用户名: 密码: 验证码:
云南保山核桃坪铅锌矿床矿化分带模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保山地块夹持于怒江断裂带和澜沧江断裂带之间,是一个铁、铜、金、银、铅、锌多金属矿化集中区。核桃坪铅锌矿床是发育于保山地块内的一个大型铅锌铜多金属矿床,矿体主要呈脉状、似层状赋存于北北东向核桃坪复式背斜的东翼近核部的上寒武统核桃坪组和沙河厂组大理岩化灰岩及矽卡岩中,并严格受近SN向的断裂带及层间破碎带的控制。本文通过大量的立体蚀变—岩相填图和资料收集,在分析矿床地质特征的基础上,选取V,矿体(群)为研究对象,分六个中段对矿(化)体、蚀变岩及其矿物组合、成分、生成顺序、空间分布特征等进行系统的甄别研究,结合流体的物理化学性质的分析,探讨建立了矿床的矿化分带模式。本研究主要取得以下成果和认识:
     1、根据矿物的生成顺序、脉体穿插和地质体空间关系等特点,将核桃坪铅锌矿床成矿作用分为矽卡岩—热液硫化物成矿期和表生期。区内热液蚀变矿化较为复杂,明显具有多阶段性活动特点,矽卡岩—热液硫化物成矿期可细分为6个阶段,即:(Ⅰ)干矽卡岩阶段、(Ⅱ)湿矽卡岩阶段、(Ⅲ)石英—黄铁矿—黄铜矿—闪锌矿阶段、(Ⅳ)石英—闪锌矿—方铅矿—黄铜矿阶段、(Ⅴ)石英—碳酸盐—闪锌矿—方铅矿阶段和(Ⅵ)碳酸盐阶段。其中,Ⅲ、Ⅳ、Ⅴ三个阶段是铅锌多金属成矿的主要阶段。
     2、矿床具有明显的水平和垂直蚀变矿化分带特征,水平分带为中心条带对称结构。自矿体中心向围岩、自下而上,可以分为矽卡岩—黄铁矿化带、矽卡岩—铅锌矿化带、碳酸盐—石英—矽卡岩化带、碳酸盐—绿泥石化带,对应的矿石矿物组合依次为方铅矿—闪锌矿组合、闪锌矿—方铅矿组合、闪锌矿—黄铜矿—方铅矿组合和黄铁矿—黄铜矿—闪锌矿—方铅矿组合,矿石矿物组合和结构构造类型变复杂。
     3、核桃坪铅锌矿成矿流体的包裹体岩相学、显微测温及包裹体成分分析结果表明,从早期干矽卡岩阶段至晚期碳酸盐阶段的整个成矿流体演化过程中,流体温度、盐度、压力、密度总体上呈现出逐渐下降的趋势,闪锌矿大量沉淀的温度为190~210℃,晚阶段流体比早阶段显示更为还原的环境条件。
     4、根据蚀变矿物组合及矿化分带特征,结合流体的物理化学性质,建立了该矿床的蚀变矿化分带模式。该蚀变矿化分带模式在西南“三江”多金属成矿域具有普遍意义,也有助于对核桃坪铅锌矿床成矿流体运聚和富集成矿的深入理解。
     5、该矿床属岩浆期后热液充填交代成因,为远端脉型矽卡岩型(类矽卡岩型)铅锌铜多金属矿床,地层岩性、断裂发育特征及流体运移的多阶段性,是蚀变矿化分带的关键控制因素。根据目前矿体揭露情况来看,其深部仍有很大的找矿前景,并存在接触交代矽卡岩型和斑岩型矿床的成矿潜力。
The Baoshan block is a Fe, Cu, Au, Ag, Pb, Zn polymetallic metallogenic belt, lies between Nujiang and Lancang jiang fault zones. The Hetaoping as a large Pb-Zn-Cu polymetallic deposit, where in the Baoshan block, and whose ore bodies were stratiform or stratoid, hosted in the group of limestone and skarn of the Hetaoping group and Shachanghe group, on the east of NNE anticline, in upper Cambrian, and, was strictly controlled by nearly SN fault zone and fractured zones of interbedded faults. This paper study of the mineral assemblage, chemical composition, succession of the minerals formed, distribution feature, and, based on the analysis of the geological characteristics and the study of the altered rocks and lithofacies mapping of the V1 ore bodies. The study discussed the mode of the deposit's mineralization zoning, association with the physical chemistry properties of the fluid. Some achievements have been getting as below.
     1.Based on the generation sequence and interpenetrating relationship of mineral, The author proposed that the mineralization can be divided into skarn stage, hydrothermal sulfide stage and supergene stage. Hydrothermal alteration of the ore district is complex and characterized with multi-stage activities, which is reflected mainly in skarn-hydrothermal sulfide mineralization. six mineralization stages can be distinguished:(Ⅰ) dry skarn stage, (Ⅱ) wet skarn stage, (Ⅲ) skarn-quartz-pyrite-chalcopyrite-sphalerite stage, (Ⅳ) quartz-sphalerite-galena-chalcopyrite stage (Ⅴ) quartz-carbonate-sphalerite-galena stage and (VI) carbonate stage. The stage(III), (Ⅳ) and (Ⅴ) are the main mineraliztion stage of lead-zinc polymetallic
     2.The deposit has obvious horizontal and vertical alteration banding phenomenon. Horizontal zone has center-symmetrical structure. There are 4 zones form the center of the bodies to the wall rock, skarn-pyrite zone, skarn-Pb-Zn zone, carbonate-Quartz-skarn zone, carbonate-chlorite zone. The zones according to the mineral combination can be divided as, galena-sphalerite zone, sphalerite-galena zone, sphalerite-chalcopyrite-galena zone and pyrite-chalcopyrite-sphalerite-galena zone. The characteristics of the alteration zoning Vertically from deep to the surface is same with the that of horizontal.
     3.The analysis results shows that the fluid temperature, salinity, pressure, and density appears on the whole is descendant trend, from skarn stage to carbonate phase, according to fluid inclusions petrography, temperature measuring, and inclusion composition. The precipitation temperature of larger amounts sphalerite was 190~210℃. Inclusions composition show that the late phase of of fluid is more reduction than that of the early stage. It shows that the late phase is more reducing than the early stage by inclusion.
     4.The model of alteration and metallogenesis zoning was established on the basis of the mineral assemblages and mineralization zoning characteristics, combined with the physical and chemical properties of the fluid. It has the universal significance of the model in the Southwest "three rivers" polymetallic ore field, and, it's could help to understand the ore-forming fluid migration and mineralization of the Hetaoping Pb-Zn deposit.
     5.The genesis of the deposit belongs to a postmagmatic hydrothermal metasomatic type, as vein skarn (similar skarn type) Pb-Zn-Cu polymetallic deposit. It is a multi-stage by lithology, fracture characteristics and development of fluid migration. There is a good prospects to finding the depth mineral resources, and there is contact metasomatic skarn and porphyry mineralization potential, directed against the situation of the ore body.
引文
[1]陶琰,胡瑞忠,朱飞霖,等.云南保山核桃坪铅锌矿成矿年龄及动力学背景分析[J].岩石学报,2010,26(6):1760-1772.
    [2]姜朝松,周瑞琦,周真恒,等.滇西地区及邻区构造单元划分及其特征[J].地震研究,2000,23(1):21-29.
    [3]夏庆霖,陈永清,卢映祥,等.云南芦子园铅锌矿床地球化学、流体包裹体及稳定同位素特征[J].地质科学—中国地质大学学报,2005,30(2):177-186.
    [4]张长青,余金杰,毛景文,芮宗瑶,等.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质,2009,28(2):195-210.
    [5]云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990.
    [6]董文伟.保山镇康地块成矿条件及典型矿床成矿模式[J].云南地质,2007,26(1):56-61.
    [7]薛传东,韩润生,杨海林,等.滇西北保山核桃坪铅锌矿床成矿流体来源的同位素地球化学证据[J].矿床地质,2008,27(2):243-252.
    [8]Huchon P,Le Pichon X,Rangin C.Indonchina Peninsula and the collision of India and Eurasia [J].Geology,1994,22:27-30.
    [9]Murray R W,Brink M R B,Jones D L,et al.Rareearth elements as indicators of different marine depositional environments in chert and shale. Geology,1990, 18(3):268-271.
    [10]Person M, Garvan A. A sensitivity of the driving forces on fluid flow during continental-rift basin evolution[J]. Geol. Soc.Am. Bull,1994,106:461-475.
    [11]何科昭,赵崇贺,何浩生,等.滇西陆内裂谷与造山作用[M].中国地质大学出版社,1996.
    [12]李小明,胡宝清.初论兰坪盆地构造流体与成矿作用的时空格架及可能的成矿模式[J].大地构造与成矿学,2001,25(2):187-193.
    [13]Das B K.Occurrence of skarn rocks in Chaur area,Himalaya India[J].Curt Sci., 1986,55(4):182-185.
    [14]Pueyo J J,Cardellach E,Bitzer K,Taberner C. Proceedings of geofluids Ⅲ[J]. J. Geochem. Explor.,2000,83:69-70.
    [15]Yang Liqiang, Deng Jun,Zhang Jing, Guo Chunying. Decrepitation Thermometry and Compositions of Fluid Inclusions of the Damoqujia Gold Deposit, Jiaodong Gold Province, China:Implications for Metallogeny and Exploration[J]. Journal of China University of Geosciences,,2008,19(4).
    [16]Yale M M,Morgan J P.Asthenosphere flow model of hotspot-ridge interactions:a comparison of Iceland and Kerguelen.Earth Planet Sci Lett,1998,161:45-56.
    [17]李志国,曾普胜,符得贵,喻学惠.云南核桃坪矿集区矿床特征及成因初探[J].东华理工学院学报,2006,29(3):211-215.
    [18]朱余银,韩润生,薛传东,等.云南保山核桃坪铅锌矿床地质特征[J].矿产与地质,2006,20(1):32-35.
    [19]李永森,陈炳蔚.怒江、澜沧江、金沙江地区构造与成矿作用[J].矿床地质,2001;10(4):289-299.
    [20]邓必芳.保山-镇康地区汞、铅锌矿床的成矿模式[J].云南地质,1995;14(4):355-364.
    [21]Boynton W V.Geochemistry of the rare earth elements:meteorite studies [J]. Rare earth element geochemistry,1984:63-114.
    [22]Munoz M, Boyce A J, Courjault-Rade P, Fallick A E, Tollon F.1994. Multi-stage fluid incursion in the Palaeozoic basement-hosted Saint-Salvy ore deposit (NW Montagne Noire, southern France)[J]. Applied Geochemistry,9(6):609-626.
    [23]Oliver N H S.1996.Review and classification of structural controls on fluid flow during regional metamorphism [J]. J..Metamor. Geol.,14:477-492.
    [24]卢焕章.地球中流体研究的一些热点[J].地学前缘,2001,8(4):386-390.
    [25]翟裕生.论成矿系统[J].地学前缘,1999,6(1):13-28.
    [26]赵一鸣,林方蔚.中国矽卡岩矿床[M].中国地质出版社,1990.
    [27]梁祥济等.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].学苑出版社,2000.
    [28]鄂东南地区广义矽卡岩矿床的成因与深部找矿[M].中国地质,34:102-158沈上越,张保民,魏启荣,刘祥品.金沙江带洋脊—准洋脊火山岩特征研究.特提斯地质.1994,18:130-142.
    [29]李永森,陈炳蔚.怒江、澜沧江、金沙江地区构造与成矿作用[J].矿床地质,1991,10(4):289-299.
    [30]何科昭赵崇贺等.滇西陆内裂谷与造山作用[M].中国地质大学出版社,1996.
    [31]Bijwaard H,Spakman W.Tomographic evidence for a narrow whole mantle plune below Iceland.Earth Planet Sci Lett,1999,166:121-126.
    [32]Miguel Gaspar, Charles Knaack, Lawrence D. Meinert.2007. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit [J].Science Direct,72:185-205.
    [33]卢焕章.成矿流体[M].北京:北京科学技术出版社,1997.
    [34]卢焕章.地幔岩流体包裹体研究[J].岩石学报,2008,24(9):1954-1960.
    [35]卢焕章,范宏瑞,倪培,等.流体包裹体[M].科学出版社,2004.
    [36]Einaudi M T,Burt D M.Introduction:Terminology,classification and composition of skarn deposit[J].Economic Geology,1982,77(4):745-760.
    [37]Rehkamper M,Hofmann A W.Recycle ocean crust and sediment in Indian Ocean MORB.Earth Planet Sci Lett,1997,147:93-106.
    [38]张敏,张建锋,李林强,等.激光拉曼探针在流体包裹体研究中的应用[J].世界核地质科学,2007,24(4):238-244.
    [39]范建国,倪培,田京辉.成矿流体的流体包裹体同位素示踪探讨[J]].地质找矿论丛,2000,15(3):275-279.
    [40]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,2007,23(9):2085-2108.
    [41]朱华平,孙丰月,李碧乐,等.青海驼路沟钴矿床流体包裹体及成矿物理化学条件[J].地球科学与环境学报,2007,29(4):351-355.
    [42]杨晓君,伍式崇,付建明,等.湘东锡田垄上锡多金属矿床流体包裹体研究[J].矿床地质,2007,26(5):502-510.
    [43]张文淮,陈紫英.流体包裹体地质学[M].中国地质大学出版社,1993.
    [44]LEE T Y,LAWVER L A,Cenozoic plate reconstruction of Southeast Asia[J], Tectonophysics,1995,251:85-138.
    [45]Taylor B E.1986. Magmatic volatiles:Isotope variation of C, H and S-Reviews in Mineralogy [A]. In:Stable isotopes in high temperature geological process[C]. Mineralogical Society of America,16:185-226.
    [46]Veizer J, Holser W T and Wilgus C K.1980. Correlation of 13C/12C and 34S/32S secular variation[J]. Geochim. et Cosmochim. Acta.,44:579-588.
    [47]李大新,赵一鸣.江西焦里夕卡岩银铅锌钨矿床的矿化夕卡岩分带和流体演化 [J].地质评论,2004,50(1):16-24.
    [48]倪智勇,李诺,管申进,等.河南小秦岭金矿田大湖金钼矿床流体包裹体特征及矿床成因[J].岩石学报,2008,24(9):2054-2067.
    [49]张敏,张建锋,李林强,等.激光拉曼探针在流体包裹体研究中的应用[J].世界核地质科学,2007,24(4):238-244.
    [50]张文淮,张志坚.成矿流体及成矿机制[J].地学前缘,1995.
    [51]王巧云,胡瑞忠,彭建堂,等.湖南瑶岗仙钨矿床流体包裹体特征及其意义[J].岩石学报,2007,23(09):2263-2273.
    [52]朱华平,孙丰月,李碧乐,等.青海驼路沟钴矿床流体包裹体及成矿物理化学条件[J].地球科学与环境学报,2007,29(4):351-355.
    [53]Einaudi M T,Burt D M.Introduction:Terminology,classification and composition of skarn deposit[J].Economic Geology,1982,77(4):745-760.
    [54]Archambault G,Daigneault R,Roujeau A.Mechanics of shear zones and fault belts development by anastomosing patterns of fractures at all scales.Meckanics of jointed and Faulted Rock.Balkema,Rotterdam.1990,197-204.
    [55]谭文娟,魏俊浩,郭大招,等.地质流体及成矿作用研究综述[J].矿产与地质,2005,14(4):226-231.
    [56]李萌清.吉林正岔铅锌矿床成矿流体地球化学[J].中国地质科学院学报,1994.
    [57]陈学明,邓军,白金刚,沈崇.云南白牛厂矿区古生代沉积盆地的成矿流体系统[J].现代地质,2000,14(14):173-178.
    [58]潘小菲,刘伟.北山金窝子金矿床流体包裹体特征及成矿流体演化[J].岩石学报,2006,22(1):253-263.
    [59]金爱民,楼章华,朱蓉,孙毛明,张文正,魏新善.地下水动力场的形成、演化及其流体特征分析[J].浙江大学学报(理学版),2003,30(3):337-343.
    [60]付绍洪,顾雪祥,王苹.川西北马脑壳金矿床流体包裹体Rb-Sr同位素组成:对矿床成因的制约[J].地球化学,2004,33(1):94-98.
    [61]季克俭,吴汉学.热流矿床的矿源、水源和热源及矿床分布规律[M].北京科技出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700