用户名: 密码: 验证码:
湖南黄沙坪铅锌矿成岩成矿深度估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖南黄沙坪矽卡岩型铅锌矿位于南岭成矿带中段北缘,其矿体类型多样,矿种丰富,前人在此做了大量的工作,但在其成矿深度上存在很大差异。本文在充分分析和综合前人工作成果的基础上,重点研究前人研究较少分歧较大的成岩成矿深度,分析对比各地质压力计的优劣,得出较为合理的黄沙坪成岩成矿深度,为其深部找矿、深部预测提供理论依据。
     通过对湖南黄沙坪矿床地质特征的系统分析,运用了花岗岩地质压力计、闪锌矿地质压力计和流体包裹体地质压力计分别研究了该矿区的成岩成矿深度。通过对比研究和分析,取得以下认识:
     (1)与该矿床成矿相关的岩体,在成矿期普遍发生了自蚀变作用,使成矿岩体组分发生变化。岩体普遍发生硅化,致使在运用花岗岩地质压力计计算成岩深度时,所得计算结果普遍偏低。花岗岩地质压力计自身具有不完善的缺陷,如花岗岩中挥发分含量不能太高,其矿物含量也是根据CIPW理论公式计算出来的,与实际情况有一些出入,所以它只能作为半定量的地质压力计。本次实验通过判定矿区的三类岩石形成的相对深度,与实地地质现象非常吻合。这说明了该方法具有相对可靠的参考价值。
     (2)闪锌矿地质压力计在使用的过程中,实验条件要求较为苛刻。首先必须判断闪锌矿,黄铁矿和磁黄铁矿共生,之后还要确定磁黄铁矿为六方磁黄铁矿。矿物在生长过程中,从核部到边部其元素含量不断发生变化,用电子探针测量时,即使是同一矿物颗粒,所得的元素组成也有差别。这种矿物生长的特性使同一样品压力计算结果相差很大。L T Bryndzia and SD Scott(1990)和Hutchimon andScott (1981)提出的公式的公式各有优劣,根据实际情况分别运用这两个公式计算,并以实际的地质现象为依据,选取合理的计算结果。
     (3)流体包裹体的方法是相对较准确的计算压力方法,其理论体系也较为完善。由于流体包裹体对压力非常敏感,后期的构造变形对包裹体形态的改变会对其测温和计算带来影响。通过岩相学和统计学分析,依据实际的地质情况,确定较为合适的压力值。
     (4)本文以地质事实为依据,通过花岗岩地质压力计估算,与该矿床成矿有关岩体的成岩压力为0.7—1.5Kb,闪锌矿地质压力计求得闪锌矿的成矿压力为0.45—0.69kb,石英壳中高盐度流体包裹体的形成压力为0.8—1.5Kb。根据静岩压力,按照270bar/km地压梯度,该矿床成岩深度为2.6—5.5Km,闪锌矿的成矿深度为1.7—2.5Km,考虑到在闪锌矿以下在矽卡岩中还有辉钼矿和白钨矿的矿化,所以黄沙坪矿区整体上成矿深度应该为1.7—3Km。
Lying in the northern margin of the middle section of Nanling metallogenic belt,Huangshaping lead-zinc deposit is a skarn type in Hunan province. Many scholarshave paid attention to it for its rich types; however, the researches about its diageneticand metallogenic depths have much differences in results. Based on former studies,this paper is focused on the depth study of the deposit which has been given a littleattention to and is in most controversial condition. By comparing geobarometers ofvarious types, a reasonable data for diagenetic and metallogenic depths ofHuangshaping deposit will be reached to provide theoretical foundation to deepprospecting and deep prediction.
     Through systematically analyzing geological characteristics of Huangshapingdeposit in Hunan province, its diagenetic and metallogenic depths are studied by usinggranite geobarometer, sphalerite geobarometer and fluid inclusion geobarometerrespectively. After comparison and analysis, the results as followed:
     (1) Rock related to the mineralization of this deposit has gone throughself-alteration in the forming, which leads to the changes of rock composition. As thesilicification is common for rock in its change, the calculated results of metallogenicdepth measured by granite geobarometer are low. Besides, there are some defects ofgranite geobarometer, such as the percentage of volatile matter in granite should notbe high and the mineral content, obtained according to CIPW theoretical formula, isnot accurate enough. Thus, this result is only counted as a semi-quantitative one. Inthe paper, the experiment results for relative diagenetic and metallogenic depths ofthree kinds of rocks in the Huangshaping deposit are extremely consistent with theactual geological phenomenon there. From this perspective, the methods used in thepaper have some reference value.
     (2) For sphalerite geobarometer, there are more requirements for experimentalconditions. At first, whether sphalerite, pyrite and pyrrhotite inter-grew and thenwhether the pyrrhotite is hexa-pyrrhotite should be clear known. As the percentage of each element has been changing from the inner part to marginal part throughout theprocess of the mine’s formation, even results of the same mineral particle measuredby EMPA would be different in different conditions. Because of characteristics of thismine’s formation, the results calculated from the same sample differ greatly.Therefore, the formulas, proposed by L T Bryndzia&SD Scott(1990) andHutchimon&Scott (1981) which have their own advantages, will be applied inaccordance with the actual situation. Based on the real geological phenomenon, areasonable result will be reached.
     (3) Pressure calculation of fluid inclusion has the advantage of being moreaccurate besides having well-developed theories. Since the fluid inclusion is sensitiveto pressure, changes of fluid inclusion during the structural deformation in post-oreperiod influence its temperature-measuring and calculation. However, throughpetrographical and statistics analysis, a proper pressure would be determined in theconsideration of actual geological condition.
     (4) On the basis of geological phenomenon and with the help of granitegeobarometer, diagenetic pressure of rock body in the Huangshaping deposit is0.7—1.5Kb, metallogenic pressure of the sphalerite is0.45—0.69kb and the formingpressure of high-salinity fluid inclusion in silica is0.8—1.5Kb. By the considerationof lithostatic pressure and pressure gradient of270bar/km, the diagenetic depth ofHuangshaping deposit is2.6—5.5Km and metallogenic depth of sphalerite is1.7—2.5Km. However, the metallogenic depth of the whole deposit in Huangshapingtown should be1.7—3Km, because molybdenite and scheelite in skarn, under thesphalerite, might have been mineralized.
引文
[1]伍光英,马铁球,柏道远,等.湖南宝山花岗闪长质隐爆角砾岩的岩石学、地球化学特征及锆石SHRIMP定年[J].现代地质.2005(2):198-204.
    [2]路远发,马丽艳,屈文俊,等.湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究[J].岩石学报.2006(10):2483-2492.
    [3]彭建堂,胡瑞忠,毕献武,等.湖南芙蓉锡矿床40Ar/39Ar同位素年龄及其地质意义[J].矿床地质.2007,26(3):237-24.
    [4]毛景文,李晓峰,Lehmann Bernd,等.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义[J].矿床地质.2004,23(2):164-175.
    [5]马丽艳,路远发,屈文俊,等.湖南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及其地质意义[J].矿床地质.2007(4):425-431.
    [6]李华芹,路远发,王登红,等.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义[J].地质论评.2006(1):113-121.
    [7]毛景文,李红艳,宋学信.湖南柿竹园钨锡铋钼多金属矿床地质与地球化学[M].北京:地质出版社,1998:1-215.
    [8]王登红,李华芹,秦燕,等.湖南瑶岗仙钨矿成岩成矿作用年代学研究[J].岩矿测试.2009(3):201-208.
    [9]童潜明.湘南黄沙坪铅一锌矿床的成矿作用特征[J].地质论评.1986,32(6).
    [10]王大伟,Scott S. D.闪锌矿地质压力计原理及其应用[J].地质论评.1988(3):277-281.
    [11]梁祥济著.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].北京:学苑出版社,2000:365.
    [12]赵一鸣等著.中国矽卡岩矿床[M].北京:地质出版社,1990:354.
    [13]张德会,周圣华,万天丰,等.矿床形成深度与深部成矿预测[J].地质通报.2007(12):1509-1518.
    [14]金旭东,张德会,万天丰.隐伏岩体顶上带与深部成矿预测[J].地质通报.2010(Z1):392-400.
    [15] Meinert L D, Dipple G M, Nicolescu S. World Skarn Deposits[J]. Economic Geology100thAnniversary Volume.2005:299-336.
    [16]邱家骧,林景仟主.岩石化学[M].北京市:地质出版社,1991:276.
    [17] Becker S P, Fall A, Bodnar R J. Synthetic Fluid Inclusions. XVII.1PVTX Properties of HighSalinity H2O-NaCl Solutions (>30wt%NaCl): Application to Fluid Inclusions that Homogenizeby Halite Disappearance from Porphyry Copper and Other Hydrothermal Ore Deposits[J].Economic Geology.2008,103:539-554.
    [18]卢焕章等著.流体包裹体[M].北京:科学出版社,2004:487.
    [19]池国祥,赖健清.流体包裹体在矿床研究中的作用[J].矿床地质.2009(6):850-855.
    [20] Uchida E, Endo S, Makino M. Relationship between solidification depth of granitic rocks andformation of hydrothermal ore deposits[J]. Resource Geology.2006,57(1):47-56.
    [21] Paul B. Barton, Toulmin P. Phase relations involving sphalerite in the Fe-Zn-S system[J].Economic Geology.1966,61(5):815-849.
    [22] S. D. Scott, Barnes H L. Sphalerite Geothermometry and Geobarometry[J]. Economic Geology.1971,66:653-669.
    [23] Scott S D. Experimental Calibration of the Sphalerite Geobarometer[J]. Economic Geology.1973,68:466-474.
    [24] Lusk J, Ford C E. Experimental extension of the sphalerite geobarometer to10Kbar[J]. AmericanMineralogist.1978,63:516-519.
    [25] Shimizu M, Shimazaki H. Application of the Sphalerite Geobarometer to Some Skarn-Type OreDeposits[J]. Mineral Deposita.1981,16:45-50.
    [26] Bryndzia L T, Scott S D, Spry P G. Shpalerite and Hexagonal Pyrrhotite Geobarometer:Experimental Calibration and Application to the Metamorphosed Sulfide Ores of Broken Hill,Australia[J]. Economic Geology.1988,83:1193-1204.
    [27] Bryndzia L T, Scott S D, Spay P G. Sphalerite and Hexagonal Pyrrhotite Geobarometer:Correction in Calibration and Application[J]. Economic Geology.1990,85:408-411.
    [28] Blundy J, Cashman K. Petrologic Reconstruction of Magmatic System Variables and Processes[J].Mineralogy&Geochemistry.2008,69:179-239.
    [29]刘悟辉.黄沙坪铅锌多金属矿床成矿机理及其预测研究[D].中南大学,2007.
    [30]江元成,龚述清,李玉生,等.湖南省桂阳县黄沙坪铅锌矿资源潜力调查报告[R].,2005.
    [31]童潜明,伍仁和.郴桂地区钨锡铅锌金银矿床成矿规律[M].地质出版社,1995.
    [32]姚军明,华仁民,林锦富.湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征[J].岩石学报.2005(3):688-696.
    [33]丁存根,张术根,马春,等.宁镇中段矽卡岩型矿床的闪锌矿及其地质压力计应用讨论[J].地质学刊.2009(2):124-129.
    [34] Hutchison M N, Scott S D. Sphalerite Geobarometry in the Cu-Fe-Zn-S System[J]. EconomicGeology.1981,76:143-153.
    [35] Froese E, Gunter A E. A Note on the Pyrrhotite-Sulfur Vapor Equilibrium[J]. Economic Geology.1976,71:1589-1594.
    [36] Shimizu M, Shimazaki H. Application of the Sphalerite Geobarometer to SomeSkarn-Type OreDeposits[J]. MineralDeposita.1981,16:45-50.
    [37]潘兆橹.结晶学及矿物学下册(第三版)[M].地质出版社,1994.
    [38]池国祥,周义明,卢焕章.当前流体包裹体研究和应用概况(英文)[J].岩石学报.2003(2):201-212.
    [39] Roedder E. Fluid Inclusions[J]. Reviews in Mineralogy.1984,12:644.
    [40]董树义.山东沂南金矿床成因与成矿规律和成矿预测[D].中国地质大学(北京),2008.
    [41]应立娟,唐菊兴,王登红,等.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试.2009(3):265-268.
    [42]姚军明,华仁民,林锦富.湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征[J].岩石学报.2005(3):688-696.
    [43]李洪茂,时友东,刘忠,等.东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J].地质通报.2006(Z1):277-281.
    [44]王永磊.湘南钨锡多金属矿集区构造—岩浆—成矿作用研究[D].中国地质科学院,2008.
    [45] Baker T, Lang J R. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns:an example from the Bismark Deposit, Mexico[J]. Mineralium Deposita.2003(38):474-495.
    [46] Vallance J, Markowski A. Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarndeposits (southeastern Ecuador)[J]. Miner Deposita.2009(44):389-413.
    [47]李华芹,路远发,王登红,等.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义[J].地质论评.2006(1):113-121.
    [48]杨宗喜,毛景文,陈懋弘,等.云南个旧卡房矽卡岩型铜(锡)矿Re-Os年龄及其地质意义[J].岩石学报.2008(8):1937-1944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700