome P450and90glucosyltransferases, it suggests that the four candidate P450genes:Unigene23541, Unigene24189, Unigene26598and Unigene43109and6candidate UDPG genes: Unigene4016, Unigene8672, Unigene13633, Unigene15400, Unigene35056and Unigene38974may be involved in mogroside V skeleton biosynthesis.
     6. Using RACE,12full-length cDNAs related to mogroside V biosynthesis were cloned for the first time, of which there are6in MVA pathway:AACT, HMGS, HMGR, MK, PMK, MVD, and6in common pathway:IPI, GPS, FPS, SQS, CAS, CS, etc, and the5'end of SQE. Also obtained MEP pathway of MCT and the IDS gene in full-length, the5'end of DXS and HDS, and3'end of MCS. Two full-length glycosyltransferase are obtained in another experiment.These full-lenth and partial genes were all first reported in Siraitia grosvenorii.
     By applying high-throughput Solexa sequencing technology on studying transcriptom and expression profiles in Siraitia grosvenorii firstly, a large number of genes information were abtained, and many genes related to secondary metabolite were cloned. This is a solid foundation for the study of Siraitia grosvenorii functional genomics and mogrosides V molecular mechanism of biosynthesis.
引文
[1]中华人民共和国卫生部药典委员会编.中华人民共和国药典[M].北京:化学工业出版社,1977,348;1985,181:1990,184;2005,147.
    [2]广西壮族自治区卫生厅编.广西中药志第二辑[M].南宁:广西壮族自治区人民出版社.1983,195.
    [3]范继善主编.实用食品添加剂[M].天津:天津科学技术出版社,1993,318.
    [4]李峰,李典鹏,蒋水元,等.罗汉果栽培与开发利用[M].北京:中国林业出版社,2004.
    [5]张碧玉,周良才,覃良,等.罗汉果生物学特性初步研究[J].广西植物,1981,1(2):45-49.
    [6]周良才,张碧玉,覃良等.罗汉果品种资源调查研究和利用意见[J].广西植物,1981,(3):29-33.
    [7]邹琦丽.罗汉果、木鳖子、苦瓜、河南赤爬等四种植物花粉的观察[J].广西植 物,1981,3:55.
    [8]路安明,张志耕.中国罗汉果属植物[J].广西植物,1984,4(1):27-33.
    [9]李建强.罗汉果属修订及葫芦科二新属[J].植物分类学报,1993,3 1(1):45-55.
    [10]中国药材总公司编.中国中药资源志要[M].北京:科学出版社,1996,748.
    [11]庄伟建,林治良,郑伸坤.罗汉果染色体组型的研究[J].热带亚热带植物学报,1997,5(20:23-25.
    [12]杭玲,苏国秀,黄卓忠,等.广西罗汉果组培品种桂汉青皮1号特征特性及其栽培要点[J].中国南方果实,2005,34(6):52-53.
    [13]孙宗喜,王有为,尤敏,等.不同罗汉果品种组培苗产量与质量性状的比较研究[J].生物技术通报,2006(增刊):521-524.
    [14]刘金磊,李典鹏,黄永林.桂北地区不同品种、不同产地鲜罗汉果中总苷、苷V含量测定[J].广西植物,2007,27(2):281-284.
    [15]马小军,莫长明,白隆华,等.罗汉果新品种“永青1号”[J].园艺学报,2008,35(12):1855.
    [16]莫长明,马小军,白隆华,等.35个罗汉果授粉组合花粉直感现象研究[J].中草药,2008,39(1):123-125.
    [17]马小军,石磊,莫长明,等.罗汉果主要品质性状的花粉直感效应[J].园艺学报,2008,35(11):1695-1700.
    [18]李锋,蒋向军,蒋水元,等.无籽(少籽)罗汉果培育成功(简报)[J].广西植物,2008,28(6):727.
    [19]白隆华,蒲瑞翎,蒋向军,等.广西特产药材罗汉果GAP基地建设的问题与对策[J].中国现代实用医学杂志,2005,4(5):5-6.
    [20]张雨平.罗汉果的生物学特性及栽培技术[J].现代园艺,2006,12:14-16.
    [21]赵洋.罗汉果生产操作规程研究[J].现代中药研究与时间,2006,20(3):15-17.
    [22]钟静贵,秦永松.罗汉果优质丰产栽培技术[J].广西园艺,2007,18(4):38-39.
    [23]范承彪.罗汉果组培苗平地栽培试验初报[J].广西热带农业,2008,1:6-7.
    [24]林纬,黎起秦,彭好文,等.罗汉果组培苗种植中存在问题及解决措施[J].广西农业科学,2003,4:74-75.
    [25]何金旺,杨月策,梁忠德,等.罗汉果组培苗栽培措施的改进[J].广‘西热带农业,2007,4:23-24.
    [26]朱保民.桂林市2004年罗汉果生产现状浅析[J].广西农学报,2005,(2):17-19.
    [27]Lee c. Intense sweetener from Lo Han Kuo(Momordica grosvenori) [J]. Experientia,1975,31(5):533-4.
    [28]竹本常松,在原重信,中岛正,等.罗汉果成分研究(Ⅰ)[J].药学杂志(日), 1983,103:1151.
    [29]竹本常松,在原重信,中岛正,等.罗汉果成分研究(Ⅱ)[J].药学杂志(日),1983,103:1155.
    [30]竹本常松,在原重信,中岛正,等.罗汉果成分研究(Ⅲ)[J].药学杂志(日),1983,103:1167.
    [31]Matsumoto K, Kasai. R, Ohtani k, et al. Minor cucurbitane glycosides from fruits of Siraitia grosvenorii (Cucurbitaceae)[J]. Chem Pharm Bull,1990,38(7):2030.
    [32]Ryoji Kasai, Rui-lin Nie, Kenji Nashi, et al.Sweet cucurbitane glycosides from fruits of Siraitia siamensis (Chi-zi Luo-han-guo), a Chinese folk medicine[J].Agric Biol Chem,1989,53(12):3347-3349.
    [33]斯建勇,陈迪华,常琪,等.罗汉果中三萜苷的分离和结构鉴定[J].植物学报,1996,38(6):489-494.
    [34]王雪芬,卢文杰,陈家源,等.罗汉果根化学成分的研究(Ⅰ)[J].中草药,1996,27(9):515-517.
    [35]王雪芬,卢文杰,陈家源,等.罗汉果根化学成分的研究(Ⅱ)[J].中草药,1998,29(5):293-295.
    [36]斯建勇,陈迪华,沈连钢,等.广西特产植物罗汉果根的化学成分研究[J].药学学报,1999,34(12):918-920.
    [37]王亚平,陈建裕.罗汉果化学成分的研究[J].中草药,1992,23(2):61.
    [38]徐位坤,孟丽珊,李仲瑶.罗汉果嫩果中一个苦味成分的分离与鉴定[J].广西植物,1992,12(2):136.
    [39]廖日权,李俊,黄锡山,等.罗汉果化学成分的研究[J].西北植物学报,2008,28(6):1250-1254.
    [40]李俊,黄锡山,张艳军,等.罗汉果化学成分的研究[J].中国中药杂志,2007,32(6):548-549.
    [41]Li DP, El-Aasr M, Ikeda T, et al.Two new cucurbitane-type glycosides obtained from roots of Siraitia grosvenori SWINGLE [J]. Chem Pharm Bull (Tokyo),2009, 57(8):870-2.
    [42]Jia Z, Yang X. A minor, sweet cucurbitane glycoside from Siraitia grosvenorii [J]. Nat Prod Commun,2009,4(6):769-72.
    [43]杨秀伟,张建业,钱忠明,等.罗汉果中一新葫芦烷型三帖皂甘-光果木鳖皂苷Ⅰ[J].中草药,2005,36(9):1285-1290.
    [44]徐位坤,孟丽珊.罗汉果蛋白质成分的研究[J].广西植物,1985,5(3):304-306.
    [45]徐位坤,孟丽珊.罗汉果蛋白质的含量测定[J].广西植物,1986,6(3):295-296.
    [46]斯建勇,陈迪华,常琪,等.鲜罗汉果中黄酮苷的分离及结构测定[J].药学学报,1994,29(2):158-160.
    [47]陈全斌,杨建香,义祥辉,等.罗汉果叶中黄酮苷元的研究[J].广西植物,2006,26(2):217-220.
    [48]陈全斌,杨建香,程忠泉,等.罗汉果叶黄酮苷的分离与结构鉴定[J].广西科学,2006,13(1):35-36,42.
    [49]陈全斌,杨建香,程忠泉,等RP-HPLC法测定罗汉果叶中总黄酮含量[J].广西科学,2005,12(1):43-45.
    [50]陈全斌,义祥辉,余丽娟,等.不同生长周期的罗汉果鲜果中甜苷V和总黄酮含量变化规律研究[J].广西植物,2005,25(3):274-277.
    [51]陈全斌,喻彬,沈钟苏,等.不同生长周期罗汉果叶中总黄酮含量变化规律研究[J].广西科学,2006,13(4):300-302.
    [52]Zheng Y, Liu Z, Ebersole J, Huang CB. A new antibacterial compound from Luo Han Kuo fruit extract (Siraitia grosvenori)[J]. J Asian Nat Prod Res,2009, 11(8):761-5.
    [53]徐位坤,孟丽珊,李仲瑶.罗汉果中甘露醇的分离与鉴定[J].广西植物,1990,10(3):254-255.
    [54]CAM Hough, KJ Parker, AJ Vlitos. Developments in Sweeteners-1 [M]. Applied Science Publishers, London, P.72.
    [55]徐位坤,孟丽珊.罗汉果营养成分的测定[J].广西植物,1981,1(2):50-51.
    [56]宁书年,张佳.生物多糖类物质对人体的作用[J].食品科学,2005,26(9):613-614.
    [57]李俊,陈海燕,邓胜平,等.罗汉果多糖的分离纯化及分析[J].化学世界,2005,46(5):277-280.
    [58]李俊,张艳军,黄锡山,等.两种罗汉果多糖的IR及13C NMR分析[J].化学世界,2007,48(2):81-82,85.
    [59]李俊,黄锡山,陈海燕,等.罗汉果多糖提取工艺及组成分析[J].广西师范大学学报(自然科学版),2007,25(1):70-73.
    [60]黄飞,梁智群.对罗汉果中多糖活性成分的分离提取及纯化研究[J].广西轻工业,2007,7:10-11.
    [61]程菊英,罗四莲,潘于发,等.广西植物油脂的研究:Ⅰ.五十种植物种子的油脂成分[J].广西植物,1980,2:26-33.
    [62]陈全斌,程忠泉,许子竟,等.罗汉果种仁油脂的提取及其性质研究[J].粮油食品科技,2004,12(20):25-27.
    [63]黎霜,王恒山,张桂勇.罗汉果种子油化学成分研究[J].广西医学,2003,25(5):850-851.
    [64]孟夏林,周琦,容小邑,等.罗汉果及根的无机元素测定分析[J].广西中医药,1989,12(6):42.
    [65]袁松范.从罗汉果中提取VE[J].国外药讯,1996,8:37.
    [66]王霆,黄志红,蒋毅珉,等.罗汉果甜苷的生物活性研究[J].中草药,1999,30(13):914-916.
    [67]王勤,王冲,戴盛明,等.罗汉果甜苷对小鼠细胞免疫功能的调节作用[J].中药材,2001,24(12):811-812.
    [68]王密,宋志军,柯美珍,等.不同剂量的罗汉果对大鼠免疫功能的影响[J].广西医科大学学报,1994,11(4):428-430.
    [69]戚向阳,陈维军,宋云飞,等.罗汉果对糖尿病小鼠的降血糖作用[J].食品科学,2003,24(12):124-127.
    [70]张俐勤,戚向阳,陈维军,等.罗汉果皂苷提取物对糖尿病小鼠血糖血脂及抗氧化作用的影响[J].中国药理学通报,,2006,22(2):237-240.
    [71]木岛孝夫.罗汉果中甘味物质的抑癌作用[J].国外医学.中医中药分册,2003,25(3):1 74.
    [72]Midori Takasaki, Takao Konoshima, Yuji Murata, et al. Anticarcinogenic activity of natural sweeteners cucurbitane glycosides from Momordica grosvenori[J]. Cancer Letters,2003,198:37-42.
    [73]张俐勤,戚向阳,陈维军,等.罗汉果提取物的抗氧化活性研究[J].食品科学,2006,27(1):213-216.
    [74]郝桂霞.罗汉果提取液对自由基的清除作用[J].江西化工,2004,22(4):89-90.
    [75]Kasai R, Matsumoto K, Nie R-lin, et al. Sweet and bitter cucurbitane glycosides from hemsleya [J]. Phytochemistry,1987,26:1371.
    [76]苏小健,徐庆,梁荣感,等.罗汉果甜苷的毒性作用研究[J].食品科学,2005,26(3):221-224.
    [77]王勤,李爱媛,李鲜萍,等.罗汉果的药理作用研究[J].中国中药杂志,1999,24(7):425-428.
    [78]林荣,王润珍.罗汉果组织培养获得完整植株[J].广西植物,1980,1:11.
    [79]林荣,王秀琴.罗汉果叶组织培养的研究[J].广西植物,1981,1(1):1 8.
    [80]桂耀林,顾淑荣.罗汉果叶组织培养的器官发生[J].植物学报,1984,26(2):120.
    [81]苏明申,林顺权,陈振光,等.罗汉果的组织培养[J]。中国南方果树,2002,31(3):43.
    [82]周琦丽,林荣.罗汉果组织培养中愈伤组织和腋生枝的形成[J].广西植物,1989,9(2):103.
    [83]付长亮,马小军,白隆华,等.罗汉果脱毒苗的快速繁殖研究[J].中草药,36(8):1225-1229.
    [84]黄春梅,吴金寿,曾黎辉,等.罗汉果胚轴培养再生植株及其细胞学观察[J].福建农林大学学报:自然科学版,2005,34(6):454-457.
    [85]杭玲,陈丽娟,陈少珍,等.罗汉果茎尖脱毒快繁技术[J].西南农业学报,1999,12(3):125-127.
    [86]郑晓峰,黄刚.罗汉果种苗组织培养与快繁技术[J].2008,种子,27(4):102-104.
    [87]曾黎辉,吴金寿,柯石山,等.罗汉果遗传转化受体再生体系的建立及发根农杆菌转化初探[J].中国农学通报,2005,21(12):403-406.
    [88]陶莉,王跃进,尤敏,等AFLP用于构建罗汉果DNA指纹图谱及其幼苗雌雄鉴别[J].武汉植物学研究,2005,23(1):77-80.
    [89]周俊亚,唐绍清.栽培罗汉果遗传多样性的RAPD分析[J].分子植物育种,2006,4(1):71-78.
    [90]韦弟,杨美纯,陈廷速,等.罗汉果性别的RAPD标记研究[J].中药材,2006,29(4):311-313.
    [91]韦素玲,黄姿梅,杨华,等.罗汉果性别相关RAPD标记的克隆与序列分析[J].湖北农业科学,2008,47(3):251-253.
    [92]黄江,蒋慧萍,陈廷速,等.罗汉果不同种质亲缘关系的RAPD分析[J].福建果实,2006,136(1):15-17.
    [93]周俊亚,宾晓芸,彭云滔,等.罗汉果ISSR-PCR反应体系的建立[J].广西师范大学学报(自然科学版),2004,22(3):81-84.
    [94]周俊亚,唐绍清,向悟生,等.栽培罗汉果遗传多样性的ISSR分析[J].广西植物,2005,25(5):431-436.
    [95]彭云滔,唐绍清,李柏林,等.野生罗汉果遗传多样性的ISSR分析[J].生物多样性,2005,13(1):36-42.
    [96]向秋,王建红,罗伟生,等.不同生长期罗汉果蛋白组图谱比较研究[J].生物技术,2007,17(4):64-65.
    [97]HARALAMPIDIS K, TROJANOWSKA M, OSBOURN A E. Biosynthesis of triterpenoid saponins in plants [J].Adv Biochem Eng Biotechnol,2002,75:31-49.
    [98]Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate[J]. Biochem J, 1993,295(PI2):517.
    [99]Liao Zhihua, Chen Min, Gong Yifu, et al. Isoprenoid biosynthesis in plants: pathway, genes, regulation and metabolic engineering [J].2006, (6):209-219.
    [100]Choi D W, Jung J, Ha Yi, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites [J]. Plant Cell Rep,2005,23(8): 557-566.
    [101]JUNGJ D, PARK H W, HAHN Y, et al. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags [J]. Plant Cell Rep,2003, 22(3):224-230.
    [102]Liao Zhihua, Chen Min, Gong Yifu, et al. Isoprenoid biosynthesis in plants: pathway, genes, regulation and metabolic engineering[J]. Journal of Biosocial Science, 2006(6):209-219.
    [103]Wang Yechun, Guo Binhui, Zhang Fei, et al. Molecular cloning and functional analysis of the gene encoding hydroxy-3-methylglutaryl-CoA reduetase from hazel (Corylusavellana L. Gasaway)[J] J Biochem Mol Biol,2007,40(6):861-869.
    [104]Suzuki M, Muranaka T. Molecular genetics of plant steml backbone synthesis[J]. Lipids,2007,42(1):47-54.
    [105]Narita J O, Gruissem W. Tomato hydroxymelhylglutaryl-CoA reductase is required early in fruit development but not during ripening [J]. Plant Cell,1989,1(2): 181-190.
    [106]Choi D, ward B L, Bostock R M. Diferential induction and suppression of potato 3-hydroxy-3-methylglutaryl eoenzyme a reductase genes in response to Phytophthora infestansand to its elicitor arachidonic acid[J]. Plant Cell,1992,4(10): 1333-1344.
    [107]Suzuki M, Kamide Y, Naguta N, et al. Loss of function of 3-hydmxy-3-methylglutaryl coenzyme A reductase 1(HMGR1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels [J]. Plant J,2004,37(5):750-761.
    [108]Enjuto M, Lumbreras V, Matin C, et al. Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme a reductase is restricted to meristematie and floral tissues[J]. Plant Cell,1995,7(5):517-527.
    [109]Sprenger G A, Schfrken U, Wiegert T, et al. Identification of a thiamin-dependent synthase in Escherichia coli required forthe formation of thel-deoxy-D-xylulose-5 phosphate precursor to isoprenoids, thiamin, and pyridoxol [J]. Proc Natl Acad Sci USA,1997,94(24):12857-12862.
    [110]Lange B M, Wildung M R, McCaskill D, et al. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway [J]. Proc Natl Aead Sci USA,1998,95(5):2100-2104.
    [111]Bouvier F, D Harlingue A, Suire C, et al. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits [J]. Plant Physiol,1998,117(4):1423-1431.
    [112]Hahn F M, Eubanks L M, Testa C A, et al. 1-Deoxy-D-xylulose-5-phosphate synthase, the gene product of open reading flame(ORF) 2816 and ORF 2895 in Rhodobacter capsulatus[J]. J Bacteriol,2001,183(1):1-11
    [113]Walter M H,Hans J,Strack D.Two distantly related genes encoding 1-deoxy-D-xylulose-5-phosphate synthases:diferential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots [J]. Plant J,2002,31(3):243-254.
    [114]Rodriguez-Concepcion M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plasrids:A metabolic milestone achieved through genomics[J]. Plant Physiol,2002,130(3):1079-1089.
    [115]金蓉,朱长青,徐昌杰.1-脱氧木酮糖-5-磷酸合成酶(DXS)及其编码基因[J].细胞生物学杂志,2007,29(5):706-712.
    [116]Takahashi S, Kuzuyama T, Watanabe H, et al. 1-deoxy-D-xylulose-5-phosphate reductoisomerase catalyzing the formation of 2-C-Methyl-D-erythritol-4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis [J]. Proc Natl Acad Sci USA,1998,95(17):9879-9884.
    [117]Seetang-Nuna Y, Sharkey T D, Suvachittanonta W. Molecular cloning and characterization of two cDNAs encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Hevea brasiliensis [J]. J Plant Physiol,2008,165(9): 991-1002.
    [118]Yao Hongyan, Gong Yifu, Zuo Kaijing, el al. Molecular cloning, expression profiling and function analysis of a DXR gene encoding 1 deoxy-D-xylulose-5-phosphate reductoisomerase from Camptothea acuminate [J]. J Plant Physiol,2008. 165(2):203-213.
    [119]Carrelero-Paulet L, Ahumada I. Cunillera N. et al.Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol-4-Phosphate pathway [J]. Plant Physiol,2002,129(3):1581-1591.
    [120]Hans J, Hause B, Stack D, et al. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose-5-phosphate reductoisomerase in arbuscule-containing cells of maize [J]. Plant Physiol,2004, 134(2):614-624.
    [121]Mahmoud S S, Croteau R B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase [J]. Proc Natl Acad sci USA,2001, 98(15):8915-8920.
    [122]Carretero-Paulet L, Cairo A, Botella-Pavia P, et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase [J]. Plant Mol Biol,2006,62(4/5): 683-695.
    [123]李嵘,王器之.植物萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的分子结构特征与功能预测分析[J].植物研究,2007,27(1):59-67.
    [124]Karst F, Lacrouye F. Ertosterol biosynthesis in Saccharomyces cerevisiae: mutants deficient in the early steps of the pathway [J]. Mol Gen Genet,1977,154(3): 269-277.
    [125]Seo J W, Jeong J H, Shin C G, et al. Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation [J]. Phytochemistry,2005,66(8):869-877.
    [126]Suzuki H, Achnine L, Xu R, et al. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula [J].Plant J,2002,32(6): 1033-1048.
    [127]Bozak KR, Yu H, Sirevag R, et al. Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit [J]. Proc Natl Acad Sci USA,1990,87: 3904-3908.
    [128]Kalb V F. Loper J C.Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarity [J]. Proc Natl Acad Sci,1988.85: 7221-7225.
    [129]Durst F. Nelson DR.Diversity and evolution of plant P450 and P450-reductases [J]. Drug Metabol Drug Interact,1995,12(3/4):189-206.
    [130]Shibuya M, Hoshino M, Katsude Y, et al. Identification of (3-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay [J]. FEBS J,2006,273:948-959.
    [131]LahoucineAchnine D V H, Mohamed A Farag, Lloyd W Sumner,et al. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula [J]. The Plant Journal,2005,41:875-887
    [132]Meesapyodsuk D, Balsevich J, Reed D W, et al. Saponin biosynthesis in Saponaria vaccaria cDNAs encoding amyrin synthase and a triterpene carboxylic acid glucosyltransferase [J]. Plant Physiol,2006,143:959-969.
    [133]Vogt T, Jones P.Glycosyltransferases in plant natural product synthesis: characterization of a supergene family [J]. Trends Plant Sci,2000,5(9):380-386.
    [134]Kurosawa Y, Takahara H, Shiraiwa M.UDP-glucuronic acid:soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds [J]. Planta,2002,215(4):620-629.
    [135]J D Jung, H-W Park, Y Hahn, et al.Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags [J]. Plant Cell Rep,2003, 22:224-230.
    [136]Dong-Woog Choi, JongDuk Jung, Young Im Ha, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites[J]. Plant Cell Rep,2005. 23:557-566.
    [137]Chao Sun, Ying Li, Qiong Wu, et al.De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomics,2010, 11:268.
    [138]Ying Li, Hong-Mei Luo, Chao Sun, et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics,2010,11:268.
    [139]崔光红,黄璐琦,邱德有,等.丹参功能基因组学研究Ⅱ—丹参毛状根不同时期基因表达谱分析[J].中国中药杂志,2007,32(13):1267-1272.
    [140]崔光红,黄璐琦,唐晓晶,等.丹参cDNA芯片构建及表达谱的研究Ⅰ.丹参cDNA芯片的构建[J].中国中药杂志.2007,32(12):1137.
    [141]吴耀生,朱华,李坤,等.等三七鲨烯合酶基因在三七根、茎、芦头中的转录表达与三萜皂苷生物合成[J].中国生物化学与分子生物学报,2007.23(12):1000-1005.
    [142]陈莉,蓝秀万,李坤,等.三七法呢基焦磷酸合酶的基因克隆及序列分析[J].中草药,2006,37(7):1080-1083.
    [1]李锋,李典鹏,蒋水元,等.罗汉果栽培与开发利用[M].北京:中国林业出版社,2003.
    [2]Makapugay H C, Dhammika Nanayakkara N P, Soejarto D D, et al. High-performance liquid chromatographic analysis of the major sweet principle of Lo Han Kuo fruits [J].J Agric Food Chem,1985,33,348-350.
    [3]Takemoto T, Arihara S, Nakajima T, et al. Studies on the constituents of fructus Momordicae. Ⅱ. Structure of sapogenin [J]. Yakugaku Zasshi,1983,103(11): 1155-66.
    [4]Matsumoto K, Kasai R, Ohtani K, et al. Minor cucurbitane glycosides from fruits of Momordica grosvenori (Cucurbitaceae) [J]. Chem Pharm Bull,1990,38:2030-2032.
    [5]李典鹏,陈月圆,潘争红,等.不同生长日龄罗汉果苷类成分变化研究[J].广西植物,2004,24(6):546-549.
    [6]陈全斌,义祥辉,余丽娟,等.不同生长周期的罗汉果鲜果中甜苷V和总黄酮含量变化规律研究[J].广西植物,2005,25(3):274-277.
    [7]向秋,王建红,罗伟生,等.不同生长期罗汉果蛋白组图谱比较研究[J].生物技术,2007,17(4):64-65
    [8]赵智中.柑橘果实糖秋累的生理基础研究[D].2001,浙江大学.
    [9]Gross KC, Pharr DM. A potential pathway for galactose metabolism in Cucumis sativus L., a stachyose transporting species[J]. Plant Physiol,1982,69:117-121.
    [10]杨洪强,夏国海,接玉玲,等.园艺植物果实碳素同化物代谢研究进展[J].山东农业大学学报,1999,30(3):307-311.
    [11]林玲,孙光明,李绍鹏,等.园艺植物果实中糖代谢的研究进展[J].华南农业大学学报,2005,11(4):37-41.
    [12]徐位坤,孟丽珊.罗汉果营养成分的测定[J].广西植物,1981,1(2):50-51.
    [13]Haralampidis K, Trojanowska M, Osbourn AE. Biosynthesis of triterpenoid saponins in plants[J]. Advances in Biochemical Engineering/Biotechnology,2002,75: 31-49.
    [14]杭玲,苏国秀,夏阳升,梁秀荣.罗汉果组培苗栽培技术[J].广西农业科学,2003,(6):70-72.
    [15]徐迎春,李绍华,柴成林,等.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J].果树学报,2001,18(1):1-6.
    [16]刘金磊,李典鹏,黄永林,等.HPLC法测定不同生长期罗汉果[J].广西植物,2007,27(4):665-668.
    [1]杨致荣毛雪李润植.植物次生代谢基因工程研究进展[J].植物生理与分子生物学学报,2005,31(1):11-18.
    [2]吴乃虎.基因工程原理(第2版).北京:科学出版社,1998,1-10.
    [3]Diatchenko L, Lau Y F C, Campbell A P, et al.1996.Suppression subtractive hybridization:a method for generating differentially regμlated or tissue specific cDNA probes and libraries [J]. Proceedings of the National Academy of Sciences (USA),93 (12):6025-6030.
    [4]汤华,帅爱华,向福英.植物基因差异表达的研究方法及进展[J].海南大学学报(自然科学版),2006,24(3):309-316.
    [5]Rong-Jun Li, Han-Zhong Wang, Han Mao,et al. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content [J]. Planta,2006,224 (4):952-962.
    [6]李红霞,张龙雨,张改生,等.黏类小麦育性相关基因SSH文库的构建[J].作物学报,2008,34(6):975-971.
    [7]李小艳,赵云,周云涛,等.甘蓝型油菜矮化突变体抑制消减cDNA文库的构建及初步分析[J].中国油料作物学报,2006,28(4):396-402.
    [8]刘阳,王茂林,邱峰,等.甘蓝型油菜突变体Cr3529抑制性消减文库的构建[J].四川大学学报(自然科学版),2005,42(5):1029-1032.
    [9]肖钢,张秀英,张振乾,等.甘蓝型油菜种子不同发育期基因差异表达cDNA文库构建[J].(湖南农业大学学报(自然科学版),2008,34(5):513-518.
    [10]和凤美,朱永平,杨晓红.不同年龄三七根皂苷合成相关基因的差减cDNA文库构建[J].分子植物育种,2010,8(1):145-150.
    [11]彭琦,胡燕,杜培粉,等.甘蓝型油菜种子不同发育时期SSH文库的构建[J].作物学报,2009,35(9):1576-1583.
    [12]罗志勇,陆秋恒,刘水平.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35(6):554-560.
    [13]魏小勇.应用抑制性差减杂交技术构建铁皮石斛差减cDNA文库的探讨[J]. 广州中医药大学学报,2005,25(4):320-322.
    [14]Von Stein O D, Thies W G, Hofmann M. A high throughout screening for rarely transcribed differentially expressed genes [J]. Nucleic Acid Res,1997,25 (13):2598-2602.
    [15]Guterman Ⅰ, Shalit M, Menda N, et al. Rose scent:Genomics approach to discovering novel floral fragrance-related genes [J]. Plant Cell,2002,14(10):2325-2338.
    [16]崔光红,黄璐琦,唐晓晶,等.丹参cDNA芯片构建及表达谱的研究Ⅰ.丹参cDNA芯片的构建[J].中国中药杂志,2007,32(12):1137.
    [17]崔光红,黄璐琦,邱德有,等.丹参功能基因组学研究Ⅱ—丹参毛状根不同时期基因表达谱分析[J].中国中药杂志,2007,32(13):1267-1272.
    [18]Yang G P, Ross D T, Kuang W W, et al. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes [J]. Nucleic Acids Res,1999, 27(6):1517-1523.
    [19]Zheng J, Zhao J, Tao Y, et al. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray [J]. Plant Mol Biol,2004,55(6):807-823.
    [20]Tang W, Zhang Z, Zou X, et al. Functional genomics of maize submergence tolerance and cloning of the related gene Sicyp51 [J]. Sci China C Life Sci,2005,48 (4):337-345.
    [21]Verica J A, Maximova S N, Strem M D, et al. Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response[J]. Plant Cell Rep,2004,23(6):404-413.
    [22]Schena M, Shalon D, Dais R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J].Science,1995, 270:4672-4701.
    [23]Le Q, Gutierrez-Marcos J F, Costa L M, et al. Construction and screening of subtracted cDNA libraries from limited populations of plant cells:a comparative analysis of geneexpression between maize egg cells and central cells [J]. Plant Journal,2005,44(1):167-178.
    [24]Derory J, Leger P, Garcia V, et al. Transcriptome analysis of bud burst in sessile oak(Quercus petraea) [J]. New Phytologist,2006,170(4):723-738.
    [25]Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project [J]. Science,1991,252 (5013):1651-1656.
    [26]Boguski MS, Tolstoshev CM, Bassett DE, et al. Gene discovery in dbEST [J]. Science,1994,265(5181):1993-1994.
    [27]Bouchez D, Hofte H. Functional genomics in plants [J]. Plant physiology,1998, 118(3):725-732.
    [28]Ewing RM, Ben Kahla A, Poirot O, et al. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression [J]. Genome research,1999, 9(10):950-959.
    [29]胡松年主编.基因表达序列标签(EST)数据分析手册[M].浙江:浙江大学出版社,2005,5.
    [30]J D Jung, H-W Park, Y Hahn, et al.Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags [J]. Plant Cell Rep,2003, 22:224-230.
    [31]Dong-Woog Choi, JongDuk Jung, Young Im Ha, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites [J]. Plant Cell Rep, 2005,23:557-566.
    [32]Chen SL, Sun YQ, Song JY, et al. Analysis of expressed sequence tags (EST) from Panax quinquefolium root [J]. Acta Pharmaceutica Sinica (药学学报),2008, 43(6):657-663.
    [33]Wu Q, Song JY, Sun YQ, et al.Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation [J]. Physiologia Plantarum,2010, 138(2):124-149.
    [34]Luo HM, Sun C, Li Y, et al. Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation [J]. Physiologia Plantarum,2010,139:1-12.
    [35]许德荣,唐其,梁延海,等.狼毒大戟cDNA文库构建及EST测序[J].分子植物育种,2010,8(1):139-144.
    [36]Suzuki H, Achnine L, Xu R, et al.A genomic approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula [J]. Plant J,2002,32(6): 1033-1048.
    [36]LaDeana W Hillier, Gabor T Marth, Aaron R Quinlan,et al. Whole-genome sequencing and variant discovery in C. elegans [J].Nature,2008,5(2):183-188.
    [37]Guojie Zhang,Guangwu Guo, Xueda Hu, et al.Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome [J]. Genome Res,2010,20(5):646-654.
    [38]Lucie Hanriot, Celine Keime, Nadine Gay.A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome [J]. BMC Genomics,2008,9:418.
    [39]IA Graham, K Besser, S Blumer, et al.The Genetic Map of Artemisia annua L. Identifies Loci Affecting Yield of the Antimalarial Drug Artemisinin [J].Science, 2010,327:328-331.
    [40]Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature,2005,437(7057):376-380.
    [41]Fiammetta Alagna, Nunzio D'Agostino, Laura Torchia, et al.Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development [J]. BMC Genomics,2009,10:399.
    [42]Ying Li, Hong-Mei Luo, Chao Sun, et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics,2010,11:268.
    [43]Chao Sun, Ying Li, Qiong Wu, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis [J]. BMC Genomics,2010, 11:262
    [44]Audic S, Claverie JM.The significance of digital gene expression [J].Genome Res,1997,7(10):986-95.
    [45]Li R, Zhu H, Ruan J, et al.De novo assembly of human genomes with massively parallel short read sequencing [J]. Genome Res,2010,20(2):265-72.
    [46]Christian Iseli, C. Victor Jongeneel, Philipp Bucher.ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences [J]. Proc Int Conf Intell Syst Mol Biol,1999:138-48.
    [47]Kanehisa M, Goto S.KEGG:kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res,2000,28(1):27-30.
    [48]PAC t Hoen, Y Ariyurek, HH Thygesen,et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucleic Acids Res,2008,36(21):1-11.
    [49]AS Morrissy, RD Morin, A Delaney, et al. Next-generation tag sequencing for cancer gene expression profiling [J]. Genome Res,2009,19(10):1825-35.
    [50]Audic S, JM Claverie.The significance of digital gene expression profiles [J]. Genome Res,1997,7(10):986-95.
    [51]Tao Wang, Nianhui Zhang, Lingfang Du. Isolation of RNA of high quality and yield from Ginkgo biloba leaves [J].Biotechnology Letters,2005,27:629-633.
    [52]王昆,王颖,鲍永利,等.提取高质量人参RNA的方法研究[J].生物化学与生物物理进展,2006,33(1):95-99.
    [53]GREGOIRE LE PROVOST, RAuL HERRERA, JORGE AP PAIVA, et al.A micromethod for high throughput RNA extraction in forest trees [J]. Biol Res,2007, 40:291-297.
    [54]张志刚,李栒,官春云,等.改良提取水稻胚乳和拟南芥花柱中DNA和RNA的SDS法[J].植物生理学通讯,2006,42(3):493-495.
    [55]Yanfang Yang, Shuang Hou, Guanghong Cui, et al. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza [J]. Mol Biol Rep,2010,37:507-513.
    [1]张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J].生物工程进展,2000,20(4):3-5.
    [2]Capone M C, Gorman DM, Ching E P, Zlomik A. Identification through bioinformatics of cDNAs encoding human thymicshared Ag-1/stem cell Ag-2. A new member of the human Ly6 family [J].J Immunol,1996,157(3):969-973.
    [3]Rossi D L, Vicari A P, Franz-Bacon K, et al. Identification through bioinformatics of two new macrophage proinflammatory human chemokines:MIP-3 alpha and MIP-3beta [J].J Immunol,1997,158(3):1033-1036.
    [4]Elizabeth Scotto-Lavino, Guangwei Du, Michael A Frohman.5'end cDNA amplification using classic RACE [J]. Nature Protocols,2006, 1(6):2555-2562.
    [5]Elizabeth Scotto-Lavino, Guangwei Du, Michael A Frohman.3'end cDNA amplification using classic RACE [J]. Nature Protocols,2006, 1(6):2742-2745.
    [6]Elizabeth Scotto-Lavino, Guangwei Du, Michael A Frohman Amplification of 5'end cDNA with'new RACE'[J]. Nature Protocols,2006, 1(6):3056-3061.
    [7]黄伟伟,杨曦,张常娥,等.烟草黄酮醇合成酶基因的克隆及其序列分析[J].植物 生理学通讯,2006,42(6):1059-1062.
    [8]张国裕,康俊根,张延国,等.青花菜雄性不育相关基因BoDHAR的克隆与表达分析[J].生物工程学报,2006,22(5):751-756.
    [9]李广存,金黎平,王晓武,等cDNA文库与RACE方法结合克隆马铃薯DnaJ-like基因全长cDNA [J]园艺学报,2007,34(3):649-654
    [10]邢桂春,张成岗,魏汗东,等.采用RACE技术获得全长人新基因MAGE-D1[J].中国生物化学与分子生物学报,2001,17(2):203-208.
    [11]王少丽,盛承发,乔传令cDNA末端快速扩增技术及其应用[J].遗传,2004,26(3):419-423.
    [12]李红,王孟薇,邵勇,等.利用RACE技术和生物信息学资源快速钓取多个候选同源基因[J].生物技术通讯,2001,12(4):257-259.
    [13]HARALAMPIDIS K, TROJANOWSKA M, OSBOURN A E. Biosynthesis of triterpenoid saponins in plants [J].Adv Biochem Eng Biotechnol,2002,75:31-49.
    [14]David Finkelstein, Rob Ewing, Jeremy Gollub, et al.Microarray data quality analysis:lessons from thoAFGC project [J].Plant Molecular Biology,2002,48:119.
    [15]Lee H I, Raskin. Purification, cloning, and expression of a pathogen inducible UDP-glueose:salicylic acid glucosyltransferase from tobacco [J]. Biol Chem,19,274: 36637-36642.
    [16]Li Y,Baldauf S,Lim K,et al.Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J]. J Biol Chem,2001,276:4338-4343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700