用户名: 密码: 验证码:
基于软分类的太湖水体叶绿素a浓度遥感反演与长时间序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,中国的水体污染问题越来越严重,特别是内陆湖泊的富营养化问题最为突出。叶绿素是影响光合作用的最重要的色素,是水体富营养化的重要指示参量。卫星遥感具有成本低、范围广、速度快、连续性好等优势,在水环境监测中发挥了越来越重要的作用。叶绿素a浓度反演是水色遥感的重要研究内容,而浑浊富营养化内陆水体的叶绿素a浓度反演一直是个难点。本文主要研究内容就是利用遥感技术监测浑浊富营养化的太湖水体的叶绿素a浓度,在此基础上分析其空间分布特点和长时间变化趋势,并初步结合降水、气温、风速等因素解释了太湖叶绿素a浓度的变化规律。
     本文在水体光学分类研究的基础上提出了两种基于软分类(模糊分类)的水体叶绿素a浓度反演策略,相应的将已有的叶绿素a浓度反演方法归结为传统反演策略和硬分类反演策略。本文以太湖为研究对象获取大量实测水面光谱数据和MERIS卫星图像,分别实现了基于实测水面光谱的和基于MERIS图像的软分类反演策略,通过对比传统反演策略和硬分类反演策略评价了软分类反演策略的精度。采用精度最高的软分类反演策略,建立了MERIS长时间序列批量数据叶绿素a浓度反演流程,解决了反演过程的关键技术难题。最后,反演了太湖2002~2012年的叶绿素a浓度,分析了十年来太湖叶绿素a浓度的空间分布特征以及年际变化、季节变化和月变化规律与发展趋势。
     通过利用实测水面光谱和MERIS图像对不同反演策略的精度检验发现:硬分类反演策略比传统反演策略的精度有所提高,软分类反演策略取得了最好的精度,且普适性最强。十年来,太湖叶绿素a浓度的空间分布呈现从北向南递减的规律;年际变化呈现“W”字形的波动变化趋势;季节变化显著:冬季最低,春季升高,夏季最高,秋季开始降低;月变化规律总体呈现冬季月份低、夏季月份高的“Λ”字形,且以年为周期的波动变化。
     本文的主要研究贡献有以下三个方面:
     1)提出了4种叶绿素a浓度反演策略,全面评价了4种反演策略的精度,以及不同反演策略下5种基于水面光谱的和12种基于MERIS数据的叶绿素a浓度反演算法的精度,通过比较找到了太湖不同类型水体对应的最优算法和模型。
     2)论证了MERIS2P离水辐射产品在太湖的适用性。通过MERIS2P遥感反射率数据与实测遥感反射率的对比分析,评估了其在太湖的适用性。
     3)反演了太湖2002~2012年共1932景MERIS数据的叶绿素a浓度,并据此全面分析了十年来太湖叶绿素a浓度的年际变化、季节变化和月变化规律和发展趋势。
     本文的创新点主要体现在以下两个方面:
     1)创新性地提出了基于软分类的太湖水体叶绿素a浓度反演策略。该反演策略通过最优算法和距离权重的加权融合提高了算法的稳定性、可靠性以及结果的平滑性、连续性。软分类反演策略解决了叶绿素a浓度反演算法的区域性和季节性适用性问题,提高了算法的普适性。
     2)创新性地提出了矢量边界辅助下的MERIS数据水体自动提取方法。该方法实现了MERIS数据水体提取阂值的自动化选择,提高了水体提取的精度和对大批量数据的处理效率。
Water pollution, especially eutrophication of inland waters, has become more and more serious in China in recent years. Chlorophyll-a (Chla) is the most important pigment in phytoplankton for photosynthesis, and its concentration is an important index of eutrophication. Satellite remote sensing plays a more and more important role in water environmental monitoring with the advantages of low cost, wide range, fast speed, good continuity, and so on. Chlorophyll-a concentration (Cchla) estimation is an important content of water color remote sensing, while it is always difficult in eutrophic turbid inland water. The main content of this study was to estimate Chla concentration of eutrophic turbid inland water, such as Taihu lake in eastern China, by using the technology of remote sensing. And the spatial distribution rules and long time trend of Cchla of Taihu Lake were further analyzed.
     In this study, we presented a new Chla estimation strategy, which was called soft classification (fuzzy classification) based estimation strategy. In comparision, we renamed the existing algorithms as tradition estimation strategy and hard classification based estimation strategy. We selected the eutrophic turbid inland water Taihu lake as the research area, and obtained a large number of data in Taihu lake, including water surface spectra and MERIS satellite images. We actualized the estimation strategies used these data, and evaluated the soft classification based estimation strategy by comparing with tradition estimation strategy and hard classification based estimation strategy. Then, we developed a Chla estimation technological process for massive and long time MERIS data by soft classification based estimation strategy, and solved some key technical problems in the process. Finally, we estimated Cchla in Taihu lake from2002to2012by MERIS data, and analyzed the characteristics of space distribution and the annual, seasonal and monthly variation and trend of of Cchlas in Taihu lake.
     We found the following phenomenon from the results of estimation strategies accuracy evaluation by water surface spectra and MERIS satellite images. The accuracy of hard classification based estimation strategy was better than tradition estimation strategy; the accuracy of soft classification based estimation strategy was the best, and its universality was also the best. Over the last decade, the spatial distribution of Chla decreased progressively from north to south in Taihu lake; the annual variation obeyed the shape of "W"; the seasonal variation was remarkable: lowest in winter, rising in spring, highest in summer, and reducing in autumn; the monthly variation obeyed the shape of "A" which showed low in the months of winter and high in the months of summer, and the fluctuant variation on one year cycle.
     The mainly contributions of this study are as follows:
     Firstly, we summarized and presented four Chla estimation strategy. Then, we comprehensively evaluated the accuracies of the four estimation strategy with five Chla estimation algorisms based on water surface spectra, and with twelve algorisms based on MERIS images. We found optimal algorisms and models of different type of waters by comparasion.
     Secondly, We demonstrated the suitability of MERIS2P remote sensing reflectance product in Taihu lake by comparing the MERIS2P data and the field measured reflectance.
     Thirdly, We estimated Cchla to1932scenes of MERIS images from2002to2012in Taihu lake, and then analyzed the spatial distribution, annual change, seasonal change and lunar change of Cchla in Taihu lake.
     The main innovation of this study are as follows:
     Firstly, We developed a soft classification based estimation strategy for Cchla estimation in Taihu lake. The strategy can improve the stability, reliability and smoothness of Cchla estimation results. This estimation strategy had solved the regional and seasonal limitations of the traditional Cchla estimation methods. Secondly, We developed an automatic water extraction methods assisted by water vector boundary data. This method greatly improved the water extraction accuracy and the ability to process mass data.
引文
[1]Abdul-Hadi A, Mansor S, Pradhan B, et al. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon-a remote sensing study[J]. Environmental monitoring and assessment,2013,185(5): 3977-3991.
    [2]Ainsworth E J, Jones I S F. Radiance spectra classification from the ocean color and temperature scanner on ADEOS[J]. Geoscience and Remote Sensing, IEEE Transactions on,1999,37(3):1645-1656.
    [3]Arst H, Reinart A. Application of optical classifications to North European lakes[J]. Aquatic ecology,2009,43(4):789-801.
    [4]Binding C E, Greenberg T A, Bukata R P. Time series analysis of algal blooms in Lake of the Woods using the MERIS maximum chlorophyll index [J]. Journal of plankton research,2011,33(12):1847-1852.
    [5]Binding C E, Greenberg T A, Bukata R P, et al. The MERIS MCI and its potential for satellite detection of winter diatom blooms on partially ice-covered Lake Erie[J]. Journal of plankton research,2012,34(6):569-573.
    [6]Binding C E, Greenberg T A, Bukata R P. The MERIS Maximum Chlorophyll Index; its merits and limitations for inland water algal bloom monitoring[J]. Journal of Great Lakes Research,2013,39:100-107.
    [7]Brock J C, Sathyendranath S, Platt T. Biohydro-optical classification of the northwestern Indian Ocean[J]. Marine Ecology Progress Series,1998,165:1-15.
    [8]Bukata R P, Jerome J H, Kondratyev A S, et al. Optical properties and remote sensing of inland and coastal waters[M]. CRC press,1995.
    [9]Cao H S, Tao Y, Kong F X, et al. Relationship between temperature and cyanobacterial recruitment from sediments in laboratory and field studies[J]. Journal of Freshwater Ecology,2008,23(3):405-412.
    [10]Carder K L, Chen F R, Lee Z P, et al. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures[J]. Journal of Geophysical Research:Oceans (1978-2012),1999,104(C3):5403-5421.
    [11]Chami M, Robilliard D. Inversion of oceanic constituents in case I and II waters with genetic programming algorithms[J]. Applied Optics,2002,41(30): 6260-6275.
    [12]Chen Q, Mynett A E. Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake[J]. Ecological Modelling,2003,162(1):55-67.
    [13]Chen S, Fang L, Li H, et al. Evaluation of a three-band model for estimating chlorophyll-a concentration in tidal reaches of the Pearl River Estuary, China[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(3):356-364.
    [14]Cleveland J S, Weidemann A D. Quantifying Absorption by Aquatic Particles:A Multiply Scattering Correction for Glass-Fiber Filters[R]. NAVAL RESEARCH LAB STENNIS SPACE CENTER MS,1993.
    [15]Dall'Olmo G, Gitelson A A, Rundquist D C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters[J]. Geophysical Research Letters,2003,30(18).
    [16]Dall'Olmo G, Gitelson A A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results[J]. Applied Optics,2005a,44(3):412-422.
    [17]Dall'Olmo G, Gitelson A A, Rundquist D C, et al. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands[J]. Remote Sensing of Environment,2005b,96(2):176-187.
    [18]Dall'Olmo G, Gitelson A A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters:modeling results[J]. Applied Optics,2006,45(15):3577-3592.
    [19]D'Alimonte D, Zibordi G, Berthon J F. A statistical index of bio-optical seawater types[J]. Geoscience and Remote Sensing, IEEE Transactions on,2007,45(8): 2644-2651.
    [20]de Lucia Lobo F, Novo E M L M, Barbosa C C F, et al. Reference spectra to classify Amazon water types[J]. International Journal of Remote Sensing,2012, 33(11):3422-3442.
    [21]Dekker, A. G. Detection of the optical water quality parameters for eutrophic waters by high resolution remote sensing. Ph.D. Thesis, Free University, Amsterdam, The Netherlands.1993.
    [22]Duan H, Ma R, Zhang Y, et al. A new three-band algorithm for estimating chlorophyll concentrations in turbid inland lakes[J]. Environmental Research Letters,2010,5(4):044009.
    [23]Feng H, Campbell J W, Dowell M D, et al. Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay[J]. Remote Sensing of Environment,2005,99(3):232-243.
    [24]Gitelson A, Keydan G, Shishkin V. Inland waters quality assessment from satellite data in visible range of the spectrum[J]. Soviet Remote Sensing,1985,6: 28-36.
    [25]Gitelson A A, Kondratyev K Y. Optical models of mesotrophic and eutrophic water bodies [J]. International Journal of Remote Sensing,1991,12(3):373-385.
    [26]Gitelson A. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration[J]. International Journal of Remote Sensing,1992,13(17):3367-3373.
    [27]Gitelson A A, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of plant physiology,2003,160(3):271-282.
    [28]Gitelson A A, Dall'Olmo G, Moses W, et al. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters:Validation[J]. Remote Sensing of Environment,2008,112(9):3582-3593.
    [29]Gitelson A A, Gurlin D, Moses W J, et al. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters[J]. Environmental Research Letters,2009,4(4):045003.
    [30]Gons H J. Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental Science & Technology,1999,33(7):1127-1132.
    [31]Gons H J, Rijkeboer M, Bagheri S, et al. Optical teledetection of chlorophyll a in estuarine and coastal waters[J]. Environmental science & technology,2000, 34(24):5189-5192.
    [32]Gordoa A, Illas X, Cruzado A, et al. Spatio-temporal patterns in the north-western Mediterranean from MERIS derived chlorophyll a concentration[J]. Scientia Marina,2008,72(4):757-767.
    [33]Gordon H R, Morel A Y. Remote assessment of ocean color for interpretation of satellite visible imagery:A review[M]. American Geophysical Union,1983.
    [34]Gordon H R, Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS:a preliminary algorithm[J]. Applied optics,1994,33(3):443-452.
    [35]Gower J F R. Observations of in situ fluorescence of chlorophyll-a in Saanich Inlet[J]. Boundary-Layer Meteorology,1980,18(3):235-245.
    [36]Gower J, King S, Borstad G, et al. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer[J]. International Journal of Remote Sensing,2005,26(9):2005-2012.
    [37]Gower J, Hu C, Borstad G, et al. Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico[J]. Geoscience and Remote Sensing, IEEE Transactions on,2006,44(12):3619-3625.
    [38]Groom S, Herut B, Brenner S, et al. Satellite-derived spatial and temporal biological variability in the Cyprus Eddy[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2005,52(22):2990-3010.
    [39]Gurlin D, Gitelson A A, Moses W J. Remote estimation of chl-a concentration in turbid productive waters-Return to a simple two-band NIR-red model?[J]. Remote Sensing of Environment,2011,115(12):3479-3490.
    [40]Han L, Rundquist D C. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration:a case study in a turbid reservoir[J]. Remote sensing of Environment,1997,62(3):253-261.
    [41]Hu C, Lee Z, Ma R, et al. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China[J]. Journal of Geophysical Research:Oceans (1978-2012),2010,115(C4).
    [42]Jiao H B, Zha Y, Gao J, et al. Estimation of chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data[J]. International Journal of Remote Sensing,2006,27(19):4267-4276.
    [43]Jupp D L B. Landsat based interpretation of the Cairns section of the Great Barrier Reef Marine Park[J].1985.
    [44]Koenings J P, Edmundson J A. Secchi disk and photometer estimates of light regimes in Alaskan lakes:effects of yellow color and turbidity[J]. Limnology and Oceanography,1991,36(1):91-105.
    [45]Koponen S, Pulliainen J, Kallio K, et al. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data[J]. Remote Sensing of Environment,2002,79(1):51-59.
    [46]Lavender S J, Pinkerton M H, Froidefond J M, et al. SeaWiFS validation in European coastal waters using optical and bio-geochemical measurements [J]. International Journal of Remote Sensing,2004,25(7-8):1481-1488.
    [47]Le C, Li Y, Zha Y, et al. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes:The case of Taihu Lake, China[J]. Remote Sensing of Environment,2009,113(6):1175-1182.
    [48]Le C, Hu C, English D, et al. Climate-driven chlorophyll-a changes in a turbid estuary:Observations from satellites and implications for managemen[J]. Remote Sensing of Environment,2013,130:11-24.
    [49]Letelier R M, Abbott M R. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)[J]. Remote Sensing of Environment,1996,58(2):215-223.
    [50]Li L, Li L, Song K, et al. An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters[J]. Environmental Research Letters,2011, 6(3):034037.
    [51]Li Y, Wang Q, Wu C, et al. Estimation of chlorophyll a concentration using NIR/red bands of MERIS and classification procedure in inland turbid water[J]. Geoscience and Remote Sensing, IEEE Transactions on,2012,50(3):988-997.
    [52]Liu J, Sun D, Zhang Y, et al. Pre-classification improves relationships between water clarity, light attenuation, and suspended particulates in turbid inland waters[J]. Hydrobiologia,2013,711(1):71-86.
    [53]Loisel H, Meriaux X, Berthon J F, et al. Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea[J]. Limnology and Oceanography,2007,52(2):739-752.
    [54]Lubac B, Loisel H. Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea[J]. Remote Sensing of Environment,2007,110(1):45-58.
    [55]Ma R, Tang J, Dai J, et al. Absorption and scattering properties of water body in Taihu Lake, China:absorption[J]. International Journal of Remote Sensing,2006, 27(19):4277-4304.
    [56]MacQueen J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.1967,1(281-297):14.
    [57]Martin Traykovski L V, Sosik H M. Feature-based classification of optical water types in the Northwest Atlantic based on satellite ocean color data[J]. Journal of Geophysical Research:Oceans (1978-2012),2003,108(C5).
    [58]Matthews M W, Bernard S, Robertson L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters[J]. Remote Sensing of Environment,2012, 124:637-652.
    [59]Matthews M W, Bernard S, Winter K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS[J]. Remote Sensing of Environment,2010,114(9): 2070-2087.
    [60]McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International journal of remote sensing, 1996,17(7):1425-1432.
    [61]Mishra S, Mishra D R. Normalized difference chlorophyll index:A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters[J]. Remote Sensing of Environment,2012,117:394-406.
    [62]Mitchell B G, Kiefer D A. Determination of absorption and fluorescence excitation spectra for phytoplankton[J]. Lecture Notes on Coastal and Estuarine Studies,1984,8:157-169.
    [63]Mitchell B G. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique[C]//Orlando'90,16-20 April. International Society for Optics and Photonics,1990:137-148.
    [64]Mittenzwey K H. Determination of chlorophyll a of inland waters on the basis of spectral reflectance[J]. Limnology and Oceanography,1992,37(1):147-149.
    [65]Molleri G S F, Kampel M, de Moraes Novo E M L. Spectral classification of water masses under the influence of the Amazon River plume[J]. Acta Oceanologica Sinica,2010,29(3):1-8.
    [66]Moore G, Lavender S. Algorithm Identification:Case Ⅱ. S Bright Pixel Atmospheric Correction[J].2011,5
    [67]Moore T S, Campbell J W, Dowell M D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product[J]. Remote Sensing of Environment,2009,113(11):2424-2430.
    [68]Moore T S, Campbell J W, Feng H. A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms[J]. Geoscience and Remote Sensing, IEEE Transactions on,2001,39(8):1764-1776.
    [69]Moore T S, Dowell M D, Bradt S, et al. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters[J]. Remote Sensing of Environment,2014,143:97-111.
    [70]Morel A, Prieur L. Analysis of variations in ocean color[J]. Limnol. Oceanogr., 1977,22(4):709-722.
    [71]Moses W J, Gitelson A A, Berdnikov S, et al. Satellite Estimation of Chlorophyll-Concentration Using the Red and NIR Bands of MERIS-The Azov Sea Case Study[J]. Geoscience and Remote Sensing Letters, IEEE,2009,6(4): 845-849.
    [72]Moses W J, Gitelson A A, Berdnikov S, et al. Estimation of chlorophyll-a concentration in case Ⅱ waters using MODIS and MERIS data-successes and challenges[J]. Environmental Research Letters,2009a,4(4):045005.
    [73]Moses W J, Gitelson A A, Berdnikov S, et al. Satellite Estimation of Chlorophyll-Concentration Using the Red and NIR Bands of MERIS-The Azov Sea Case Study[J]. Geoscience and Remote Sensing Letters, IEEE,2009b,6(4): 845-849.
    [74]Moses W J, Gitelson A A, Berdnikov S, et al. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters-The Azov Sea case study[J]. Remote Sensing of Environment,2012,121:118-124.
    [75]Mueller J L, Fargion G S, McClain C R, et al. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5 [J]. NASA Tech. Memo, 2003,211621.
    [76]Ndungu, J., et al., Evaluation of spatio-temporal variations in chlorophyll-a in Lake Naivasha, Kenya:remote-sensing approach. International Journal of Remote Sensing,2013.34(22):p.8142-8155.
    [77]Niang A, Gross L, Thiria S, et al. Automatic neural classification of ocean colour reflectance spectra at the top of the atmosphere with introduction of expert knowledge[J]. Remote Sensing of Environment,2003,86(2):257-271.
    [78]O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research:Oceans (1978-2012),1998,103(C11):24937-24953.
    [79]Olmanson L G, Brezonik P L, Bauer M E. Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments [J]. Water Resources Research,2011,47(9).
    [80]Park Y J, Ruddick K, Lacroix G. Detection of algal blooms in European waters based on satellite chlorophyll data from MERIS and MODIS[J]. International Journal of Remote Sensing,2010,31(24):6567-6583.
    [81]Pegau S, Zaneveld J R V, Mitchell B G, et al. Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume Ⅳ:Inherent optical properties: instruments, characterizations, field measurements and data analysis protocols [J]. NASA Tech. Memo,2003,211621.
    [82]Pierson D C, Strombeck N. A modelling approach to evaluate preliminary remote sensing algorithms:Use of water quality data from Swedish Great Lakes[J]. Geophysica,2000,36(1-2):177-202.
    [83]Prieur L, Sathyendranath S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials[J]. Limnology and Oceanography,1981,26(4):671-689.
    [84]Pulliainen J, Kallio K, Eloheimo K, et al. A semi-operative approach to lake water quality retrieval from remote sensing data[J]. Science of the Total Environment, 2001,268(1):79-93.
    [85]Reinart A, Herlevi A, Arst H, et al. Preliminary optical classification of lakes and coastal waters in Estonia and south Finland[J]. Journal of Sea Research,2003, 49(4):357-366.
    [86]Ruffin C, King R L, Younan N H. A combined derivative spectroscopy and Savitzky-Golay filtering method for the analysis of hyperspectral data[J]. GIScience & Remote Sensing,2008,45(1):1-15.
    [87]Sasmal S K. Optical classification of waters in the eastern arabian sea[J]. Journal of the Indian Society of Remote Sensing,1997,25(2):73-78.
    [88]Saulquin B, Gohin F, Garrello R. Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS chlorophyll-a data from 1998 to 2008 on the European Atlantic shelf[J]. Geoscience and Remote Sensing, IEEE Transactions on,2011,49(1):143-154.
    [89]Schiller H, Doerffer R. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data[J]. International Journal of Remote Sensing,1999,20(9):1735-1746.
    [90]Shen F, Zhou Y X, Li D J, et al. Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary[J]. International Journal of Remote Sensing,2010,31(17-18):4635-4650.
    [91]Shi K, Li Y, Li L, et al. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification[J]. Science of the Total Environment,2013,444: 1-15.
    [92]Sun D, Li Y, Wang Q. A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral data[J]. Geoscience and Remote Sensing, IEEE Transactions on,2009,47(8):2957-2965.
    [93]Sun D, Li Y, Wang Q, et al. Development of optical criteria to discriminate various types of highly turbid lake waters[J]. Hydrobiologia,2011,669(1): 83-104.
    [94]Thiemann S, Kaufmann H. Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake District, Germany[J]. Remote Sensing of Environment,2000,73(2): 227-235.
    [95]Thiemann S, Kaufmann H. Lake water quality monitoring using hyperspectral airborne data-a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany [J]. Remote Sensing of Environment,2002, 81(2):228-237.
    [96]Vantrepotte V, Loisel H, Dessailly D, et al. Optical classification of contrasted coastal waters[J]. Remote Sensing of Environment,2012,123:306-323.
    [97]Vertucci F A, Likens G E. Spectral reflectance and water quality of Adirondack mountain region lakes[J]. Limnology and Oceanography,1989,34(8): 1656-1672.
    [98]Wynne T T, Stumpf R P, Briggs T O. Comparing MODIS and MERIS spectral shapes for cyanobacterial bloom detection[J]. International Journal of Remote Sensing,2013,34(19):6668-6678.
    [99]Yacobi Y Z, Moses W J, Kaganovsky S, et al. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study[J]. Water research,2011,45(7):2428-2436.
    [100]Yang W, Matsushita B, Chen J, et al. An enhanced three-band index for estimating chlorophyll-a in turbid case-II waters:case studies of Lake Kasumigaura, Japan, and Lake Dianchi, China[J]. Geoscience and Remote Sensing Letters, IEEE,2010,7(4):655-659.
    [101]Yang W, Matsushita B, Chen J, et al. Estimating constituent concentrations in case II waters from MERIS satellite data by semi-analytical model optimizing and look-up tables[J]. Remote sensing of environment,2011a,115(5):1247-1259.
    [102]Yang W, Matsushita B, Chen J, et al. A relaxed matrix inversion method for retrieving water constituent concentrations in case Ⅱ waters:The case of Lake Kasumigaura, Japan[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2011b,49(9):3381-3392.
    [103]Zhang F, Zhang B, Li J, et al. Validation of a synthetic chlorophyll index for remote estimates of chlorophyll-a in a turbid hypereutrophic lake[J]. International Journal of Remote Sensing,2014,35(1):289-305.
    [104]Zhang Y L, Qin B Q, Liu M L. Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003[J]. Journal of Plankton Research,2007,29(8):707-719.
    [105]Zhang Y, Liu M, Qin B, et al. Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid case-2 waters (Lake Taihu, China)[J]. Geoscience and Remote Sensing, IEEE Transactions on,2009, 47(7):1937-1948.
    [106]Zhang Y, Feng L, Li J, et al. Seasonal-spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China[J]. Journal of Plankton Research,2010,32(7):1023-1037.
    [107]Zhang Y, Lin S, Liu J, et al. Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China)[J]. International journal of environmental research and public health, 2010,7(9):3545-3560.
    [108]Zhang Y, Lin S, Qian X, et al. Temporal and spatial variability of chlorophyll a concentration in Lake Taihu using MODIS time-series data[J]. hydrobiologia, 2011,661(1):235-250.
    [109]Zhang Y, Lin H, Chen C, et al. Estimation of chlorophyll-a concentration in estuarine waters:case study of the Pearl River estuary, South China Sea[J]. Environmental Research Letters,2011,6(2):024016.
    [110]Zimba P V, Gitelson A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems:Model tuning and accuracy optimization[J]. Aquaculture,2006,256(1):272-286.
    [111]程晨,韦玉春,牛志春.基于ETM+图像和决策树的水体信息提取[J].遥感信息,2012,27(6):4-7.
    [112]黄漪平.太湖水环境及其污染控制[M].科学出版社,2001.
    [113]姜广甲,周琳,马荣华,等.浑浊Ⅱ类水体叶绿素a浓度遥感反演(Ⅱ):MERIS遥感数据的应用[J].红外与毫米波学报,2013,32(4).
    [114]金相灿,刘树坤,章宗涉,等.中国湖泊环境(第一册)[M].北京:海洋出版社,1995.234-302.
    [115]李俊生.高光谱遥感反演内陆水质参数分析方法研究——以太湖为例[D].北京:中国科学院遥感应用研究所,博士学位论文,2007
    [116]刘连成.中国湖泊富营养化的现状分析[J].灾害学,1997,12(3):61-65.
    [117]陆家驹,李士鸿.TM资料水体识别技术的改进[J].遥感学报,1992,7(1):17-23.
    [118]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域 资源与环境,2002,11(6):575-578.
    [119]欧陈委.K-均值聚类算法的研究与改进[D].长沙:长沙理工大学,硕士学位论文,2011.
    [120]秦伯强,胡维平,陈伟民,等.太湖水环境演化过程与机理[M].北京:科学出版社,2004,10
    [121]秦伯强.我国湖泊富营养化及其水环境安全[J].科学对社会的影响,2007(3):17-23.
    [122]唐军武,田国良,汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J].遥感学报,2004,8(1):37-44.
    [123]吴迪.内陆水体藻类及富营养化遥感监测与评价研究[D].北京:中国科学院研究生院,博士学位论文,2011.
    [124]吴赛,张秋文.基于MODIS遥感数据的水体提取方法及模型研究[J].计算机与数字工程,2005,33(7):1-4.
    [125]席晓燕,沈楠,李小娟.ETM+影像水体提取方法研究[J].计算机工程与设计,2009(4):993-996.
    [126]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.
    [127]詹海刚,施平,陈楚群.基于遗传算法的二类水体水色遥感反演[J].遥感学报,2004,8(1):31-36.
    [128]张兵,李俊生,王桥,等.内陆水体高光谱遥感[M].北京:科学出版社,2012.
    [129]周成虎,骆承剑,杨晓梅等.遥感影像地学理解与分析[M].北京:科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700