用户名: 密码: 验证码:
湘南王仙岭花岗岩体的特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
王仙岭花岗岩体位于湖南省郴州市东南约10km处,地处华南腹地的南岭钨锡多金属成矿区中段。本文在对前人资料和研究成果进行全面总结的基础上,对王仙岭岩体进行详细的野外地质调查,结合年代学、矿物学、岩石地球化学、同位素地球化学的研究,讨论了王仙岭岩体的形成时代和成岩期次、矿物学特征、岩浆的源区和演化特征。并对比了华南同时代相似花岗岩类,探讨了该时期花岗岩类的源区、构造背景和地球动力学演化过程。主要取得了以下认识:
     (1)王仙岭花岗岩体由印支期电气石黑云母花岗岩、云英岩化电气石花岗岩和侵入岩体内部的燕山期黑云母二长花岗岩株组成,其中电气石黑云母花岗岩和云英岩化电气石花岗岩为同期同源花岗岩。
     (2) LA-MC-ICP-MS锆石U-Pb测年结果显示王仙岭岩体主体的电气石黑云母花岗岩的形成时代为235.0±1.3Ma,而黑云母二长花岗岩株的年龄为155.9±1.0Ma,说明王仙岭岩体至少经历了两次岩浆活动,是一个印支-燕山期的复式岩体。
     (3)电气石黑云母花岗岩和黑云母二长花岗岩中的白云母主要为次生白云母,电气石黑云母花岗与云英岩化电气石花岗岩中电气石均属黑电气石。
     (4)印支期电气石黑云母花岗岩为强过铝质花岗岩,具S型花岗岩的特点,可能主要源自古中元古代地壳物质重熔,并在上升侵位过程中混染了部分继承锆石。燕山期黑云母二长花岗岩具有过铝质的特点,主要源于古中元古代地壳物质重熔。印支期电气石黑云母花岗岩和燕山期黑云母二长花岗岩形成过程中都经历了结晶分异作用。
     (5)燕山期花岗岩主要源于下地壳物质部分熔融,并有部分幔源物质参与;印支期花岗岩相对燕山期花岗岩有更多地幔物质的参与。
     (6)推测印支期电气石黑云母花岗岩形成于碰撞挤压作用间歇期岩石圈伸展的动力学背景下,而燕山期黑云母二长花岗岩形成于大陆边缘弧后伸展背景下。
Located about10km at the southeast of Chenzhou City in Hunan Province,Wangxianling granite intrusion is in the middle of the Nanling tungsten-tinpolymetallic metallogenic area of South China Block. On the basis of field geologicalsurvey, combined with mineralogy, petrology, geochemistry and isotope research, thispaper discussed the age and diagenetic stages, the mineralogical characteristics,magma source and the evolution characteristics of Wangxianling granite intrusion.And by comparing the characteristics of contemporary similar granitoids in SouthChina, we discussed the source region, tectonic setting and geodynamic evolution ofthe same period granitoids in South China Block. Achieving the understanding asfollows:
     (1)The Wangxianling intrusion in south Hunan province consists of twogranitoids, the main intrusion body tourmaline biotite granites, greisenizationtourmaline granites and the interior stock biotite monzonite granites, in which theourmaline biotite granites and greisenization tourmaline granites are homologousgranites in the same period.
     (2)The LA-MC-ICP-MS zircon U-Pb dating shows that the tourmaline biotitegranites formed in the Indosinian (235.0±1.3Ma) while the biotite monzonite granitesformed in Yanshanian(155.9±1.0Ma), indicating that Wangxianling intrusion is theproduct of two times magmatic activities.
     (3) Both the muscovite in tourmaline biotite granites and biotite monzonitegranites are mainly secondary muscovite, and both the tourmaline in tourmalinebiotite granites and greisen tourmaline granites are schorl.
     (4) The Indosinian tourmaline biotite granites are strongly peraluminous graniteswith S-type granite characteristics and are originated from the Paleo-andMesoproterozoic crustal remelting while the Yanshanian biotite monzonite granitesare peraluminous granites and are originated from the Paleo-and Mesoproterozoiccrustal remelting. Both the Indosinian tourmaline biotite granites and Yanshanianbiotite monzonite granites have experienced fractional crystallization during theformation.
     (5) The Yanshanian granites are mainly derived from partial melting of lowercrustal material with some of the mantle materials involved while the Indosiniangranites involving more mantle materials than theYanshanian granites.
     (6)We infer that the Indosinian period granitic magma formed in intermittentlithosphere extensional environment during the collision compression while theYanshanian period granitic magma formed in the extensional environment of the backarc continental margin.
引文
Anderson J L and Rowley M C. Synkinematic intrusion of peraluminous and associatedmetaluminous granitic magmas, Whipple Mountains,California. Canadian Mineralogist,1981.19:83-101
    Barbarin B. Granitoids: main petrogenetic classification in relation to origin and tectonic setting.Geological Journal,1990.25:227-238
    Barbarin B. A review of the relationship between granitoid types, their origins and theirgeodynamic environments. Lithos,1999.46:605-626
    Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in southeast Asia:significance of Triassic thermotectonism (Indosinian orogeny)in Vietnam. Geology,2001.29:211-214
    Chappell B W and White A J R. Two contrasting granite type. Pacific Geology,1974.8:173-174
    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granite with particularreference to southeastern Australia. Contributions to Mineralogy and Petrology,1982.80:189-200
    Cox K G. The interpretation of igneous rocks, Allen&Unwin,1979.1-450
    Dai B Z, Jiang S Y, Jiang Y H, et al. Geochronology, geochemistry and Hf–Sr–Nd isotopiccompositions of Huziyan mafic xenoliths, southern Hunan Province, South China:Petrogenesis and implications for lower crust evolution. Lithos,2008.102(1-2):65-87
    Elhlou S, Belousova E, Griffin W L,et al. Trace element and isotopic composition of GJ-redzircon standard by laser ablation. Geochim Cosmochim Acta (Supp.),2006.A158
    Eby G N. Chemical subdivision of the A-type granitoids: petrogenises and tectonic implications.Geology,1992.20:641-644
    Frost B R, Barnes C, Collins W J, et al. A geochemical classification for granitic rocks. Journal ofPetrology,2001.42(11):2033-2048
    Gilder S A, Gill J, Coe R S et al. Isotopic and paleomagmatic constraints on the Mesozoic tectonicevolution of South China. Journal of Geophysics Research,1996.101(B7):13137-16154
    Gonfiantini R, Tonarini S, Groning M, et al. Intercomparison of boron isotope and concentrationmeasurements. Part2, evaluation of the results. Geostand Newsletter,2003.27:41-57
    Griffin W L, Wang X, Jackson S E, et al. Zircon Chemistry and Magma Genesis, SE China:In-situanalysis of Hf isotopes, Tonglu and Pingtan Igneous Complexes. Lithos,2002.61:237-269
    Harris N B, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism.Geological society, London, Special Publications,1986.19:67-81
    Ishihara S. The magnetite-series and ilmenite-series granitic rocks. Mining Geology,1977.27:293-305
    Ishikawa T and Tera F. Source, composition and distribution of fluid in the Kurile mantle wedge:Constrains from across-arc variations of B/Nb and B isotopes. Earth and Planetary ScienceLetters.1997.152:123-138
    Ishikawa T, Tera F, Nakazawa T. Boron isotope and trace element systematics of the three volcaniczones in the Kamchatka arc. Geochimica et Cosmochimica Acta,2001.65:4523-4537
    Jiang S Y, Radvanec M, Nakamura E, et al. Chemical and boron isotopic variations of tourmalinein the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic andmetamorphic fluid evolution. Lithos,2008.106:1-11
    Jiang Y H, Jiang S Y, Zhao K D, et al. Petrogenesis of Late Jurassic Qianlishan granites and maficdikes, Southeast China: implications for a back-arc extension setting. Geological Magazine,2006.143(4):457-474
    Jiang Y H, Jiang S Y, Dai B Z, et al. Middle to Late Jurassic felsic and mafic magmatism insouthern Hunan Province, Southeast China: implications for a continental arc to rifting.Lithos,2009.107(3-4):185–204
    Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretecaousstrata in the Lhasa Terrane, Southern Tibet. Basin Research,2007.19:361-378
    Li X H, Liu D Y, Sun M, et al. Precise Sm-Nd and U-Pb isotope dating of supergiant Shizhuyuanpolymetallic deposit and its host granite., SE China. Geological magazine.2004.141(2):225-231
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous mineralsby LA-MC-ICP MS without applying an internal standard. Chemical Geology,2008.257(1-2):34-43
    Loiselle M C and Wones D R. Characteristics and origin of anorogenic granites. GeologicalSociety America Abstracts,1979.11:468
    Mao J W, Pirajno F and Cook N. Mesozoic metallogeny in East China and correspondinggeodynamic settings—An introduction to the special issue. Ore Geology Reviews,2011.43:1-7
    McQuarrie N, Robinson D, Long S, et al. Preliminary stratigraphic and structural architecture ofBhutan: Implication for the along strike architecture of the Himalayan system. Earth andPlantary Science Letters,2008.272:105-117
    Miller C F, Stoddard E F, Bradfish L J, et al. Composition of plutonic muscovite: Geneticimplications. Canadian Mineralogist,1981.19:25-34
    Miller C F, McDowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturationtemperatures and preservation of inheritance.Geology,2003.31:529-532.
    Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos,1980.13:97-108
    Palmer M R., Swihart G H. Boron isotope geochemistry: an overview. Rev. Mineral1996.33,709–744.
    Pearce J A, Harris N B W, Tindle A G.. Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks. Journal of petrology,1984.25:956-983
    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implicationsfor mantle composition and processes. In: Saunders A D and Norry M J (ed). Magmatism inthe Ocean Basins. Geological Society Special Publications,1989.42:313-345
    Sylvester P J. Post-collision strongly peraluminous granites. Lithos,1998.45:29-44
    Trumbull R B, Krienitz M S, Gottesmann B, et al. Chemical and boron-isotope variations intourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinitesin the Damara Belt, Namibia. Contrib.Mineral. Petrol.2008.155,1–18.
    Watson E B, Harrison T M. Zircon saturation revisited:temperature and compositioneffects in avariety of crustal magma types[J]. Earth and Planetary Science Letters,64:295-304.
    Wang Y J, Fan W M, Zhang G W. et al. Phanerozoic tectonics of the South China Block: Keyobservations and controversies, Gondwana Res.(2012), doi:10.1016/j.gr.2012.02.019
    Wei D F, Bao ZY, Fu JM,et al. Diagenetic and Mineralization Age of the HehuapingTin-polymetallic Ore-field, Hunan Province. Acta Geologica Sinica,2007.81(2):244-252
    Whalen J B, Currie K L, Chappel B W. A-type granites: geochemical characteristics,discrimination and petrogenisis. Contributions to Mineralogy and Petrology,198795:407-419
    Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: in situ U-Pbdating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology,2007.153(2):177-190.
    Yuan S D, Peng J T, Shen N P,et al.40Ar-39Ar isotopic dating of the XianghualingSn-polymetallic orefield in Southern Hunan, China and its geological implications. ActaGeologica Sinica,2007..81(2):278-286
    Yuan S D, Peng J T, Hu R Z,et al. A precise U–Pb age on cassiterite from the Xianghualingtin-polymetallic deposit (Hunan, South China). Mineralium Deposita,2008.43:375-382
    Yuan S D, Peng J T, Hao S,et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology ofcassiterite in the giant Furong tin deposit, Hunan Province, South China: New constrains onthe timing of tin-polymetallic mineralization. Ore Geology Reviews,2011.43(1):235-242
    Zhou X M and Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics,2000.326(3-4):269-287
    Zhou X M, Sun T, Shen W Z,et al. Petrogenesis of Mesozoic granitoids and volcanic rocks inSouth China: A response to tectonic evolution. Episodes,2006.29(1):26-33
    柏道远,刘耀荣,王先辉,等.湖南骑田岭岩体北东部角闪石黑云母二长花岗岩的40Ar-39Ar定年及意义.资源调查与环境,2005.26(3):179-184
    柏道远,陈建成,马铁球,等.王仙岭岩体地质地球化学特征及其对湘东南印支晚期构造环境的制约.地球化学,2006.35(2):113-125
    柏道远,贾宝华,李金冬,等.区域构造体制对湘东南印支期与燕山早期花岗岩成矿能力的重要意义-以千里山岩体为例.矿床地质,2007.26(5):487-500
    蔡明海,陈开旭,屈文俊,等.湖南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年.矿床地质,2006.25(3):263-268
    陈江峰,郭新生,汤加富,等.中国东南部地壳增长与Nd同位素模式年龄.南京大学学报(自然科学),1999.35(6):649-658
    陈培荣,华仁民,章邦桐,等.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学(D辑),2002.32(4):279-289
    陈毓川,裴荣富,张宏良,等.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质.北京:地质出版社,1989.1-474
    邓平,任纪瞬,凌洪飞,等.诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义.科学通报,2012.57(14):1231-1241
    邓希光,陈志刚,李献华,等.桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年.地质论评,2004.50(4):426-432
    地质矿产部南岭项目花岗岩专题组.南岭花岗岩地质及其成因和成矿作用.1989.北京:地质出版社
    付建明,马昌前,谢才富,等.湖南骑田岭岩体东缘菜岭岩体的锆石SHRIMP定年及意义.中国地质,2004.31(1):96-100
    付建明,徐德明,杨晓君,等.南岭锡矿,2011.武汉:中国地质大学出版社有限责任公司:1-241
    高山,骆庭川,张本仁,等.中国东部地壳的结构和组成.中国科学(D辑),1999.29(3):204-213
    郭锋,范蔚茗,林舸,等.湖南道县辉长岩包体的年代学研究及成因探讨.科学通报,1997.42(15):1661-1664
    蒋少涌.硼同位素及其地质应用研究.高校地质学报,2000.6(1):1-16
    蒋少涌,于际飞,倪培,等.电气石-成岩成矿作用的灵敏示踪剂.地质论评,2000.46(6):594-604
    蒋少涌,赵葵东,姜耀辉,等.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及其成因讨论.高校地质学报,2008.14(4):496-509
    洪大卫,谢锡林,张季生.试析杭州-诸广山—花山高εNd值花岗岩带的地质意义.地质通报,2002.21(6):348-354
    洪大卫,王涛,童英.中国花岗岩概述.地质论评,2007.53(增刊):9-16
    侯可军. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,2007.23(10):2595-2604
    侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,2009.28(4):481-492
    侯可军,李延河,谢桂青. LA-MC-ICP MS锆石Hf同位素的分析方法及地质应用.2010a.同位素分析和定年新方法(李延河等编著):40-48
    侯可军,李延河,肖应凯,等. LA-MC-ICP MS硼同位素微区原位测试技术.科学通报,2010b.55:2207-2213
    华仁民,毛景文.试论中国东部中生代成矿大爆发.矿床地质,1999.18(4):300-307
    华仁民,陈培荣,张文兰,等.华南中、新生代与花岗岩有关的成矿系统.中国科学(D辑),2003.33(4):335-343
    李顺庭,王京彬,祝新友,等.湖南瑶岗仙复式岩体的年代学特征.地质与勘探,2011.47(2):143-150
    刘义茂,戴橦谟,卢焕章,等.千里山花岗岩成岩成矿的40Ar-39Ar和Sm-Nd同位素年龄.中国科学(D辑),1997.27(5):425-430
    刘义茂,许继峰,戴橦谟,等.骑田岭花岗岩40Ar-39Ar同位素年龄及其地质意义,中国科学(D辑),2002.增刊41-48
    刘勇,李延栋,肖庆辉,等.湘南宁远地区碱性玄武岩形成时代的新证据:锆石LA-ICP-MSU-Pb定年.地质通报,2010.29(6):833-841
    毛景文,王平安,王登红,等.电气石对成岩成矿环境的示踪性及应用条件.地质论评,1993.39(6):497-507
    毛景文,李红艳,裴荣富.1995.湖南千里山花岗岩体的Sr-Nd同位素及岩石成因研究.矿床地质,14(3):235-242
    毛景文,李红艳,宋学信,等.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学.北京:地质出版社,1998.1-215
    毛景文,李晓峰, Bernd Lehmann,等.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义.矿床地质,2004.23(2):164-175
    毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报,2007.23(10):2329-2338
    毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,2008.14(4):510-526
    毛景文,谢桂青,程彦博,等.华南地区中生代主要金属矿床模型.地质论评,2009.55(3):347-354
    毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,2011.85(5):636-658
    南京大学地质系.华南不同时代花岗岩及其成矿关系.科学出版社,1981.1-114
    祁昌实,邓希光,李显武,等.桂东南大容山-十万大山S型花岗岩带的成因:地球化学及Sr-Nd-Hf同位素制约.岩石学报,2007.23(2):403-412
    孙涛,陈培荣,周新民,等.南岭东段强过铝质花岗岩中白云母研究.地质论评,2002.48(5):518-525
    孙涛,周新民,陈培荣,等.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑),2003.33(12):1209-1218
    孙涛.新编华南花岗岩分布图及其说明.地质通报,2006.25(3):332-335
    谭运金.华南地区电气石花岗岩的主要特征.岩石学报,1990.11(4),46-53
    王德滋,周金城.我国花岗岩研究的回顾与展望,岩石学报,1999.15(2):161-169
    王德滋,周新民主编.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化.2002北京:科学出版社
    王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化,地学前缘,2003.10(3):209-220
    王德滋,周金城.大火成岩省研究新进展.高校地质学报,2005.11(1):1-8
    王德滋,舒良树.花岗岩构造岩浆组合.高校地质学报,2007.13(3):362-270
    王登红,李华芹,秦燕,等.湖南瑶岗仙钨矿成岩成矿作用年代学研究.岩矿测试,2009.28(3):201-208
    王岳军, Y.H.Zhang,范蔚茗,等.湖南印支期过铝质花岗岩的形成-岩浆底侵与地壳加厚热效应的数值模拟.中国科学(D辑),2002.32(6):491-499
    王岳军,范蔚茗,梁新权,等.湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示.科学通报,2005.50(12):1259-1266
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题.岩石学报,2007a.23(6):1217-1238
    吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007b.23(2):185-220
    吴寿宁.湖南郴州荷花坪锡多金属矿床地质特征.矿产与地质,2006.43-46
    湘南地质队,郴县幅1:50000区域地质调查报告.1983.1-159
    肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法,北京:地质出版社.2002.1-294
    肖庆辉,刑作云,张昱,等.2003.当代花岗岩研究的几个重要前沿.地学前缘,2003.10(3):221-229
    徐克勤,胡受奚,孙明志,等.华南两个成因系列花岗岩及其成矿特征.矿床地质,1982.1(2):1-14
    徐克勤,胡受奚,孙明志,等.论花岗岩的成因系列-以华南中生代花岗岩为例.地质学报,1983.57(2):107-118
    徐夕生,邓平, O’Reilly S Y,等.华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义.科学通报,2003,48:1328–1334
    徐夕生,邱检生.主编.火成岩岩石学.北京:科学出版社.2010.
    于津海,王丽娟,王孝磊,等.赣东南富城杂岩体的地球化学和年代学研究.岩石学报,2007,23:1441–1456
    袁顺达,张东亮,双燕,等.湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义.岩石学报,2012.28(1):27-38
    章邦桐,吴俊奇,凌洪飞,等.花岗岩中原生与次生白云母的鉴别特征及其地质意义-以赣南富城强过铝制花岗岩体为例.岩石矿物学杂志,2010.29(3):225-234
    张敏,陈培荣,黄国龙,等.南岭东段龙源坝复式岩体LA-ICPMS锆石U-Pb年龄及其地质意义.地质学报,200680:985–994
    章荣清,陆建军,朱金初,等.湖南荷花坪花岗斑岩锆石LA-MC-ICP MS锆石U-Pb年龄、Hf同位素制约及地质意义,高校地质学报,2010.16(4):436-447
    章荣清,陆建军,王汝成,等.湘南荷花坪锡铅锌矿区燕山期黑云母花岗岩的厘定.高校地质学报,2011.17(4):513-520
    张文兰,华仁民,王汝成,等.江西大吉山五里亭花岗岩单颗粒锆石U-Pb同位素年龄及其地质意义探讨.地质学报,2004,78:352–358
    赵葵东,蒋少涌,姜耀辉,等.湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义.岩石学报,2006.22(10):2611-2616
    赵振华,包志伟,张伯友.湘南中生代玄武岩类地球化学特征.中国科学(D辑)1998.第28
    卷增刊:7-14
    周新民.对华南花岗岩研究的若干思考.高校地质学报,2003.9(4):556-565
    周新民主编.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.2007.北京:科学出版社1-691
    朱弟成,赵志丹,牛耀龄,等.西藏拉萨地块中过铝制花岗岩中继承锆石的物源区示踪及其古地理意义.岩石学报,2011.027(07):1917-1930
    朱金初,黄革非,张佩华,等.湘南骑田岭岩体菜岭超单元花岗岩侵位年龄和物质来源研究,地质论评,2003.49(3):245-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700