用户名: 密码: 验证码:
黄原酸基有机抑制剂的设计合成及其与锌铁硫化矿相互作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究内容主要包括以下五个方面:铁闪锌矿、毒砂和磁黄铁矿的晶体结构和表面性质研究,黄原酸基有机抑制剂的设计和合成,黄原酸基有机抑制剂对锌铁硫化矿的抑制效果及其对锌铁硫化矿电化学浮选的影响,运用动电位、红外光谱和紫外吸收光谱等测试方法探讨了黄原酸基有机抑制剂与锌铁硫化矿的作用机理,通过浮选药剂特性指数i和亲水亲油平衡值HLB等方法了研究黄原酸基有机抑制剂的结构与性能关系。
     1.纯矿物铁闪锌矿、毒砂、磁黄铁矿的X—射线衍射数据与JCPDS卡片Marmatite-Cubic、Arsenopyrite-Triclinic和Pyrrhotite-Trigonal的标准衍射数据基本一致,基本上可以认定铁闪锌矿(广西大厂)是Marmatite-Cubic晶型的矿物,毒砂(湖南瑶岗仙)是Arsenopyrite-Triclinic晶型的矿物,磁黄铁矿(广西大厂)是Pyrrhotite-Trigonal晶型的矿物。捕收剂丁基黄药、丁胺黑药、乙硫氮(SN-9)对纯矿物铁闪锌矿、毒砂、磁黄铁矿的捕收能力是丁基黄药>丁胺黑药>乙硫氮,经铜离子活化后,铁闪锌矿在pH=2~12内都可浮,毒砂和磁黄铁矿也得到活化。
     2.根据有机抑制剂的分子设计理论,合成了多羟基黄原酸盐有机抑制剂化合物三种,多羧基黄原酸盐有机抑制剂化合物四种,反应产物的红外光谱分析及化学元素分析确定了反应产物及其纯度。
     多羟基黄原酸盐有机抑制剂对锌铁硫化矿有抑制作用,抑制强弱顺序是毒砂>磁黄铁矿>铁闪锌矿。铜离子活化后,多羟基黄原酸盐对铁闪锌矿抑制作用不明显,对毒砂和磁黄铁矿抑制作用显著,在pH>6,铁闪锌矿与毒砂和磁黄铁矿可以得到较好的浮选分离。
     多羧基黄原酸盐有机抑制剂抑制锌铁硫化矿时,强弱顺序是毒砂>磁黄铁矿>铁闪锌矿。铜离子活化后,多羧基黄原酸盐对铁闪锌矿失去抑制作用,对毒砂和磁黄铁矿抑制作用明显,铜离子活化后,多羧基黄原酸盐存在下,在pH>6铁闪锌矿与毒砂和磁黄铁矿可以得到较好的浮选分离。
     选用(1-甲酸钠-1-乙酸钠)丙酸钠二硫代碳酸钠作有机抑制剂,实现了锌砷、锌硫和锌砷硫分离等3种人工混合矿的浮选分离。
     3.丁黄药为捕收剂,铁闪锌矿、毒砂和磁黄铁矿的浮选行为与矿浆电位有关,低pH值下,可浮电位区间较大,高pH值下,可浮电位区间较小。不管是否加入铜离子,在黄原酸基有机抑制剂作用下,铁闪锌矿在一定的电位区域内才可浮选,低pH值下,可浮的电位区间较大,高pH值下,可浮性较差;磁黄铁矿和毒砂在pH>4.5的电位区域内不浮。低pH值下,在铁闪锌矿可浮的电位区间,铁闪锌矿与磁黄铁矿和毒砂可以实现分离;高pH值下,在铁闪锌矿可浮的电位区间它们难以实现分离。
     4.黄原酸基有机抑制剂在锌铁硫化矿物表面吸附量大小顺序为毒砂>磁黄铁矿>铁闪锌矿,这正是黄原酸基有机抑制剂对锌铁硫化矿抑制作用顺序。随着pH增大,黄原酸基有机抑制剂在锌铁硫化矿物表面吸附量增大,在pH>6.0时,吸附趋于饱和,吸附量基本保持不变。黄原酸基有机抑制剂在毒砂和磁黄铁矿表面的吸附量均高于在铁闪锌矿表面的吸附量,进一步表明黄原酸基有机抑制剂对于毒砂和磁黄铁矿的抑制能力高于对铁闪锌矿的抑制能力,尤其对毒砂效果更加显著。黄原酸基有机抑制剂能显著改变锌铁硫化矿物表面的ζ—电位,顺序是多羧基黄原酸盐系列(TX)>多羟基黄原酸盐系列(GX)。
     阴离子型的黄原酸基有机抑制剂在带负电的锌铁硫化矿表面吸附,并能使其负电位更大,说明黄原酸基有机抑制剂在锌铁硫化矿表面的吸附为化学吸附。
     黄原酸基有机抑制剂与锌铁硫化矿作用前后的红外光谱说明:这二类药剂与锌铁硫化矿的作用以化学作用为主,同时黄原酸基有机抑制剂与矿物也发生了氢键作用,从而增强了药剂对矿物的抑制作用。铜离子活化后,黄原酸基有机抑制剂和丁黄药存在下,铁闪锌矿表面的CH~(2+)与丁黄药作用生成稳定的Cu(BX)_2,而使黄原酸基有机抑制剂在铁闪锌矿表面失去抑制作用,而黄原酸基有机抑制剂在毒砂和磁黄铁矿表面表现良好的抑制性能。
     5.有机抑制剂的亲水基团越多,抑制能力越强。多羟基黄原酸盐(GX)有带-OH的亲水基团,抑制能力是GX3>GX2>GX1;多羧基黄原酸盐(TX)有带-COOH的亲水基团,抑制能力是TX4>TX3>TX2>TX1。
     基团电负性数据表明,羟基和羧基易与电负性较小的金属离子As~(3+)发生作用,而与Fe~(3+)、Zn~(2+)作用则呈依次变弱的趋势,故它们对毒砂的抑制作用能力最强,磁黄铁矿次之,铁闪锌矿最弱。
     黄原酸基有机抑制剂随着浮选药剂特性指数i和亲水亲油平衡值HLB的增加,其亲水能力增强,抑制效果增大。其亲水能力强弱顺序是:多羟基黄原酸盐GX3>GX2>GX1;多羧基黄原酸盐TX4>TX3>TX2>TX1,亲水能力顺序也是其抑制能力顺序。
The contents of studies in this paper include following five aspects:the crystal structure and surface property of marmatite、arsenopyrite andpyrrhotite, the design and synthesization of the xanthogenate organicdepressants, the depressing capability of the synthesized organicdepressants on zinc-iron sulphids minerals and effect on electrochemicalflotation of these minerals, the depressing mechanism of the organicdepressants based on zeta potential、Infrared spectrum and ultravioletspectrophotometer tests, the structure-activity relationship of the organicdepressants in the light of the flotation reagents characteristic indexnumber i and hydrophilic lipophilic balance (HLB).
     1. X-radial diffract datas of three minerals show that X-radialdiffract datas of the samples are as same as standard diffract datas ofJCPDS of Marmatite-Cubic, Arsenopyrite-Triclinic and Pyrrhotite-Trigonal. It is affirmed that marmatite (Guangxi province Dachang ) isof Marmatite-Cubic, arsenopyrite (Hunan province Yaoguangxian) is ofArsenopyrite-Triclinic, Pyrrhotite(Guangxi province Dachang)is ofPyrrhotite-Trigonal. Marmatite, arsenopyrite and pyrrhotite is floatableusing collector butyl xanthate, butyl amine aerofloat, anddiethyldithiocarbamate. Marmatite has good floatability from pH2 topH12 after it is activated by Cu~(2+)ions, besides arsenopyrite and pyrrhotitecan also be activated.
     2. Seven polyhydroxy xanthogenate organic depressant compoundsare synthesized according to molecular design theory of organicdepressant, namely sodium 2-hydroxyethyl carbonyl dithiocarbonate,sodium 2,3-dihydroxypropyl dithiocarbonate, sodium 2, 3, 4, 5,6-quinthydroxyhexyl carbonyl dithiocarbonic, sodium acetate carbonyldithiocarbonate、sodium propionate carbonyl dithiocarbonate, 1-sodiumformate-2-hydroxy carbonyl dithiocarbonate, 1-sodium formate-1-sodium acetate carbonyl dithiocarbonat. Reaction products and theirpurity are ascertained through infrared spectral analysis and chemicalelement analysis.
     Floatation test shows that polyhydroxy xanthogenate has despression effect on zinc iron sulphid minerals, the order of despression capacity isarsenopyrite>pyrrhotite>marmatite. In the presence of Cu~(2+)ions,polyhydroxy xanthogenate has weak despression effect on marmatite,nevertheless, it has stronger despression effect on pyrrhotite andarsenopyrite. Marmatite、arsenopyrite and pyrrhotite can be separatedthrough flotation in the range of pH over than 6.
     Flotation separation of three artificial mixed minerals aboutzinc-arsenic、zinc-sulfur and zinc-arsenic-sulfur separation can be cometrue when 1-sodium formate-1-sodium acetate carbonyl dithiocarbonicacid sodium is used as depressant. This shows that synthesizedxanthogen orgnic depressant is in favorable possession of applicationforeground and investigation value on flotation separation of zinc ironsulphid ores.
     3. The flotation behaviors of marmatite, arsenopyrite and pyrrhotiteare related to the pulp potential with the butyl-xanthogenate as collector.The potential area that the minerals can be floated is bigger in the low pHthan in the high pH. When the xanthogenate-group depressant is used,marmatite has a wide floated Eh area while the arsenopyrite andpyrrhotite only have a narrow floated Eh area in the low pH, so themarmatite can be separated from the arsenopyrite and pyrrhotite in thelow pH by potential control. But three of them can't almost be floated inthe high pH and they can't be separated.
     4. The order about the adsorption of the xanthogenate-groupdepressant on the surfaces of sulfides is arsenopyrite>pyrrhotite>marmatite corresponding to the depression intensity of the depressant onmineral. The adsorption density of the xanthogenate-group depressantincreases with the pH and arrives the biggest level when the pH≥6.0.The adsorption of on the surface of arsenopyrite and pyrrhotite is morethan on the surface of marmatite.
     The depression of the organic depressants are also indicated by thechange of the zeta-potential of the minerals which are interacted with thefloat reagents. The change of the zeta-potential is more by themulti-carboxylic xanthogenate than by the multi-hydroxy xanthogenate.
     With the increase of the concentration of the organic depressant, the zeta-potential of the minerals decreases continually and arrives ainvariable level when the reagents are used with a larger quantity. Thezeta-potential of the arsenopyrite is the lowest, the pyrrhotite takes thesecond place, and the one of marmatite is on the top, this result indicatesthat the order of adsorption intensity of the depressant is arsenopyrite>pyrrhotite>marmatite. Because the anion organic depressant can beintensive adsorption on the negative surfaces of the minerals, theinteraction between the reagents can be probably a kind of chemicaladsorption.
     The infrared spectra of the interaction between the xanthogenate-group depressant and the zinc iron sulphid minerals show that these twokinds of depressants are chemically interacted with the minerals. TheCu~(2+) on the surface of the marmatite reacted with the butyl xanthate andmakes Cu(BX)_2 in the presence of Cu~(2+), butyl xanthate andxanthogenate-group depressant, so the xanthogenate-group depressantloses the depression to the marmatite while still keeps the gooddepression to the arsenopyrite and the pyrrhotite.
     5. The more the hydrophilic group in the organic compounds, thestronger the depression to the minerals. Polyhydroxy xanthogenateorganic depressant(GX) has the order of hydrophilic groupGX3>GX2>GX1,So that the depression capability is GX3>GX2>GX1,Similarly, for the polycarboxyl xanthogenate organic depressant, thenumber of hydrophilic-COOH and hence the depression capability isTX4>TX3>TX2>TX1.
     The depression capability of the xanthogenate organic depressantincreases with the characteristic index i and the value of hydrophiliclipophilic balance (HLB), the bigger the index and the HLB value, thestronger the hydrophilic performance, and the more the depressioncapability. Their order is also GX3>GX2>GX1 to the polyhydroxyxanthogenate organic depressant and TX4>TX3>TX2>TX1 to thepolycarboxyl xanthogenate organic depressant.
引文
[1] 胡为柏.浮选.冶金工业出版社,1988.6,P1-20.
    [2] Fuerstenau. D.W., Advances in Flotation Technology (Eds.B.K. Parekh and J.D. Miller) 1999..SME: Littleton (CO). 3-21.
    [3] Taggart.A.F. Handbook of Mineral Dressing. Ores and Industrial Minerals. John: New York: Wiley, 1945.
    [4] Gaudin. A.M, Fuerstenau. D.W. Trans AIME, 1955, 202: 66~71.
    [5] Wark. I.W. and Cook. A.B.Priciples of Flotation. In: An Experimental Study of the Effect of Xanthates on Contact Angles at Mineral Surfaces. Trans AIME, 1934, 112: 189~244.
    [6] Barsky, G., Tran. AIME, Inst. Min. Metall. Engrs., 1934, 112: 236~262.
    [7] 顾帼华,刘如意,王淀佐.方铅矿-石灰-乙硫氮体系电化学调控浮选研究.广东工业大学学报,1998,4(15),20~26.
    [8] Martin, C. J., Rao, S. R., Finch, J. A. and Leroux, M., Complex sulphide ore processing with pyrite flotation by nitrogen, International Journal of Mineral Processing, 1989, 26: 95~110.
    [9] D·W·克拉克等.通过充氮和硫化调浆来提高硫化铜矿物浮选回收率.国外金属矿选矿,2000,12:10~14.
    [10] Rao, S. R. and Finch, J. A., Electrochemical studies on the flotation of sulphide minerals with special reference to pyrite-sphalerite, Ⅱ. Flotation studies. Can. Metall. Q., 1987, 26: 173~175.
    [11] Rao S R, Labonte G and Finch J A.电化学在选矿厂的应用(译文)[J].国外金属矿选矿,1997,34(4):1-34.
    [12] Helical, S., In; Richardson P.E. ed, Proceedings International Symposium on Electrochemistry in Mineral and Metal Processing, Electrochemistry Science, 1988: 170~182.
    [13] 电化学方法预处理矿浆提高铜镍矿石浮选效率的潜力.(无注明作者)国外金属矿选矿,1993,8:1~5.
    [14] 俞瑞,电化学处理在选矿工艺中的应用.国外金属矿选矿,1996,33(10):1~7.
    [15] 覃文庆.硫化矿物颗粒的电化学行为和电位调控浮选技术[D].中南工业大学博士学位论文,1997.
    [16] 顾帼华.硫化矿磨矿—浮选体系中的氧化—还原反应与原生电位浮选[D]. 中南工业大学博士学位论文,1998.
    [17] 冯其明,陈荩.硫化矿物浮选电化学.长沙:中南工业大学出版社.1992.
    [18] 王淀佐.浮选理论的新进展.北京:科学出版社,1992:79~90,128~135.
    [19] 王淀佐,顾国华,刘如意.方铅矿—石灰—乙硫氮体系中电化学调控浮选.中国有色金属学报,1998,8(2):322-326.
    [20] Rauitz, S. F. and Porter, R.B., AIME Techn. paper 513 (class B, no. 40) 1933.
    [21] Heyes W. G. and Tarhar, W. J., The natural floatability of chalcopyrite, Int. J. Miner. process., 1977, 4: 317~344.
    [22] Trahar, W. J., A laboratory study of the influence of sodium sulphide and oxygen on the collectorless flotation of chalcopyrite, Int. J. Miner. Proc., 1983, 11: 57~74.
    [23] Guy, P. J. and TrahAr, W. J., The influence of grinding and flotation environments of the laboratory batch flotation of galena, Int. J. Miner. Process., 1984, 12: 15~38.
    [24] Luttrell, G. H. and Yoon, R.H., Surface chemistry of collectorless flotation of chalcopyrite, 112th SME-AIME Annual Meeting, Atlanta, March 6-10, 1983.
    [25] Walker, G. W., Stout, J. V. and Richardson, P. E., Electrochemical flotation of sulfide: Reactions of chalcocite in aqueous solution, Int. J. Miner. process., 1984, 12: 55~72.
    [26] Fuerstenau, M. C. and Sabacky, B. J., Int. J. Miner. Process., 1981, 8: 79~84.
    [27] Gaudin, A. M. J. Coll. Interf. Sic., 1974, 47: 309~314.
    [28] Gardner, J. R., woods, R., An electrochemical investigation of the natural floatability of chalcopyrite. Int. J. Miner. Process., 1979, 6: 1~16.
    [29] Pritzker, M. D., Yoon, R. H., Thermodynamic caiculations and electrochemical studies on the galena-ethylxanthatc system. In: P.E. Richardson (editor), Electrochemistry in Mineral and Metal processing. 1984, The Electrochemical society, Inc, NJ, 26~53.
    [30] Biegler, T., Horne, M. D., The electrochemistry of surface oxidation of chalcopyrite. The Electrochemical Society, 1985, 132: 1363~1369
    [31] 孙水裕,王淀佐,李柏淡.无捕收剂浮选时硫化矿物表面的疏水—亲水平衡关系.金属学报,1993,29(9):B389~B393.
    [32] 孙水裕,王淀佐,李柏淡.硫化矿物表面氧化的研究.有色金属.1993,45(4):32~37.
    [33] 孙水裕,王淀佐,李柏淡.方铅矿自诱导浮选的电化学的量子化学研究.有色 金属(季刊),1993,45(2):p
    [34] 孙水裕,王淀佐,李柏淡.砷黄铁矿自诱导浮选的研究.中南矿冶学院报,1993,24(2):181~186.
    [35] Buckley, A.N., An x-ray photoelectron spectroscopic investigation of the surface oxidation for sulfide minerals. In: P. E. Richardson (editor), Electrochemistry in Mineral and Metal processing, 1984, The Electrochemical Society, Inc; NJ, 286~302.
    [36] Luttred, G. H., Yoon, R. H., Surface chemistry of collectorless flotation of chalcopyrite. 112th SME-AIME Annual Meeting, 1983, Atlanta, Georgia, preprint No. p83~196.
    [37] Buckley, A. N., The surface of cobalite, extended Abstracts 2nd Inter. Symposium on Analytical chemistry in the Exploration, Mining and processing of materials, 1985, Pretoria, South Africa.
    [38] Yoon, R.H., Int. J. Miner. Process., 1981, 8: 31~48.
    [39] 孙水裕,李柏淡,王淀佐.硫化矿无捕收剂浮选.中南矿冶学院学报,1990,21(5),473~478.
    [40] 孙水裕,王淀佐,李柏淡.硫化钠电化学调控浮选的研究.有色矿冶,1993,2:15~18.
    [41] 孙水裕,李柏淡,王淀佐.硫化矿浮选抑制的电化学研究.有色矿冶,1990,2:16~19.
    [42] 孙水裕,王淀佐,李柏淡.砷黄铁矿硫化钠诱导浮选的研究.中南矿冶学院学报,1993,24(2):187~192.
    [43] 孙水裕.硫化矿的浮选电化学及无捕收剂浮选.中南工业大学博士学位论文,1990.
    [44] Lutcrell, G.H. and Yoon, R.H.,用硫化钠时黄铜矿的无捕收剂浮选.国外金属矿选矿,1986,5:1~9.
    [45] Trahar, W. J., A laboratory study of the influence of sodium sulphide and oxygen on the collectorless flotation on chalcopyrite, International Journal of Mineral Processing, 1983, 11: 57~74.
    [46] Salamy, S. G. and Nixon, J.C., Reaction between a mercury surface and some flotation reagents: An electrochemical study, Aust. J. Chem., 1954, 7: 146~151.
    [47] Finkelstein, N. P. and Gould, L. A., In: National Institute of Metallurgy, South Africa: Report, 1972, 1439~1443
    [48] Woods, R., The oxidation of etheyl-xanthate to the mechanism of mined flotation, J. Phs. Chem., 1971, 75: 354~362.
    [49] 张永光.黄药在黄铁矿表面的吸附动力学.金属矿山,1995,5:45~48.
    [50] Ralston, J., The chemistry of galena flotation: Principles & Practice, Mineral Engineering, 1994, 5: 715~735.
    [51] Schukarew, A.V., Int. J. Miner. Process., 1994, 41(2): 99~114.
    [52] Yoon, R.H., 18th IMPC, 1993, 3: 611~618.
    [53] 王淀佐,龙翔云,孙水裕.硫化矿的氧化于浮选机理的量子化学研究.中国有色金属学报 1991,1(1):15~23.
    [54] Xiang-Huai Wang and Forsserg, K. S. E., Mechanism of pyrite flotation with xanthates, Int. J. Miner. Process., 1991, 33(1/4): 275
    [55] Wang, X., Forsserg, K. S. E. and Bolin, N. J., Thermodynamic calculation on iron-containing sulphide mineral flotation system, Ⅰ. The stability of iron-xanthates, Int. J. Miner. Process., 1989, 27(1/2): 1~20
    [56] Bulut, G. and Atak, S., Role of dixanthogen on pyrite flotation: solubility, adsorption studies and Eh, FTIR measurements, Minerals 8 Mentallurgical processing, 2002, 19(2): 81~86.
    [57] Nagaraj, D. R. and Brinen, J. S., SIMS Study of adsorption of collectors on pyrite, Int. J. Miner. Process., 2001, 63: 45~57.
    [58] Leppinen, J. O., Basilio, C. I. and Yooh, R. H., In-situ FTIR study of ethyl xanthate and sorption on sulfide minerals under conditions of controlled potential, Int. J. Miner. Process. 1989, 26: 259~274.
    [59] Mielczarski, J. A., Mielczarski, E., Cases, J. M., Influence of chain length on adsorption of xanthates on chalcopyrite, Int. J. Miner. Process., 1998, 52: 215~274.
    [60] 孙水裕,王淀佐,李柏淡.闪锌矿的电化学调控浮选.中国有色金属学报,1992,2(2)21~25.
    [61] M·B·M·蒙特,王镜亮,黎孜.硫代化合物在金和黄铁矿上的吸附及其对它们优先浮选的影响.国外金属矿选矿,2000,11,36~38.
    [62] HU Qingchun, WANG Dianzuo, LI Baidang, An electrochemical investigation of the diethyldiehiocarbamate-galena flotation system, Int. J. Miner. Process., 1992, 34: 289~305.
    [63] Woods,R.,硫化矿浮选的电化学.国外金属矿选矿,1993,4:1~28.
    [64] Buckley A N, Woods R. Underpotential deposition of dithiophosphate on chalcocite[J]. J. Electroanal. Chem. 1993, 357: 387-405.
    [65] Aloson F N, Trevino T P. Pulp potential control in flotation: the Metallurgical Quarterly, 2002, 41(4): 391-398.) [136] Nowak P. Xanthate chemisorption at PbS surface: molecular model and thermodynamic description[J]. Colloids surf., 1993, 76: 65-72.
    [66] Mielezarski J A. Reply to comment on "In situ and ex situ infrared studies of nature and stucture of thiol layers adsorbed on cuprous sulfide at controlled potential. Simulation and experimental results" [J]. Langmuir, 1997, 13: 878-880.
    [67] Lippinen I O, Basilio C I and Yoon R H. FTIR study thiocarbamate adsorption on sulfide minerals[J]. Colloids and surfaces A, 1998, 32: 113-125.
    [68] 王淀佐,胡岳华,李柏淡.硫化矿无捕收剂浮选工艺因素工业实践.有色金属(季刊),1991,(4):21~26.
    [69] 廖品钧.紫硫镍铁矿表面氧化及与药剂作用的电化学研究.中南矿冶学院学报,1981,(2):1~8.
    [70] 陈建华.电化学调控浮选能带理论及其在有机抑制剂研究中的应用[D].中南工业大学博士学位论文,1999.
    [71] Finkelstein N P and Allison S A. The chemistry of activation, deactivation and depression in the flotation of zinc sulfide: a review. In: Fuerstenau M C (Ed.), gaudin A M Memorial Volume, flotation 1. American institute of Mining, Metallurgical and Petroleum Engineers, New York, 1974, pp414-451.
    [72] Ralston J and Healy T W. activation of zinc sulfide with Cu (Ⅱ), Cd (Ⅱ) and Pb (Ⅱ): Ⅱ. Activation in neutral and weakly alkaline media[J]. Int. J. Miner. Process, 1980, 7: 203-217.
    [73] Pugh R J and Tjus K. Electrokinetic studies on Cu(Ⅱ) hydroxy-coated zinc sulphide particles[J]. J. Colloid Int. Sci., 1987, 117: 231-241.
    [74] Jain S and Fuerstenau D W. Activation in the flotation of sphalerite [A]. In: Forssberg K S E (Ed.), Flotation of Sulfide Minerals [C]. Elsevier, Amsterdam, 1985: 159-174.
    [75] Nicol M J. In: Richardoson P E (Ed.), Proceeding International Symposium on Electrochemistry in Mineral and Metal Processing. The Electrochemical Society, Inc, NJ, 1984: 152-168.
    [76] Perry D L, Tsao L and Taylor J A. In: Richardoson P E (Ed.), Proceeding International Symposium on Electrochemistry in Mineral and Metal Processing. The Electrochemical Society, Inc, NJ, 1984: 152-168.
    [77] Prestidge C A, Thiel A G, Ralston J and Smart R S C. The interaction of ethyl xanthate with copper(Ⅱ)—activated zinc sulfide: kinetic effects[J]. Colloids Surface, A. Physicochem. Eng. Aspects, 1994, 85: 51-68.
    [78] Luttrel G H and Yoon R H. Surface studies of the collectorless flotation of chalcopyrite[J]. Coll. Surf., 1984, 12: 239-254.
    [79] Skinner W M, Prestidge C A, and Smart R S C. Irradiation effects during XPS studies of copper(Ⅱ) activation of zinc sulfide[J]. Surf. Int. Sci., 1996, 24: 620-626.
    [80] 宁顺明.中南工业大学硕士学位论文,1988.
    [81] Kartio I J, Basilio C I and Yoon R H. An XPS study of sphalerite activation by copper. In: Woods R, Doyle F, Richardson P E (Eds), Electrochemistry in Mineral and Metal Processing Ⅳ. The electrochemical Society, 1996: 25-34.
    [82] Cecile J I. Appliction of XPS in the study of sulfide mineral flotation. In: Forssberg K S E (Ed.), Flotation of Sulfide Minerals. Elsevier, Amsterdam, 1985: 61-81.
    [83] Buckley A N, Woods R and Wouterlood H J. An XPS investigation of the surface of natural sphalerites under flotation-related conditions. Int. J. Miner. Process, 1989, 26: 29-49.
    [84] Prestidge C A, Skinner W M, Ralston J and Smart R S C. Copper(Ⅱ) activation and cyanide de-activation of zinc sulfide under mildly alkaline conditions[J]. Appl. Surf. Sci., 1997, 108: 333-344.
    [85] Finkelstein N P. The activation of sulfide minerals for flotation: a review[J]. Int. J. Miner. Process, 1997, 52: 81-120.
    [86] Schvkarew A V. Int. J. Miner. Process., 1994, 41(2): 99-114.
    [87] 丁敦煌.硫化矿物的表面结构和表面电荷及无捕收剂浮选[J].中国有色金属学报,1994,4(3):35-40.
    [88] 周仲柏,陈永言.电极过程动力学基础教程[M].武汉大学出版社,1989:252-309.
    [89] 史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001:307-348.
    [90] 宋光铃,曹楚南,林海潮.电化学控制条件下不可逆电极交流阻抗的统一换算电路和电化学参数解析[J].中国腐蚀与防护学报,1994,14(2):113-122.
    [91] 曹楚南.混合电位下的法拉第导纳[J].中国腐蚀与防护学报,1993,13(2):91-99.
    [92] 周国华.提高锌浸出渣中银浮选回收率的工艺与理论研究[D].中南大学博士学位论文,2002.
    [93] 孙伟.高碱高钙流程电化学[D].中南大学博士学位论文,2002.
    [94] Buckley A N and Woods R. Chemisorption—the thermodynamically favored process in the interaction of thiol collectors with sulfide minerals[J]. Int. J. Miner.Process, 1997,51:15-26.
    
    [95] Buckley A N, Woods R. Adsorption of ethyl xanthate on freshly exposed galena surfaces. Colloids Surf. 1991,53:33-45.
    
    [96] Kelsall G H, Yin Q, Vaughan D J and England K E R. Electrochemical oxidation of pyrite in acidic aqueous electrolytes. In: proceeding 4~(th) International Symposium on electrochemistry in mineral and metal processing[M].Electrochemical Society, 1996,vol96-6:131 -142.
    
    [97] Laajalehto K, Smart R St C, Ralston J and Suoninon E. STM and XPS investigation of reaction of galena in air. Appl. Surf. Sci., 1993, 64(1):29-39.
    
    [98] Woods R, Hope G A and Watling K. Surface enhanced Raman scattering spectroscopic studies of the adsorption of flotation collectors. Minerals Engineering,2000,13(4):345-356.
    
    [99] Fornasiero D, Montalti M and Ralston J. Kinetics of adsorption of ethyl xanthate on pyrrhotite: in situ UV and infrared spectroscopic studies [J]. Langmuir,1995,11:467-478
    
    [100] Kelsall G H, Yin Q, Vaughan D J and England K E R. Electrochemical oxidation of pyrite in acidic aqueous electrolytes. In: proceeding 4~(th) International Symposium on electrochemistry in mineral and metal processing[M].Electrochemical Society, 1996,vol96-6:131 -142.
    
    [101] Woods R and Yoon R H. Comment on "In situ and ex situ infrared studies of nature and stucture of thiol layers adsorbed on cuprous sulfide at controlled potential.Simulation and experimental results"[J]. Langmuir, 1997, 13: 876-877.
    
    [102] Woods R, Hpe G A and Brown G M. Spectroelectrochemical investigations of the interaction of ethyl xanthate with copper, silver and gold: III SERS of xanthate adsorbed on gold surfaces[J]. Colloids and Surfaces A, 1998,137:329-337.
    
    [103] 王淀佐.浮选药剂作用原理及应用[M].北京: 冶金工业出版社, 1982.
    
    [104] 王淀佐,林强,蒋玉仁.选矿与冶金药剂的分子设计[M].北京:冶金工业出版社, 1996.
    
    [105] 丘光玫.铅锌多金属硫化矿选矿工艺流程研究.矿产保护与利用.1996.5,50-54
    
    [106] 王湘英,丁大森,向平,刘继中.浮选药剂的应用现状及发展趋势.湖南有色金属, 2000.1.9-12
    [107]张守祥.难选低品位铜硫矿石选矿试验.化工矿物与加工,1997,5,22-22
    [108] 罗仙平,邱廷省,胡玖林.某复杂铅锌硫化矿选矿工艺试验研究.有色金属(选矿部分).2003,4,1~4.
    [109] 张芹,胡岳华,顾帼华.氰化脆硫锑铅矿和磁黄铁矿选择性分离.中南大学学报(自然科学版).2004,3,372~375.
    [110] S·克利伯克,林潮.使用二氧化硫-二乙撑三胺组合药剂选择性抑制磁黄铁矿.国外金属矿选矿.1997,6,20~27.
    [111] S·克雷别克,吴成栋,太白.在复杂镍铜矿石处理时用螯合剂分离矿物.国外金属矿选矿.2000,11,26~29.
    [112] 熊道陵,贺治国,湛雪辉.无机抑制剂在硫化矿浮选中抑制毒砂的研究进展.化工矿物与加工.2004,8,36~37.
    [113] 刘克俊.高砷多金属硫化矿分离的研究.国外金属矿选矿.1998,8,22~23.
    [114] 纪军,贺政,吴海平.高砷多金属矿浮选分离新工艺的研究.矿冶.1998,2,33~37.
    [115] 王珩.天马山矿石金、砷、硫的选矿分离回收工艺试验研究.黄金.2003,10,32~37.
    [116] H.Baldauf and H.Schubert, Fine Particles Processing, 1980, 1(39): 767~786.
    [117] 张文钲.巯基乙酸钠抑制黄铜矿药剂.中国有色金属学会:第一届全国选矿学术讨论会论文集,北京,1986,292.
    [118] G.E.Agar, Sulphide depression with thioglycollate of trithiocarbonate, CIM Bull, 1984, 77: 43.
    [119] Nagaraj, D.R., et al, Copper Depressants: Correlation Between Structure and activity, 112th SME-AIME Annual Meeting, 1982, 89-93.
    [120] 赵镜.巯基乙酸钠抑制黄铜矿机理研究.有色金属(选矿部分),1988,2,42~45.
    [121] A.V.Glembotsky et al, Thesis of Mineral Processing of 19th International congress (IMPC), 1995, 1(3): 205~207.
    [122] 陈万雄.几种煤系黄铁矿抑制剂浮选性能的研究.92武陵源选煤及矿产资源综合利用学术讨论会论文集,125~128.
    [123] 分离黄铁矿和煤用黄铁矿抑制剂.美国专利法,No 4826588.
    [124] 徐柏辉.a-氨基膦酸类有机抑制剂在高冰镍浮选分离中的作用.中国有色金属学报,1997,6(2),30.
    [125] 陈建华,冯其明,卢毅屏.硫化矿物有机抑制剂结构与性能的研究.有色金属,1998,50(3),60~63.
    [126] R.J.Pugh, Macromolecular orgnic depressants in sulphide flotation, International Journal of Mineral Processing, 1989, 25: 101-146.
    [127] 孟书青.组合药剂抑制毒砂.有色金属(选矿部分),1987,3:33.
    [128] 金华爱,彭志宏,曾美云.用高分子有机抑制剂浮选分离黄铜矿和毒砂[J].有色金属(选矿部分),1990(1):19-22.
    [129] R.Jin et al, Flotation of sphalerite from galena with sodium carboxymethyl cellulose as a depressant, Mineral and Metall Process, 1987, (4), 227-232.
    [130] M.A.爱格列斯.浮选调整剂.冶金工业出版社,1982,8-9.
    [131] 朱玉霜,朱建光.浮选药剂的化学原理.中南工业大学出版社,1987.
    [132] 林强.中南工业大学博士学位论文,1992.
    [133] Linqiang, Synthtics of small molecular weight organic depressants and depressions of pyrite and arsenopyrite using these depressant. Jourrnal of Central-South Institute of Mining and Metallurgy, 1991, 22(3): 3714.
    [134] 熊道陵,胡岳华,贺治国.有机抑制剂在硫化矿浮选中抑制砷黄铁矿的研究进展.矿冶工程.2004,2,41-43.
    [135] 陈建华,冯其明,卢毅屏.新型黄铁矿小分子有机抑制的抑制情况[J].湖南有色金属,1998(3):8-10.
    [136] 陈建华,冯其明.新型有机抑制剂CTP对硫化矿的抑制性能[J].湖南有色金属,1995(11):29-30.
    [137] 陈金中,宣道中.铁闪锌矿与磁黄铁矿浮选分离新方法研究.有色金属.1994,1,34~40.
    [138] 徐竞,孙伟,张芹,刘辉,胡岳华.新型有机抑制剂RC对黄铁矿和磁黄铁矿的抑制作用研究.矿冶工程.2003,6,27~29.
    [139] 杨文.腐植酸盐在有色金属硫化矿选矿中的应用.第一届选矿会议论文集.
    [140] 钱鑫.腐植酸钠在硫化矿除砷中的应用.第一届选矿会议论文集.
    [141] 唐晓莲,钱鑫.腐殖酸钠分选黄铜矿和毒砂的研究[J].有色金属(选矿部分),1989(6):22-24.
    [142] 黎性海,李长祯,李芳照.腐殖酸铵(钠)铜铅分腐和硫砷分离浮选的研究[J].有色金属,1988(4):11-14.
    [143] 赵祖乔,李瑞人.利用反浮选对黄铁矿进行脱砷研究[J].矿产综合利用,2000(2):7-11.
    [144] 张芹.铅锑锌铁硫化矿电化学浮选行为及表面吸附的研究.中南大学博士学位论文,2004.
    [145] 张芹,胡岳华,顾帼华.铁闪锌矿的浮选行为及其表面吸附机理.中国有色金属学报,2004,14(4):676-680.
    [146] 张芹,胡岳华,顾帼华.磁黄铁矿自诱导浮选电化学的研究.有色金属(选矿部分),2004,(2):4-6.
    [147] 张芹,胡岳华,顾国华.脆硫锑铅矿与磁黄铁矿在石灰介质中的浮选分离研究.矿冶工程,2004,24(2):30-32.
    [148] 余润兰.铅锑铁锌硫化矿浮选电化学基础理论研究.中南大学博士学位论文,2004.
    [149] 余润兰,胡岳华,邱冠周,覃文庆.循环伏安法研究脆硫锑铅矿与捕收剂相互作用机理.中南工业大学学报,2004,No.2.
    [150] 余润兰,胡岳华,邱冠周,覃文庆.循环伏安法研究铁闪锌矿的腐蚀及与捕收剂的相互作用.矿冶工程,2004,24(1).
    [151] Qiu Guanzhou, Yu Runlan, Hu Yuehua, Qin Wenqing. EIS study of corrosive electrochemistry of jamesonite[J]. Transactions of Nonferrous Metals Society of China. 2004, No.6.
    [152] 余润兰,邱冠周,胡岳华,覃文庆.铁闪锌矿的腐蚀电化学研究.中国腐蚀与防护学报,2004,24(4).
    [153] JCPDS标准卡片数据.www.crystalstar.org.粉晶X射线衍射JCPDS在线数据库.
    [154] 王群.亚硫酸盐对铜离子活化的闪锌矿及铁闪锌矿抑制作用的研究,中南矿冶学院学报,1985(3):126~134.])
    [155] 苏思平.车河选矿工艺流程改造实践.有色金属(选矿部分),2001,1,5~8.
    [156] Girczys, J. and Laskowski, J., Mechanism of flotation of unactivated sphalerite with xanthates, Trans. Inst. Min. Metall., 1972(81): 118~127.
    [157] Mukherjee, A. D. and Sen, P.K., Flotability of sphalerite in relation to its iron content, J.Mines, Metals, Fuels, 1976(10): 327~334.
    [158] Clifford, K. L., Mechanism of lotation of unactivated sphalerite with xanthates, Ph. D.Thesis, 1971, university of otah, Cited in Finkelstein N.P. and Allison S.A., 1976.
    [159] Finkelstein, N. P. and Allison, S. A., The chemistry of activation, deactivation and depression in the flotation of zinc sulfide: a review. Flotation: A.M. Gandin Memorial Volume, 1976, 1: 414.
    [160] 松全元.二氧化硫对闪锌矿可浮性影响的研究,国外金属矿选矿,1983(1):51~58.
    [161] Finkelstein, N.P. The activation of sulphide minerals for flotation: a review, Internationl Journal of Mineral processing, 1997, 52: 120~181.
    [162] Finkelstein, N. P., Addendum to the activation of sulphide minerals for flotation: a review, International Journal of mineral processing, 1999, 55: 283~286.
    [163] Trahar, W. J., Senior, G. D., Heyes, G. W. and Creed, M.D., The activation of sphalerite by lead—a flotation perspective, Int.J.Miner. Process, 1997, 49: 121~148.
    [164] Mory, M. S., Grano, S. R., Ralston, J., Prestidge, C. A. and Verity, B., The Electrochemistry of Pb~Ⅱ Activated Sphalerite in Relation to Flotation, Minerals Engineering, 2001, 14(9): 1009~1017.
    [165] Fereshteh , R., Caroline, S. and James, A. E, Sphalerite activation and surface Pb ion Concentration, Int. J. Miner. Process. 2002, 67: 43~58.
    [166] Yang, P. J., Doprinos Teoriji MeHanizma Aktivjramjya I kolektiranja sulfidnih minerala cinrka, Doktorska disertacija, Rudarsko-geoloski fakutef, Beograd, 1983.
    [167] R-H·伊云等.在酸性溶液中用铜离子活化闪锌矿的电化学研究,国外金属矿选矿,1997,6:13~19.
    [168] Cecile, J. L., Applicotion of XPS in the study of sulfide Mineral Flotation-A Review, Flotation of sulfide Minerals[C]. K S E. Forrsberg. ed., Elsevier. Amsterdam, 1985, 61~88.
    [169] Perry, D. L., Tsao, L. and Tayolr, L.A., Surface studies of the Inter-action of Copper ions with metal sulfide minerals[A]. Proceedings-The Electrochemical Society, 1984(10): 169~184
    [170] Maust, E.E. and Richardson, P.E., Electrophysical Considerations of the Activation of sphalerite for Flotation. V S Bureav of Mines Report of Investigation, 1976, 8108.
    [171] Andrea, P. G., Angela, G. L., Athryn, E. P. K. and Roger, C. S., The mechanism of copper activation of sphalerite, Applied surface science, 1999, 137: 207~223.
    [172] 马鸿文.工业矿物与岩石.北京:化学工业出版社,2005.
    [173] 崔毅琦,童雄,周庆华,何剑.国内外磁黄铁矿浮选的研究概况.金属矿山,2005,5,24-26.
    [174] 王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计.长沙:中南工业大学出版社,1996.
    [175] 梁世懿,成本诚著.高等有机化学[M].北京:高等教育出版社,1993.
    [176] 张启峰,张世平,张启涛.有机分析教程.北京:中国标准出版社,1996.448~494.
    [177] 余仲建.有机元素定量分析.北京:高等教育出版社,1959.101-161.
    [178] 邢其毅,徐瑞秋,周政.基础有机化学(上册).北京:高等教育出版社,1980.351-389.
    [179] 钟海庆.红外光谱法入门[M].北京,化学工业出版社,1984,118~132.
    [180] 钟宣.浮选药剂的结构与性能-浮选药剂性能的电负性计算法.有色金属(选冶部分),1975,4,44-51,59.
    [181] Pauling.化学键的本质.北京:科学出版社.
    [182] 王淀佐,白世斌.浮选有机抑制剂的结构与性能.有色金属(选冶部分),1983,2,47~53.
    [183] 王淀佐.浮选药剂性能的HLB计算.有色金属(选冶部分),1977,8,42~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700