用户名: 密码: 验证码:
西藏喜马拉雅山地区冰湖溃决非线性预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于受全球气候变化的影响,喜马拉雅山地区冰湖灾害日益突出,可能发生溃决的冰湖数量不断增加,给当地人们造成人员伤亡和大量的财产损失,严重制约着西藏社会经济发展。同时随着国家西部大开发战略实施,各项基础设施的建设逐步完善,冰湖的危害程度越来越严重。因此针对冰湖溃决的预测研究势在必行。
     论文通过对研究区的地质环境调查及相关资料研究,阐述了喜马拉雅山地区的自然地理、地质概况,分析了喜马拉雅山地区的工程地质环境特征。在综合分析前人的研究成果和现场调查资料基础上,提出了研究区冰湖溃决的发生条件和冰湖溃决模式,用量化指标对冰湖溃决进行了预测。
     在全球气温升高的大环境下,研究区冰湖溃决灾害日益严重,具有分布范围广、危害大,且尚没有一套行之有效的方法。根据冰湖溃决具有高度的非线性和不确定性的特点,论文采用了基于支持向量机-可拓学理论的非线性冰湖溃决预测模型,对研究区的冰湖溃决的可能性进行预测。预测结构表明,基于非线性理论的冰湖溃决预测模型可以较为客观的对冰湖危险性进行预测,可为喜马拉雅山地区冰湖溃决灾害防治提供科学依据。
     论文通过对喜马拉雅山地区冰湖系统的研究,获得以下成果和结论:
     1.以研究区已发生的冰湖溃决调查资料为基础,分析研究冰湖溃决灾害的发生条件,其中包括气候背景,汇水条件、地形地貌条件、水文条件、地震等方面;从气候背景组合形式和终碛垄受破坏形式两方面对冰湖溃决模式进行了分类,前者分为4大类、17种模式,后者可分为翻浪涌坝型、渗透融沉溃坝型,旁沟侵蚀型三种模式,后者三种模式间并没有明显的界限,在一定条件可能还会发生转换。
     2.在分析冰湖溃决影响因素的基础上,构建了以母冰川-冰湖-终碛垄为主线的冰湖溃决预测指标体系,并采用补给冰川面积、冰川积雪区平均纵坡、冰舌坡度、冰舌前端距冰湖距离、冰川裂隙发育情况、冰湖面积、两岸崩塌发育情况、背水坡度,冰川坝顶宽度、受旁沟冲刷程度、水热组合等11个因子作为冰湖溃决预测的评判指标,并进行了量化。
     3.冰湖溃决危险性的分类问题是对其特性与各影响因素之间的函数关系的逼近问题,也即模式识别问题。支持向量机在非线性系统方面具有避免局部极小点、过学习等缺陷的优势,本文以支持向量机的基本原理及其算法为基础,建立了冰湖溃决危险性分类模型,并把此模型成功地应用于喜马拉雅山地区的25个冰湖实例的溃决预测中。
     4.在对基于支持向量机理论的预测模型进行检验时发现,学习样本通过训练所得到学习正确率90%以上的模型不止一个,这说明,通过学习样本法进行训练所得模型的正确性是不够可靠的,因此选取学习样本中的9个对模型再次进行检验,测试正确率达90%以上的仅剩下一个。据此,确定其为可靠的基于支持向量机算法的冰湖溃决预测模型。
     5.在用可拓评判法对冰湖溃决进行预测时,逼真的权重是优化评价结果的关键因素。权重的分配是否合理,直接影响到评估的科学性。本文提出一种基于粗糙集理论的权重确定求法。利用粗糙集理论中的属性重要度的概念,求出各评价指标的权重系数,通过该权重值的大小可以很清晰的看出评价指标间的相对重要程度排序,从而使求得的权重具有更高的客观性,以此来解决基于可拓学理论的冰湖溃决预测中权重的求取问题。权重计算结果表明,目前对喜马拉雅山地区冰湖溃决影响最大的是冰川指标,其次是冰碛坝指标,再次是湖盆指标。在冰湖预测指标体系中,从是否有利于溃决来分析,占权重约70%的指标是致溃指标,占权重约30%的指标是阻溃指标。假设冰湖的危险等级的分布情况符合均匀分布规律,则认为目前西藏喜马拉雅山地区存在溃决危险的冰湖有七成,相对较稳定的冰湖有三成。
     6.喜马拉雅山地区冰湖溃决危险度等级以高度危险居多,占待测冰湖的40%,低度危险的冰湖占待测冰湖20%。高度危险冰湖的后缓冰川覆盖区面积都比较大,冰舌基本都伸入湖面,为冰湖溃决提供了足够的水源条件;冰湖区的水热组合也都在湿热和干热两者间,为冰湖溃决提供气候条件;且它们的终碛坝坝顶宽度都较为薄弱,在湖水位突涨的情况下,终碛坝容易受破坏造成冰湖溃决。
     7.将支持向量机法预测的结果、可拓评价的结果和实际情况进行比较表明:采用这两种非线性方法对冰湖溃决进行预测的结果比较相近,与实际情况比较吻合。这也说明了采用非线性理论对冰湖溃决进行预测是一种有效的方法,证明了本论文选题的理论意义和实用价值。
?In recent years, , the Himalaya Mountains area glacial lake disaster is been prominent day by day for global climate change's influence, the glacial lake which possibly bursts quantity to increase unceasingly, causes the personnel casualty and the massive property damage for the natives, the Tibet economic society develop is restricted seriously. Meanwhile, along with strategy implementation of the national west development, each infrastructure's construction consummates gradually, harmful levels of the glacial lake getting more and more serious. In summary, the forecast which the glacial lake burst to research necessarily.
     Research paper on the environment and conditions of the glaciers geological surveys and research relevant information, summarizes natural geographic and geological survey of the Himalaya mountain area, analyzed engineering geology environmental conditions of the Himalayan mountains area. Reference to the research and combination of the survey data, research the outburst condition and mode of glacial lake in the investigation area; Summarizes the influencing factor of the glacial lake outburst and research values and measure for forecast the glacial lake outburst.
     Disaster of glacial lake outburst is serious day by day in research area, with wide distribution the characteristics of large damage under the global temperature rises to the environment. At present, glacial lake burst for the study area is still not an effective disaster prediction method. The first use of paper-based support vector machine - extension theory of nonlinear prediction model glacial lake outburst, and applied to paper and make it rely on the glacial lake in the project survey, as glacial lake outburst with a high degree of nonlinearity and uncertainty. Studies have shown that glacial lake outburst based on nonlinear theory prediction model can be more objective to predict the risk of glacial lake, provide a scientific basis for disaster prevention for glacial lake outburst of Himalayan region.
     Articles by glacial lake system of the Himalayan region to obtain the following results and conclusions:
     1.To study the area of glacial lake outburst has occurred based on survey data, analysis of conditions of glacial lake outburst disasters; including Climatic background, catchment conditions, terrain conditions, hydrological conditions, earthquakes, etc. The glacial lake outburst model are considered both ways, the combination of the climatic background and the different failure modes of moraine, in which the former one is divided into 4 categories ,17 modes,as the latter one 3 modes:wave overflow,seepage deformation, tributaries ditch erosion . No clear boundaries could be seen between the latter three modes, transformation is also available under certain conditions as well.
     2.Factor in the analysis of glacial lake outburst, constructed by the glacier - glacier lakes - the main line of morained dam glacial lake outburst prediction index system. With supply glacier area, glacier snow area average longitudinal, tongue slope, the front tongue distance from the glacial lake, glacier fractured situation, glacial lakes area, development of cross-strait situation of collapse, defection slope degree,glacier crest width of the ditch by the side degree of erosion, water and heat combination of 11 factors such as glacial lake outburst forecast evaluation indicators.
     3. Risk of glacial lake outburst is the classification of various factors on its characteristics and relationship between the function approximation problem, namely the pattern recognition problem. Support vector machines for nonlinear system has to avoid the local minimum, over the advantages of learning defects. In this paper, based on the support vector machine algorithm and basic principles established risk classification model of glacial lake outburst, and successfully applied this model to the Himalayan region of 25 instances of glacial lake outburst prediction.
     4. In the theory of support vector machine based prediction models were tested and found, Learning samples obtained through training to learn the correct rate of 90% or more than one model. This shows that, sampling method for training by learning from the model is correct is not enough reliable.Studying samples of 20 randomly selected models were tested again, test results showed that more than 90% correct, leaving only one, finally ,identified as a reliable algorithm based on support vector machine prediction model ?glacial lake outburst.
     5.In the extenics prediction method of glacial lake outburst, the key to the evaluation result perfection is precise weighing. The science in the evaluation calls for weights of reason. This article introduces a weighing methods based on rough set theory. The weight coefficient of each evaluation indicators has been determined under the concept of attribute importance in rough set theory. Thus weights have been given more objectivity as the indicator priorities can be easily seen thought the values of weights. The weighing problem in glacial lake outburst prediction is therefore solved based on extenics theory . In the results, the most influential indicators to the Himalaya glacial lake outburst are glacier indicators, followed by moraine dam indicators and lake indicators. Analyzing on outburst-positive or negative, about 70% indicators are outburst-positive with 30% negative.. Given the danger ranks of glacial lakes follow uniform distribution, outburst danger exists in 70% glacial lakes in the Himalaya areas, while 30% are comparatively stable.
     6. More glacial lakes in Himalaya areas are highly dangerous, about 40% of those remaining to survey, while 20% with low danger. Highly dangerous lakes commonly appear with large glacier coverage on the trailing edge and glacier tongue into the lakes, supplying abundant water for the outburst. The positive climate condition for outburst are wet-hot and dry-hot on water-heat combination in the areas. Moreover, danger is seen when it is narrow and weak on the top of the moraine dam, as damage and breakdown can be easily produced when the lake is flooded.
     7. Compare support vector machine method to predict the results and evaluate the results of extension as well as the actual results, the results show that, both nonlinear method using glacial lake outburst compared to predict the results of similar, consistent with the actual situation. Visible by means of a combination of both linear comparison can be drawn is the result of reasonable and objective, this also explains the nonlinear theory for the nonlinear problems studied are the most effective way, once again proved the topic of this paper is scientific and practical significance
引文
[1] IPCC. Climate Change 2007: The scientific Basis. Contribution of working GroupⅠto the fourth assessment report of the intergovernmental panel on climate change [Solomon S D, Qin D, Manning M et al. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007, 1-996.
    [2] Beniston M., Diaz H.F., Bradiey R.S. Climate change at high elevation site: an overview. Climatic Change, 1997, 36: 233-251.
    [3] Eisbacher G.H., Clague J.J. Destructive mass movements in high mountains: hazard and management. Geological Survey of Canada Paper 84-16, 1984, 1-230.
    [4] Rabassa J., Rubulis S., Suarez J. Rate of formation and sedimentology of (1976-1978) push moraines, Frias Glacier, Mount Tronadoz, Argentina. In: Schluüchter C.H. (Ed.), Moraines and Varves. A.A. Balkema, Rotterdam, 1979, 65-79.
    [5] Reynolds J.M. The development of a combined regional strategy for power generation and natural hazard assessment in a highaltitude glacial enviornment: an example from the Cordillera Blanca, Peru. In: Merriman, P.A., Browitt, C.W.A. (Eds.), Natural Disasters: Protecting Vulnerable Communities. Thomas Telford, 1993.
    [6] Buchroithner M.F., Jentsch G., Wanivenhaus B. Monitoring of recent geological events in the Khumbu area (Himalaya, Nepal) by digital processing of Landsat MSS data. Rock Mechanics, 1982, 15:181-197.
    [7] Reynolds J.M. Glacial-lake outburst floods (GLOFs) in the Himalayas: an example of hazard mitigation from Nepal. Geoscience and Development, 1995, 2:6-8.
    [8]徐道明,冯清华.西藏喜马拉雅山区危险冰湖及其溃决特征.地理学报, 1989,44(3):343-352.
    [9] Kattelmann R. Glacial lake outburst floods in the Nepal Himalaya: a manageable hazard Natural Hazards, 2003, 28:145-154.
    [10] Hopson R.E. Collier Glacier- a photographic record. Mazama, 1960, 17 (13):1-12.
    [11] Evans S.G. The breaching of moraine-dammed lakes in the southern Canadian Cordillera. Proceedings, International Symposium on Engineering Geological Environment in Mountainous Areas, Beijing, 1987, 2:141-150.
    [12] O’Connor J.E., Hardison J.H., Costa, J.E. Debris flows from recently deglaciated areas on central Oregon Cascade Range volcanoes. Eos (American Geophysical Union), 1993, 74: 1-314.
    [13] Kershaw J.A. Formation and failure of Queen Bess lake. MSc dissertation, Simon Fraser University, Burnaby, BC, 2002.
    [14] Richard D. and Gay M. 2003. Fifth Framework Programme, Glaiorisk, D4: Glacier lake outburst floods(GLOF).
    [15] Carey M. Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Global and Planetary Change, 2005b, 47:122-124.
    [16] Clague J.J., Evans S.G. A review of catastrophic drainage of moraine-dammed lakes in British Columdia. Quaternary Science Reviews, 2000, 19:1763-1783.
    [17] Richardson S.D., Reynolds J.M. An overview of glacial hazards in the Himalayas. Quaternary International, 2000a, 65/66:31-47.
    [18] Yamada T. Glacier lakes and their outburst foods in the Nepal Himalaya. Water and Energy, Commission Secretariat, Kathmandu, Nepal, 1993, 1-37.
    [19] Huggel C., Haeberli W., K??b A., et al. An assessment procedure for glacial hazards in the Swiss Alps. Canadian Geotechnical Journal, 2004c, 41:1068–1083.
    [20]中国科学院—水利部成都山地灾害与环境研究所,西藏自治区交通厅科学研究所.西藏泥石流与环境[M].成都:成都科技大学出版社,1999.69-110.
    [21] Haeberli W., K??b A., Vonder Mühll D., et al. Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps. Journal of Glaciology, 2001, 47(156): 111-122.
    [22] Chikita K., Yamada Y., Sakal A., et al. Hydrodynamic effects on the basin expansion of Tsho Rolpa Glacier lake in the Nepal Himalaya. Bulletin of Glacier Research, 1997, 15: 59-69.
    [23] Chikita K., Jha J., Yamada T. Hydrodynamic of a supraglacial lake and its effect on the basin expansion: Tsho Rolpha, Rolwaling Nepal Himalaya. Antarctic and Apline Research, 1999, 31(1):58-70.
    [24] Sakai A., Takeuchi N., Fujita K., et al. Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal. International association of Hydrological Sciences Publication264 (Symposium at Seattle 2000, debris-covered glaciers), 2000b, 119-130.
    [25] Reynolds J.M. On the formation of supraglacial lakes on debris-covered glaciers. In Debris-covered glaciers. Edited by Nakawo M., Raymond C.F., Fountain A. International Association of Hydrological Sciences (IAHS), Publication, 2000, 264:153-161.
    [26] Quincey D.J., Richardson S.D., Luckman A et al. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global and Planetary Change, 2007, 56:137-152.
    [27] Benn D.I., Wiseman S., Hands K.A. Growth and drainage of superaglacial lakes on debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. Journal of Glaciology, 2001, 47(159):626-638.
    [28] Richardson S.D., Reynolds J.M. An overview of glacial hazards in the Himalayas. Quaternary International, 2000a, 65/66:31-47.
    [29] Costa J.E., Schuster R.L. The formation and failure of natural dams. Geological Society of America Bulletin, 1988, 100:1054-1068.
    [30] Kershaw J.A., Clague J.J., Evans S.G. Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada. Earth Surface Processes and Landforms, 2005, 30: 1-25.
    [31] Bajracharya S.R, Mool P.K., Shrestha B.R. Impact of climate change on Himalayan glaciers and glacial Lakes. Kathmandu, Nepal: International Centre for Integrated Mountain Development. 2007, 1-119.
    [32] Gansser A. Lunana-the Peaks, Glaciers and Lakes of Northern Bhutan. In The Mountain World, 1970, 1968/69:117-131.
    [33] Vuichard D., Zimmermann M. The Langmoche Flash Flood, Khumbu Himal, Nepal. In Mountain Research and Development, 1986, 6(1): 90-94.
    [34] Kargel J.S., Abrams M.J., Bishop M.P., et al. Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 2005, 99:187-219.
    [35] K??b A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment , 2005. 94(4):463-474.
    [36] Huggel C., K??b A., Haeberli W., et al. Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 2002, 39:316-330.
    [37]陈晓清,崔鹏,杨忠等.近15a喜马拉雅山中段波曲流域冰川和冰湖变化[J].冰川冻土. 2005,27(6):793-800.
    [38] Huggel C., K??b A., Salzmann N. GIS based modeling of glacial hazards and their interactions using Landsat-TM and IKONOS imagery. Norwegian Journal of Geography, 2004a, 58:61-73.
    [39] Quincey D.J., Lucas R.M., Richardson S.D., et al. Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Progress in Physical Geography, 2005, 29(4): 475-505.
    [40] McKillop R.J., Clague J.J. A procedure for making objective preliminary assessments of outburst flood hazard from moraine-dammed lakes in southwestern British Columbia. Natural Hazards, 2007b, 41:131-157.
    [41] Kershaw J.A. Formation and failure of Queen Bess lake. MSc dissertation, Simon Fraser University, Burnaby, BC, 2002.
    [42] Youd T.L., Wilson R.C., Schuster R.L. The 1980 eruption of Mount St. Helens, Washington: stability of the blochge in the North For Toutle River. Professional Papers of the United States Geological Survey, 1981, 1250:821-828.
    [43] Lliboutry L., Morales Arno B., Pautre A. et al. Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. I. Historic failures of morainic dams, their causes and prevention. Journal of Glaciology, 1977, 18:239-254.
    [44] Healy T.R. Thermokarst-a mechanism of de-icing ice-cored moraines. Boreas, 1975, 4: 19-23.
    [45] Yamada T. Glacier lake and its outburst flood in the Nepal Himalaya. Monograph No. 1, Data Centre for Glacier Research, Japanese Society of Snow and Ice, Japan, 1998, 1-96.
    [46] Richardson S.D., Reynolds J.M. Degradation of ice-cored moraine dam: implications for hazard development. IAHS Publication , 2000b, 264:187-197.
    [47] Reynolds J.M. Photographic feature: glacial hazard assessment at Tsho Rolpa, Rolwaling. Central Nepal. Quarterly Journal of Engineering Geology, 1999, 32 (3):209-214.
    [48] Huggel C. Assessment of Glacial hazards based on remote sensing and GIS modeling. www.dissertationen.unizh.ch/2004/huggel/diss.pdf. 2004b, 1-87.
    [49]黄静莉,王常明,王钢城等.模糊综合评判在冰湖溃决危险度划分中的应用-以西藏自治区洛扎县为例[J].地球与环境, 2005,l33(增刊): 109-114.
    [50] McKillop R.J., Clague J.J. Statistical, remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes in southwestern British Columbia. Global and Planetary Change, 2007a, 56:153-171.
    [51]吕儒仁,李德基.西藏工布江达县唐布朗沟的冰湖溃决泥石流.冰川冻土,1986,8(1): 61-71.
    [52]王欣,刘时银.冰碛湖溃决灾害研究进展.冰川冻土, 2007, 29(4):626-635.
    [53] Walder J.S., Watts P., Sorensen O.E., et al. Tsunamis generated by subaerial mass flows. Journal of Geophysical Research, 2003, 108(B5): 2236-2255.
    [54] Carey M.P. People and glaciers in the Peruvian Andes: A history of climate change and atural disasters, 1941-1980. Ph.D. Dissertation in History in the Office of Graduate Studies of theUniversity of California, 2005a:1-315.
    [55] Yesenov U.Y., Degovets A.S. Catastrophic mudflow on the Bol’shaya Almatinka River in 1977. Soviet Hydrology: Selected Papers, 1979, 18:158-160.
    [56] WECS. Study of glacier lake outburst floods in Nepal Himalaya, PhaseⅠInterim report, Kathmandu, Nepal. 1987, Chapter 5:3-36.
    [57] Reynolds J.M. The identification and mitigation of glacier-related hazards: examples from the Cordillera Blanca, Peru. In: McCall, G.J.H., Laming, D.J.C., Scott, S.C. (Eds.), Geohazards. Chapman and Hall, London, 1992, 143-157.
    [58] Clague J.J., Evans S.G. Formation and Failure of Natural Dams in the Canadian Cordillera. Geological Survey of Canada Bulletin, 1994, 464: 1-35.
    [59] Haeberli W.D., Rickenmann M., Zimmermann U. Investigation of 1987debris flows in the Swiss Alps: general concept and geophysical soundings. International Association of hydrological Sciences Publication 194 (Symposium at Lausanne 1990 - hydrology in mountainous Regions.Ⅱ. Artificial Resources: Water and Slope), 1990, 303-310.
    [60] Haeberli W., K??b A., Vonder Mühll D., etal. Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps. Journal of Glaciology, 2001, 47(156): 111-122.
    [61] Mortara G., Chiarle M., Tamburini A. The emergency caused by the“Effimero”Lake on the Bel Vedere glacier (Macugnaga, Monte Rosa Group, Italian Alps), birth, growth and evolution of a supra-glacial lake. In Richard D. and Gay M. 2003. Fifth Framework Programme, Glaiorisk, D4: Glacier lake outburst floods(GLOF). http://glaciorisk.grenoble.cemagref.fr.
    [62] Froehlich D. C. Peak outflow from breached embankment dam. Journal of Water Resources Planning and Management, ASCE, 1995, 121(1):90-97.
    [63] Coleman S.E., Andrews D.P., Webby M.G. Overtopping breaching of non-cohesive homogeneous embarkments. Journal of Hydraulic Engineering, ASCE, 2002,128:829-838.
    [64] Coleman S.E., Andrews D.P., Webby M.G. Overtopping breaching of non-cohesive homogeneous embarkments. Journal of Hydraulic Engineering, ASCE, 2002,128:829-838.
    [65] Cao Z., Pender G., Wallis S., et al. Computational dam break hydraulics over erodible sediment bed, Journal of Hydraulic Engineering, ASCE, 2004, 130, 689-703.
    [66] Wang Z., Bowles D.S. Three-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodology, Advances in Water Resources, 2006a, 29:1528-1545.
    [67] Wang Z., Bowles D.S., Three-dimensional non-cohesive earthen dam breach model. Part 2: Validation and applications, Advances in Water Resources, 2006b, 29:1490-1503.
    [68] Benny A.H., and Dawson G.J. Satellite imagery as an aid to bathymetric charting in the RedSea. The Cartographic Journal, 1983, 20: 5-16.
    [69] Baban S.M.J. The evaluation of different algorithms for bathymetric charting of lakes using Landsat imagery. International Journal of Remote Sensing, 1993, 14: 2263-2274.
    [70] Huggel C., K??b A., Haeberli W., et al. Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 2002,39:316-330.
    [71] O’Connor J.E., Hardison J.H., Costa J.E. Debris flows from failures of neoglacial-age moraine dams in the Three Sisters and Mount Jefferson wilderness areas, Oregon. US Geological Survey Professional Paper 1606, 2001, 1-93.
    [72]程尊兰,朱平一,宫怡文.典型冰湖溃决型泥石流形成机制分析[J].山地学报, 2003, 21(6):716-720.
    [73]岳志远,曹志先,车涛等.冰湖溃决洪水的二维水动力学数值模拟[J].冰川冻土, 2007, 29(5):756-763.
    [74] Balmforth N.J., Hardenberg J. von, Provenzale A. et al. Dam breaking by wave-induced erosional incision, Journal of Geophysical Research, 2008a.113, F01020, doi:10.1029/2007JF000756.
    [75] Balmforth N.J, Hardenberg J.von, Zammett R.J. Dam breaking seiches. Journal of Fluid Mechanics ,2008b (in press).
    [76]陈储军,刘明,张帜.西藏年楚河冰川终碛湖溃决条件及洪水估算[J].冰川冻土, 1996, 18(4):348-352.
    [77] Bajracharya S.R, Mool P.K., Shrestha B.R. Impact of climate change on Himalayan glaciers and glacial Lakes. Kathmandu, Nepal: International Centre for Integrated Mountain Development. 2007, 1-119.
    [78]崔鹏,马东涛,陈宁生等,冰湖溃决泥石流的形成、演化与减灾对策[J].第四纪研究,2003,23(6):621-628.
    [79] Rushmer E.L., Jacobs L. Physical-scale modelling of j?kulhlaups (glacial outburst floods) with contrasting hydrograph shapes. Earth Surface Processes and Landforms, 2007, 32:954-963.
    [80] Laigle D., Schuster S., Gay M., et al. Study of the propagation of the water wave induced by the breaking of a glacial lake: application to the Rochemelon lake (Bsssans, Savoice, France).
    [81] Hewitt K. Natural dams and outburst floods in the Karakorum Himalaya. In Hydrological aspects of alpine and high-mountain areas. Edited by Glen J.W. International Association of Hydrological Sciences (IAHS), Publication 138, 1982, 259-269.
    [82] Cenderelli A.D., Wohl E.E. Flow hydraulics and geomorphic effects of glacier-lake outburst floods in the mountain Everest region, Nepal. Earth Surface Processes and Landforms, 2003,28: 385-407.
    [83] Alho P., Aaltonen J. Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods. Hydrological Processes, 2008, 22: 1537-1547.
    [84] Carrivick L.J. Application of 2D hydrodynamic modeling to high-magnitude outburst floods: An example from Kverkfj?ll Iceland. Journal of Hydrology, 2006, 321:187-199.
    [85] Hagen V.K. Re-evaluation of design floods and dam safety. Transactions, 14th International Congress on Large Dams, Rio de Janeiro, 1982, 1: 475–491.
    [86] Jakob M. A size classification for debris flows. Engineering geology, 2005, 79:151-161.
    [87] Waythomas C.F., Walder J.S., McGimsey R.G., et al. A catastrophic flood caused by drainage of a caldera lake at Aniakchak Volcano, Alaska, and implications for volcanic-hazards assessment. Geological Society of America Bulletin, 1996, 108:861-871.
    [88] Blown I., Church M. Catastrophic lake drainage within the Homathko River basin, British Columbia. Canadian Geotechnical Journal, 1985, 22:551-563.
    [89] Hungr O., McDougall S., Bovis M.J. Entrainment of material by debris flows. In: Jakob M., Hungr O. (eds). Debris-flow hazards and related phenomena, Praxis. Springer Verlag, Berlin, Heidelberg, 2005, 135-158
    [90] Hungr O., Morgan G.C., Kellerhals R. Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal, 1984, 21:663–677.
    [91] Lancaster, Stephen T., Hayes S.K., et al. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 2003, 39(6): 1-21.
    [92] Corominas J. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 1996, 33:260–271.
    [93] Huggel C., K??b A., Haeberli W., et al. Regional-scale GIS models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Sciences, 2003, 3:647-662.
    [94] Rickenmann D., Zimmermann M. The 1987 debris flows in Switzerland: documentation and analysis.Geomorphology, 1993, 8:175–189.
    [95] Ikeya H. Introduction to Sabo works: the preservation of land against sediment disaster (first English edition). The Japan Sabo Association, Tokyo, 1979, 1-168.
    [96]陈晓清,陈宁生,崔鹏.冰川终碛湖溃决泥石流流量计算[J].冰川冻土. 2004, 26(3):357-362.
    [97] Griswold J.P. Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Unpublished Masters thesis. Portland State University, Portland, Oregon, 2004.
    [98] Bhargava O.N. Geology, environmental hazards and remedial measures of the Lunana area,Gasa Dzongkhag: report of 1995 Indo-Bhutan Expedition. Kolkata, Geological Survey of India, 1995.
    [99] Carey M. Living and dying with glaciers: people’s historical vulnerability to avalanches andoutburst floods in Peru. Global and Planetary Change, 2005b, 47:122-124.
    [100] Reynolds J.M. The development of a combined regional strategy for power generation and natural hazard assessment in a highaltitude glacial enviornment: an example from the Cordillera Blanca, Peru. In: Merriman, P.A., Browitt, C.W.A. (Eds.), Natural Disasters: Protecting Vulnerable Communities. Thomas Telford, 1993.
    [101] Grabs W.E., Hanisch J. Objectives and prevention methods for glacier lake outburst floods (GLOFs). In: Young G.J. (Ed.), Snow and Glacier Hydrology. International Association of Hydrological Sciences Publication, 1993, 218:341-352.
    [102] Reynolds J.M.. High-altitude glacial lake hazard assessment and mitigation: a Himalayan perspective. In: Maund, J.G., Eddleston, M., eds., Geohazards in Engineering Geology,Geological Society Engineering Geology Special Publications, London, 1998, 15:25-34.
    [103] Richardson S.D., Reynolds J.M. An overview of glacial hazards in the Himalayas.Quaternary International, 2000a, 65/66:31-47.
    [104] Haeusler H., Leber D., Schreilechner M., et al. Raphstreng Tsho Outburst Flood Mitigation Project, Lunana, Northwestern Bhutan.100p., 3maps, Institute of Geology, University of Vienna, Vienna/Austria, 2000.
    [105] Rana B., Reynolds J.M., Shrestha A.B., et al. Tsho Rolpa, Rolwaling Himal, Nepal: a case, history of ongoing glacial hazard assessment and remediation. Journal of Nepal Geological Society, 1999, 20:242.
    [106]程尊兰,朱平一,宫怡文.典型冰湖溃决型泥石流形成机制分析[J].山地学报,2003,21(6):716~720.
    [107]刘伟.西藏典型冰湖溃决型泥石流的初步研究[J].水文地质工程地质,2006,(3):88~92.
    [108]陈宇棠.喜马拉雅山冰湖溃决型泥石流灾害链研究[D].吉林大学硕士学位论文,2008.
    [109]中国科学院地理研究所.气候变化若干问题[M].北京科学出版社.1977
    [110]张文敬.南迦巴瓦峰跃动冰川的某些特征[J].山地研究,1985,3(4):234~348
    [111]蒋忠信.冰碛湖漫溢型溃决临界水文条件[J].铁道工程学报,2004, (4),20~26
    [112]吉林省气象科学研究所.1975年2月海城地震前的气象异常现象[J].地球物理学报,1977,20(4).
    [113]车涛,晋锐,李新等.希夏邦马峰东坡冰川与冰川湖泊变化遥感监测[J].冰川冻土2005, 27(6):801-805.
    [114]陈晓清,崔鹏,杨忠等.喜马拉雅山中段波曲流域近期冰湖溃决危险性分析与评估[J].冰川冻土, 2007,29(4):509-516.
    [115] Iwata S., Ageta Y., Naito N., et al. Glacial lakes and their outburst flood assessment in the Bhutan Himalaya. Global Environmental Research, 2002, 6(1):3-17.
    [116]张帜,刘明.冰湖溃坝洪水对拉满水库影响分析及BREACH模型的应用[J].水道与港口杂志, 1994, 2:10-15.
    [117]车涛,晋锐,李新等.近20a来西藏朋曲流域冰湖变化及潜在溃决冰湖分析.冰川冻土2004, 26(4):397-402.
    [118] Goldsmith W. Soil reinforcement by river plants: progress results. Proceedings of the Wetland Engineering and River Restoration Conference. American Society of Civil Engineers, Washington DC. 1998, 1-7.
    [119] Pralong A. Funk M. On the instability of avalanching glaciers. Journal of Glaciology, 2006, 52(176): 31-48.
    [120] Ding Y., Liu J. Glacier lake outburst flood disasters in China. Annals of Glaciology, 1992, 16:180-184.
    [121] Ryder J.M. Geomorphological processes in the alpine areas of Canada: the effects of climate change and their impacts on human activities. Geological Survey of Canada Bulletin, 1998, 524: 1-44.
    [122]赵洪波.非线性岩土力学行为的支持向量机研究[D].中国科学院研究生院博士学位论文,2003,6.
    [123] Jiajin Huang, Chunnian Liu, Chuangxin Ou. Attribute Reduction of Rough Sets in Mining Market Value Functions [A]. Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)[C].2003 IEEE: 470-473
    [124] E.Osuna,R.Freund,et al.An improved training algorithm for support vector machines.IEEE Workshop on Neural Networks and Signal Processing,Amelia Island,(1997):276-285
    [125]王宏漫,欧宗瑛.基于支持向量机的人脸识别方法研究[J].小型微型计算机系统,(2004)25(1):139-142
    [126] C.C.Chang,C.W.Hsu,et al.The analysis of decomposition methods for support vector machines.IEEE Transactions on Neural Networks,(2000)11(4):1003-1008
    [127]李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,(2001)24(1):62-68
    [128]业宁,孙瑞祥等.多拉格朗日乘子协同优化的SVM快速学习算法研究.计算机研究与发展[J],(2006)43(3):442-448
    [129] Vapnik V N. Estimation of Dependencies Based on Empirical Data[M]. Springer-Verlag,1982.
    [130] C.Bahlmann,B.Haasdonk,H.Burkhardt.On-line handwriting recognition with support vector machines—A kernel approach.In Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition,(2002)49-54.
    [131] D.Gorgevik,D.Cakmakov.Combining SVM classifiers for handwritten digit recognition.In Proceedings of 16th International Conference on Pattern Recognition,(2002)3:102-105
    [132] F.Wang,L.Vuurpijl,L.Schomaker.Support vector machines for the classification of western handwritten capitals.In Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition,(2000)167-176.
    [133] A.Tefas,C.Kotropoulos,I.Pitas.Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication.IEEE Transactions on Pattern Analysis and Machine Intelligence,(2001)23(7):735-746.
    [134] K.Lee,H.Byun.A new face authentication system for memory-constrained devices.IEEE Transactions on Consumer Electronics,(2003)49(4):1214-1222
    [135] K.H.Lee,Y.W.Chung,H.Byun.SVM-based face verification with feature set of small size.ElectronicsLetters,(2002)38(15):787-789
    [136] H.Sahbi,D.Geman,N.Boujemaa.Face detection using coarse-to-fine support vector classifiers.Proceedings of the 2002 International Conference on Image Processing,(2002)3:925-928
    [137] W.M.Campbell.A SVM/HMM system for speaker recognition.In Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,(2003)2:II-209-212
    [138] F.Melgani,L.Bruzzone.Classification of hyperspectral remote sensing Images with support vector machines.IEEE Transactions on Geoscience and Remote Sensing,(2004)42(8):1778-1790
    [139] M.M.Chi,L.Bruzzone.Semisupervised classification of hyperspectral images by SVMs optimized in the primal.Transactions on Geoscience and Remote Sensing,(2007)45(6):1870-1880
    [140] A.Kuh.Adaptive kernel methods for CDMA systems.Proceedings of IJCNN'01 International Joint Conference on Neural Networks,(2001)4:2404-2409.
    [141] S.Chen,L.Hanzo.Block-adaptive kernel-based CDMA multiuser detection.IEEE International Conference on Communications,(2002)2:682-686.
    [142] A.V.Anghelescu,I.B.Muchnik.Combinatorial PCA and SVM methods for feature selection in learning classifications(Applications to text categorization). International Conference on Integration of Knowledge Intensive Multi-Agent Systems,(2003)491-496.
    [143] H.Han,K.Chang.Positive-example based learning for web page classification using SVM.Proceedings Eighth International Conference Knowledge Discovery and Data Mining,(2002):239-248
    [144] C.Batur,L.Zhou,C.C.Chan.Support vector machines for fault detection. Proceedings of the 41st IEEE Conference on Decision and Control,(2002)2:1355-1356
    [145] I.El-Naqa,Y.Y.Yang,et al.A support vector machine approach for detection of microcalcifications.IEEE Transactions on Medical Imaging,(2002)21(12): 1552-1563
    [146] S.Osowski,L.T.Hoai,T.Markiewicz.Support vector machine-based expert system for reliable heartbeat recognition.IEEE Transactions on Biomedical Engineering,(2004)51(4):582-589
    [147] W.H.Land,L.Wong,D.W.Mckee,et al.Breast cancer computer aided diagnosis (CAD)using a recently developed SVM/GRNN Oracle hybrid.IEEE International Conference on Systems,Man and Cybernetics,(2003)5:4705-4711
    [148] Filip Mulier. Vapnik-Chervonenkis(VC) Learing Theory and Its Applications[J].IEEE Transactions on Neural Networks.1999,10(5).
    [149]王玥.支持向量机方法及其应用的研究[D].南京大学硕士学位论文,2003,5.
    [150]李海生.支持向量机回归算法与应用研究[D].华南理工大学博士学位论文,2005,5.
    [151] Cherkassky V, Mulier F. Learning from Data: Concepts, Theory and Methods. NY:John Viley&Sons, 1997.
    [152]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2005.
    [153]邱道宏.括苍山高速公路隧道岩爆非线性预测研究[D].吉林大学博士学位论文,2008,6.
    [154]孙宗海.支持向量机及其在控制中的应用研究[D].浙江大学博士学位论文,2003,8.
    [155]张钦礼.支持向量机若干算法研究及应用[D].江南大学博士学位论文,2009,7:2-3
    [156]王朝勇.基于支持向量机和模糊系统的机器学习方法及其应用研究[D].吉林大学博士学位论文,2008,4:2-1
    [157]西藏自治区气象局.西藏自治区气候变化应对方案[M].北京:科学出版社,2009.
    [158]河南省地质矿产局,白明晖.第四纪冰川地质调查方法[M].北京:地质出版社,1983.
    [159]金长泽.模糊数学及其应用[M].长春:吉林教育出版社,1991.136-145.
    [160]魏永明,谢又予,伍永秋.关联度分析法和模糊综合评判法在泥石流沟谷危险度划分中的应用——以北京市北部山区怀柔、密云两县为例[J].自然灾害学报,1998,7(2):109-116.
    [161]庄树裕,李广杰,王钢城.灾害熵-可拓综合评判理论在泥石流危险性评价中的应用.安徽农业科学.2010,38(6):3075-3077.
    [162]张丽.蓟县老虎顶采石矿复垦工程地质评价[D].吉林大学博士学位论文.2009,06.
    [163]王国胤.Rough集理论与知识获取[M].西安交通大学出版社.2001年.
    [164]蔡文.可拓学概述[J].系统工程理论与实践,1998(1):76-84.
    [165]蔡文.可拓工程方法[M].北京:科学出版社.
    [166]蔡文.物元模型及其应用[M].北京:科学技术文献出版社.
    [167]蔡文.从物元分析到可拓学[J].吕梁学刊:自然科学版.1996,5(3):1-9.
    [168]李克钢,许江,李树春等.基于可拓理论的边坡稳定性评价研究[J].重庆建筑大学报.2007,29(4):75-77.
    [169]周霞,凌志新,詹英强等.可拓设计及其应用[J].华南理工大学学报(自然科学版).1998,26(8):17-20
    [170]邹广天,程霏.教育体验型文物建筑保护的可拓设计方法[J].建筑学报.2007(5):8-11
    [171]刘巍,季晟等.可拓信息的基本理论与方法研究[J].系统工程理论与实践.2000(11):125-131.
    [172]陈文伟.挖掘变化知识的可拓数据挖掘研究[J].中国工程科学.2006,8(11):70-73
    [173]余永权.可拓检测技术[J].中国工程科学.2001,3(4):88-94
    [174]王智揽,张晓冬,秦建军.可拓检测技术及其应用初探[J].仪器仪表学报.2002,23(3):463-464
    [175]李莉,刘明,杨骏杰等.物元理论在土木工程领域中的应用[J].设计与理论.2004(5):29-31.
    [176]贾超.物元理论在洞室岩体质量评价中的应用.岩石力学与工程学报.2003(5):751-756.
    [177]鲍新中,刘澄.一种基于粗糙集的权重确定方法[J].管理学报,2009,6(6):729-732.
    [178] Pawlak1Rough Sets:Theoretical Aspect of Reasoning about Data [M].Nowowiejska 15/19, Warsaw, Poland,1990.
    [179]曾黄磷.粗集理论及其应用[M].重庆:重庆大学出版社,1996.
    [180]张文修,吴伟志,梁吉业,等.粗糙集理论与方法[M].北京:科学出版社, 2000.
    [181]张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出社, 2005.
    [182]苗多谦,范世栋.知识的粒度计算及应用[J].系统工程理论与实践,2002(1):48-56.
    [183]曹秀英,梁静国.基于粗糙集理论的属性权重确定方法[J].中国管理科学, 2002,10(5):98-100.
    [184] PAWLA K Z. Rough Sets: P robability V ersus Determ inist ic Approach [J]. Int. J. M anmach ine Studies,1988,29(2):81-95.
    [185]石峰,娄臻亮,张永清,等.一种改进的粗糙集属性约简启发式算法Ⅲ[J].上海交通大学学报,2002,36(4):478—481.
    [186]梁吉业,曲开社,徐宗本.信息系统的属性约简[J].系统工程理论与实践,2001(12):76-80.
    [187]黄光明,张巍.基于Rough Set的综合评价方法研究[J].计算机工程与应用,2004,40(2):36-38.
    [188]史忠植.发现知识[M],北京:清华大学出版社,2002:143-145.
    [189]安利平,陈增强,袁著祉.基于粗集理论的多属性决策分析[J].控制与决策.2005.20(3);294-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700