用户名: 密码: 验证码:
基于铜/氧化铜纳米材料的非酶葡萄糖传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(Diabetes)是一种代谢紊乱综合症,是世界公共健康问题。患病率在全球以惊人速度增加的糖尿病仍然是受到人们日益关注的疾病。该疾病是导致世界上死亡和残疾的主要原因之一。糖尿病一旦控制不好会引起多种并发症。这些并发症通过严格的控制个人血糖浓度水平是能够被大大地减少发病的程度,甚至不发病。因此,严格监测血糖水平对糖尿病的诊断和管理密不可分,它的检测具有重要的临床意义。
     时至今,葡萄糖传感器已经经历了基于酶的和非酶的传感器的发展。虽然基于酶的葡萄糖传感器经历了三代的演变发展,但是它们都摆脱不了酶所固有的不稳定性的缺点。此外,酶的应用还受其他条件的制约,如pH、温度、湿度和对氧气的依赖性等。加之,酶的昂贵价格,使得传感器始终面临着构建成本的问题。基于以上因素,非酶葡萄糖传感器的研究受到了极大的关注。为了发展灵敏的非酶葡萄糖传感器,已有大量文献报道了已经探索的一系列各种金属和金属氧化物、双金属纳米材料或者合金、以及金属/金属氧化物-碳纳米管复合材料也已提出。尽管粒径大的材料和纳米尺度的材料都已经用于探索电催化葡萄糖的氧化作用,但是纳米结构的金属氧化物带或不带其他掺杂物质(如贵金属或导电金属氧化物)在非酶葡萄糖的检测方面还没有被系统地研究。一般认为纳米尺度的金属氧化物的性质不同于块体材料,这是由于纳米材料非常小的尺寸,大的表面积与体积比,更大程度的结晶度和德拜长度(λD)的原因。因此推测,纳米结构的金属氧化物或者金属氧化物复合材料,大大提高了灵敏度和/或者选择性,并且在电化学传感器的应用上(如葡萄糖的检测)也可能最大限度的减少毒性中间体的吸附,这将在本论文中进行证明。本研究以基于铜/氧化铜的纳米材料构建非酶葡萄糖传感器,并应用这种传感器在碱性条件和中性条件下均成功实现了对葡萄糖的检测,有望成为在医疗诊断、
     生物过程和食品工业方面具有潜在应用的理想材料。开展主要研究工作如下:(1)由一种简易、尺寸可控的湿化学法合成一种能实现超灵敏的和选择性好的非酶葡萄糖传感器的Cu纳米线(CuNWs)催化剂。对所制备的CuNWs的形态、
     结晶度和表面性质分别通过SEM、XRD和XPS等手段进行表征。结果表明,CuNWs粒度分布均匀,并具有大的比表面积(>200)。CuNWs对葡萄糖的电氧化反应作用的电化学性质通过循环伏安法进行了充分研究。其优越的导电性和突出的催化性能,对葡萄糖的计时安培检测,由CuNWs修饰的玻碳电极展现出非凡的检测限(可低至35nM(S/N=3)),和伴随优良灵敏度(420.3μAcm-2mM-1)的宽泛的动态范围(线性响应可达3mM)。灵敏度比对照电极高出10,000多倍。所开发的葡萄糖传感器的性能也不受氧气的制约和氯离子的毒化。此外,在干扰物的正常生理水平的浓度下,来自尿酸(UA)、抗坏血酸(AA)、醋氨酚(AP)、果糖和蔗糖的干扰可以忽略不计,证明了CuNWs修饰的玻碳电极的优异的选择性。最后,对人血清样本中葡萄糖浓度的定量检测的准确度好和精密度高,意味着CuNWs在发展具有灵敏性和选择性的非酶葡萄糖传感器的成功应用。
     (2)以CuNWs和单壁碳钠米管(SWCNTs)组成的电催化剂构建成的一种新杂交复合材料为研究对象,进一步研究纳米结构的CuNWs掺杂其他物质在非酶葡萄糖的传感检测方面的应用。通过SEM、EDX和XRD分别对所制备的CuNWs-SWCNTs杂交复合材料的形态、化学组成和晶体结构进行了表征。通过循环伏安法研究了CuNWs-SWCNTs对葡萄糖电氧化反应的电催化性能,并且观察到由于CuNWs与SWCNTs之间的协同效应所增强的电化学性能。杂交复合材料对葡萄糖监测的进一步应用展现出其对血糖检测的宽泛的动态范围(89nM的检测限(S/N=3)),极好的灵敏度(637.3μAcm~(-2)mM~(-1))以及对常规干扰物的良好的选择性。这些结果表明,CuNWs-SWCNTs杂交复合材料在多种应用中,是一种很有前途的材料。
     (3)基于金属铜表面易被氧化成氧化铜,故进一步研究了氧化铜(CuO)纳米材料对检测葡萄糖的应用,并探究了分别在最大电流响应的峰电位和初始氧化过程的电位下的检测响应。CuO纳米线(CuONWs)由一个简易的反应过程制得。在CuNWs的合成方法基础上,直接将CuNWs进行高温锻烧即得CuONWs。SEM和TEM用以表征所制备的CuONWs的形态、表面性质和晶体结构。此外,XRD研究了黑色终产物的成分组成。用CuONWs构建的非酶传感器在0.05MNaOH溶液中对葡萄糖的检测表现出极好的电化学性能。该传感器在两个不同的工作电位下对葡萄糖均表现出快速的检测响应(<5s)和宽泛的动态范围(在+0.55V工作电位下,灵敏度为556.2μA·cm~(-2)·mM~(-1)(R2=0.995);在+0.3V工作电位下,灵敏度为107.2μA·cm~(-2)·mM~(-1)(R2=0.984))。Langmuir等温吸附理论用于拟合校准曲线。在+0.55V的峰电位下对CuONWs促进的葡萄糖的氧化反应机制和对AA、UA和AP的良好的选择性也进行了研究。此外,来自生理浓度水平的果糖和蔗糖的干扰微不足道,进一步证明了CuONWs优良的选择性。这些结果证明,CuONWs在用于葡萄糖非酶检测的具有灵敏性和选择性的传感器的发展具有巨大的潜在应用。
     (4)探索了基于铜的纳米材料在中性条件下对葡萄糖的非酶传感检测。参考一种大规模的回流合成技术合成了具有明确纳米结构的氧化铜纳米花材料(CuONFs)。用CuONFs构建的非酶葡萄糖传感器实现了在中性溶液中对葡萄糖及其他碳水化合物的检测。各种技术被用来表征CuONFs的结构和组成。SEM研究所制备材料的形态;XRD研究所得终产物的晶体结构;FTIR用以确认合成过程中硝酸铜向氧化铜的完全转化。CuONFs对葡萄糖检测的电化学性能通过循环伏安法、电化学阻抗谱法和差分脉冲伏安法进行研究。研究结果显示,CuONFs对葡萄糖的检测表现出较宽的线性响应范围(可至10mM(R2=0.997)),以及良好的选择性(对干扰物UA和AA)。CuONFs所增强的传感性能也体现在对其他碳水化合物的检测上。这些结果表明CuONFs在生物传感器的发展向生理条件下对非酶碳水化合物的检测的潜在适用性。
Diabetes is a metabolic disorder and a major world health problem. As stated by International Diabetes Federation, there are over285million diabetics worldwide in2010. Due to the financial burden caused by diabetes and its serious health complications, glucose detection is incredibly important in reducing the costs of diabetes management.
     Glucose sensor has already experienced the development of sensors based on enzymatic catalysts and non-enzymatic catalysts. In the past decades, three generation enzymatic glucose sensors have been developed, but they suffer from the inherent instability of the enzyme due to its pH and temperature sensitivity, and sensor performance variation due to oxygen concentration fluctuation. Additionally, the high cost of enzyme also limits the wide application of enzymatic glucose biosensors in developing countries. Due to aforementioned factors, considerable research efforts have been focused on the development of non-enzymatic glucose sensors with high sensitivity and selectivity. In order to develop sensitive non-enzymatic glucose sensors, a variety of metals and metal oxides, bimetallic nanomaterials or alloys and metals/metal oxides-CNTs composites have been explored. Although both bulk and nanoscale noble materials have been extensively explored for electrocatalyzing glucose oxidation, the nanostructured non-precious metal or metal oxides with or without dopants (e.g. noble metals or conductive metal oxide) have not been systematically investigated in the non-enzymatic glucose detection, which triggers our considerable research interests. It is generally believed that the properties of nanoscale metal or metal oxides can be very different from bulk materials, due to the extremely reduced size, large surface-to-volume ratio, greater level of crystal and the Debye length (λD) comparable to the dimensions of nanomaterials. Therefore, we hypothesize that nanostructured non-precious metal, metal oxide or metal oxide composites could greatly promote the glucose oxidation/adsorption, and thus improve the sensitivity and/or selectivity in glucose sensing, which will be demonstrated in this dissertation.
     In this study, the copper-or copper oxide-based nanomaterials were used to fabricate non-enzymatic glucose sensors, which successfully detected glucose in alkaline or neutral conditions. The developed non-enzymatic glucose sensors have potential applications in medical diagnostics, biological processes and food Industry. In this dissertation, we focused on following researches:
     (1) In the pursuit of more economical electrocatalysts for non-enzymatic glucose sensors, one-dimensional Cu nanowires (Cu NWs) with uniform size distribution and a large aspect ratio (>200) were synthesized by a facile, scalable, wet-chemistry approach. The morphology, crystallinity, and surface property of the as-prepared Cu NWs were examined by SEM, XRD, and XPS, respectively. The electrochemical property of Cu NWs for glucose electrooxidation was thoroughly investigated by cyclic voltammetry. In the amperometric detection of glucose, the Cu NWs modified glassy carbon electrode exhibits an extraordinary limit of detection of35nM (S/N=3) and a wide dynamic range with excellent sensitivity of420.3μA·cm-2·mM-1, which is more than10,000times higher than that of the control electrode without Cu NWs. The performance of the developed glucose sensor is also independent to oxygen concentration and free from chloride poisoning. Furthermore, the interference from uric acid, ascorbic acid, acetaminophen, fructose, and sucrose at the level of their physiological concentration were insignificant, indicating excellent selectivity. Finally, good accuracy and high precision for the quantification of glucose concentration in human serum samples implicate the applicability of Cu NWs in sensitive and selective non-enzymatic glucose detection.
     (2) A novel hybrid composite based electrocatalyst consisting of copper nanowires (Cu NWs) and single-walled carbon nanotubes (SWCNTs) was introduced for glucose electrooxidation and detection in alkaline medium. The morphology, chemical composition, and crystalline structure of the as-prepared Cu NWs-SWCNTs hybrid composite were examined by SEM, EDX, and XRD, respectively. The electrocatalytic property of Cu NWs-SWNTs for glucose electrooxidation was investigated by cyclic voltammetry and enhanced performance was observed due to the synergistic effect between Cu NWs and SWCNTs. Further application of the hybrid composite for glucose monitoring shows a wide dynamic range with a limit of detection of89nM (S/N=3), an excellent sensitivity (637.3μA-cm-2·mM-1), and good selectivity against commonly interfering species. These results indicate that Cu NWs-SWCNTs hybrid composite is a promising material in various applications.
     (3) Copper oxide nanowires (CuO NWs) were fabricated by a facile two-step procedure consisting of wet-chemistry synthesis and subsequent thermal treatment in air. SEM and TEM were employed to characterize the morphology, surface property, and crystal structure of the as-prepared CuO NWs, while the composition of the as-prepared CuO nanowires was investigated using XRD. The CuO NWs were further employed to construct an enzyme-free sensor with excellent performance towards the glucose detection in0.05M NaOH solution. The developed sensor showed a fast response time (less than5s), a wide dynamic range with excellent sensitivity of556.2μA-cm-2·mM-1(R2=0.995) and107.2μA-cm-2·mM-1(R2=0.984) at the working potential of+0.55V and+0.3V, respectively. The Langmuir isothermal theory was employed to fit the obtained calibration curve. The mechanisms for the glucose oxidation promoted by CuO NWs and the good selectivity against ascorbic acid, uric acid and acetaminophen at an applied potential of+0.55V were also discussed. Furthermore, the interference from fructose, and sucrose at the level of their physiological concentration were insignificant, indicating excellent selectivity. These results implicate that CuO NWs have great potential applications in the development of sensitive and selective sensors for enzyme-free detection of glucose.
     (4) A reflux synthesis technique was used to synthesize CuO materials with well-defined nanostructures in large scale, which were further applied to construct an enzyme-free sensor for the detection of glucose and carbohydrates in a neutral pH solution. A variety of techniques were used to characterize these materials. Specially, scanning electron microscopy was employed to study the morphology of the as-prepared materials; X-ray diffraction was used to investigate the crystal structure of the final product; and Fourier transform infrared spectroscopy was applied to confirm the complete conversion of copper nitrate to copper oxide in the synthetic process. The electrochemical property of CuO nanoflowers for glucose detection in a neutral pH solution was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry, showing a wide linear range up to10mM (R2=0.997) and good selectivity against uric acid and ascorbic acid. The enhanced sensing performance of CuO nanoflowers was also observed on other carbohydrates. This is the first report to detect glucose in neutral pH using CuO. These results implicate the potential applicability of CuO nanoflowers in the development of biosensors for enzyme-free carbohydrates detection in physiological condition.
引文
[1]Wang J. Electrochemical Glucose Biosensors [J]. Chemical Reviews,2008,108(2):814-825.
    [2]Newman J D, Turner A P F. Home Blood Glucose Biosensors:A Commercial Perspective [J]. Biosensors&Bioelectronics,2005,20(12):2435-2453.
    [3]Li F H., Song J X, Li F, et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Carbon Nanotubes@SnO2-Au Composite [J]. Biosensors&Bioelectronics,2009,25(4):883-888.
    [4]Wild S, Roglic G, Green A, et al. Global Prevalence of Diabetes-Estimates for the Year2000and Projections for2030[J]. Diabetes Care,2004,27(5):1047-1053.
    [5]Cowie C C, Rust K F, Byrd-Holt D D, et al. Prevalence of Diabetes and High Risk for Diabetes Using A1C Criteria in the US Population in1988-2006[J]. Diabetes Care,2010,33(3):562-568.
    [6]Reach G, Wilson G S. Can Continuous Glucose Monitoring be Used for the Treatment of Diabetes [J]. Analytical Chemistry,1992,64(6):A381-A386.
    [7]Wang J. Glucose Biosensors:40Years of Advances and Challenges [J]. Electroanalysis,2001,13(12):983-988.
    [8]Clark L C, Lyons C. Electrode Systems For Continuous Monitoring in Cardiovascular Surgery [J]. Annals of the New York Academy of Sciences,1962,102(1):29-&.
    [9]Updike S J, Hicks G P. Enzyme Electrode [J]. Nature,1967,214(5092):986-&.
    [10]Guilbaul Gg, Lubrano G J. Enzyme Electrode for Amperometric Determin Ation of Glucose [J]. Analytica ChimicaActa,1973,64(3):439-455.
    [11]Schlapfe P, Mindt W, Racine P. Electrochemical Measurement of Glucose Using Various Electron-Acceptors [J]. Clinica Chimica Acta,1974,57(3):283-289.
    [12]Albisser A M, Leibel B S, Ewart T G, et al. Clinical Control of Diabetes by Artificial Pancreas [J]. Diabetes,1974,23(5):397-404.
    [13]Shichiri M, Kawamori R, Yamasaki Y, et al. Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor [J]. Lancet,1982,2(8308):1129-1131.
    [14]Toghill K E, Compton R G. Electrochemical Non-enzymatic Glucose Sensors:A Perspective and an Evaluation [J]. International Journal of Electrochemical Science,2010,5(9):1246-1301.
    [15]Wilson R, Turner A P F. Glucose-Oxidase-An Ideal Enzyme [J]. Biosensors&Bioelectronics,1992,7(3):165-185.
    [16]Gough D A, Lucisano J Y, Tse P H S. Two-Dimensional Enzyme Electrode Sensor for Glucose [J]. Analytical Chemistry,1985,57(12):2351-2357.
    [17]Armour J C, Lucisano J Y, McKean B D, et al. Application of Chronic Intravascular Blood-Glucose Sensor in Dogs [J]. Diabetes,1990,39(12):1519-1526.
    [18]Wang J, Lu F. Oxygen-Rich Oxidase Enzyme Electrodes for Operation in Oxygen-Free Solutions [J]. Journal of the American Chemical Society,1998,120(5):1048-1050.
    [19]Wang J, Mo J W, Li S F, et al. Comparison of Oxygren-Rich and Mediator-Based Glucose-Oxidase Carbon-Paste Electrodes [J]. Analytica Chimica Acta,2001,441(2):183-189.
    [20]Dcosta E J, Higgins I J, Turner A P F. Quinoprotein Glucose-Dehydrogenase and Its Application in An Amperometric Glucose Sensor [J]. Biosensors,1986,2(2):71-87.
    [21]Nilsson H, Akerlund A C, Mosbach K. Determination of Glucose, Urea and Penicillin Using Enzyme-pH-Electrodes [J]. Biochimica Et Biophysica Acta,1973,320(2):529-534.
    [22]Wang J, Liu J, Chen L, et al. Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor [J]. Analytical Chemistry,1994,66(21):3600-3603.
    [23]Newman J D, White S F, Tothill I E, et al. Catalytic Materials, Membranes, and Fabrication Technologies Suitable for the Construction of Amperometric Biosensors [J]. Analytical Chemistry,1995,67(24):4594-4599.
    [24]Sakslund H, Wang J, Lu F, et al. Development and Evaluation of Glucose Microsensors Based on Electrochemical Codeposition of Ruthenium and Glucose-Oxidase onto Carbon-Fiber Microelectrodes[J]. Journal of Electroanalytical Chemistry,1995,397(1-2):149-155.
    [25]Karyakin A A, Gitelmacher O V, Karyakina E E. Prussian Blue Based First-Generation Biosensor-A Sensitive Amperometric Electrode for Glucose [J]. Analytical Chemistry,1995,67(14):2419-2423.
    [26]Karyakin A A. Prussian Blue and its analogues:Electrochemistry and analytical applications [J]. Electroanalysis,2001,13(10):813-819.
    [27]Karyakin A A, Karyakina E E, Gorton L. the Electrocatalytic Activity of Prussian Blue in Hydrogen Peroxide Reduction Studied Using a Wall-Jet Electrode with Continuous Flow [J]. Journal of Electroanalytical Chemistry,1998,456(1-2):97-104.
    [28]Lukachova L V, Kotel'nikova E A, D'Ottavi D, et al. Electrosynthesis of Poly-o-Diaminobenzene on the Prussian Blue Modified Electrodes for Improvement of Hydrogen Peroxide Transducer Characteristics [J]. Bioelectrochemistry,2002,55(1-2):145-148.
    [29]Zhang X J, Wang J, Ogorevc B, et al. Glucose Nanosensor Based on Prussian-Blue Modified Carbon-Fiber Cone Nanoelectrode and an Integrated Reference Electrode [J]. Electroanalysis,1999,11(13):945-949.
    [30]O'Halloran M P, Pravda M, Guilbault G G. Prussian Blue Bulk Modified Screen-Printed Electrodes for H2O2Detection and for Biosensors [J]. Talanta,2001,55(3):605-611.
    [31]Sasso S V, Pierce R J, Walla R, et al. Electropolymerized1,2-Diamin Obenzene as A Means to Prevent Interferences and Fouling and to Stabilize Immobilized Enzyme in Electrochemical Biosensors [J]. Analytical Chemistry,1990,62(11):1111-1117.
    [32]Emr S A, Yacynych A M. Use of Polymer-Films in Amperometric Beosensors [J]. Electroanalysis,1995,7(10):913-923.
    [33]Malitesta C, Palmisano F, Torsi L, et al. Glucose Fast-Response Amperometric Sensor Based on Glucose-Oxidase Immobilized in An Electropolymerized Poly(Ortho-Phenylenediamine) Film [J]. Analytical Chemistry,1990,62(24):2735-2740.
    [34]Palmisano F, Centonze D, Guerrieri A, et al. An Interference-Free Biosensor Based on Glucose-Oxidase Electrochemically Immobilized in A Nonconduction Poly(Pyrrole) Film for Continuous Subcutaneous Monitoring of Glucose Through Microdialysis Sampling [J]. Biosensors&Bioelectronics,1993,8(9-10):393-399.
    [35]Sternberg R, Bindra D S, Wilson G. S, et al. Covalent Enzyme Coupling on Cellulose-Acetate Membranes for Glucose Sensor Development [J]. Analytical Chemistry,1988,60(24):2781-2786.
    [36]Moussy F, Jakeway S, Harrison D.J, et al. in-Vitro and in-Vivo Performance and Lifetime of Perfluorinated Ionomer-Coated Glucose Sensors after High-Temperature Curing [J]. Analytical Chemistry,1994,66(22):3882-3888.
    [37]Wang J, Wu H. Permselective Lipid Poly(O-Phenylenediamine) Coatings for Amperometric Biosensing of Glucose [J]. Analytica Chimica Acta,1993,283(2):683-688.
    [38]Zhang Y N, Hu Y B, Wilson G S, et al. Elimination of the Acetaminophen Interference in An Implantaable Glucose Sensor [J]. Analytical Chemistry,1994,66(7):1183-1188.
    [39]Wang J, Wu H. Highly Selective Biosensing of Glucose Utilizing A Glucose-Oxidase Plus Rhodium Plus Nafion(R) Biocatalytic Electrocatalytic Permselective Surface Microstructure [J]. Journal of Electroanalytical Chemistry,1995,395(1-2):287-291.
    [40]Cass A E G, Davis G, Francis G D, et al. Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose [J]. Analytical Chemistry,1984,56(4):667-671.
    [41]Frew J E, Hill H A O. Electrochemical Biosensors [J]. Analytical Chemistry,1987,59(15): A933-&.
    [42]Hill H A O. Specific Binding Assay-with Detection of Electrochemical Availability of A Component [J]. Genetics Intinc,1984:97.
    [43]Mulchandani A, Pan S T. Ferrocene-Conjugated m-Phenylenediamine Conducting Polymer-Incorporated Peroxidase Biosensors [J]. Analytical Biochemistry,1999,267(1): 141-147.
    [44]Tsujimura S, Kojima S, Kano K, et al. Novel FAD-Dependent Glucose Dehydrogenase for A Dioxygen-Insensitive Glucose Biosensor [J]. Bioscience Biotechnology and Biochemistry,2006,70(3):654-659.
    [45]Loughran M G, Hall J M, Turner A P F. Development of A Pyrroloquinoline Quinone (PQQ) Mediated Glucose Oxidase Enzyme Electrode for Detection of Glucose in Fruit Juice [J]. Electroanalysis,1996,8(10):870-875.
    [46]Taylor C, Kenausis G, Katakis I, et al. Wiring of Glucose-Oxidase within A Hydrogel Made With Polyvinyl Imidazole Complexed with (OS-4,4'-Dimethoxy-2,2'-Bipyridine)CL(+/2+)[J]. Journal of Electroanalytical Chemistry,1995,396(1-2):511-515.
    [47]Lau K T, de Fortescu S A L, Murphy L J, et al. Disposable Glucose Sensors for Flow Injection Analysis Using Substituted1,4-Benzoquinone Mediators [J]. Electroanalysis,2003,15(11):975-981.
    [48]Degani Y, Heller A. Direct Electrical Communication Between Chemically Modified Enzymes and Metal-Electrodes.1. Electron-Transfer from Glucose-Oxidase to Metal-Electrodes via Electron Relays, Bound Covalently to the Enzyme [J]. Journal of Physical Chemistry,1987,91(6):1285-1289.
    [49]Pishko M V, Katakis I, Lindquist S E, et al. Direct Electrical Communication Between Graphite-Electrodes and Surface Adsorbed Glucose-Oxidase Redox Polymer Complexes [J]. Angewandte Chemie-International Edition in English,1990,29(1):82-89.
    [50]Ohara T J, Rajagopalan R, Heller A. Wired Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances [J]. Analytical Chemistry,1994,66(15):2451-2457.
    [51]Hilditch P I, Green M J. Disposable Electrochemical Biosensors [J]. Analyst,1991,116(12):1217-1220.
    [52]Matthews D R, Bown E, Watson A, et al. Pen-Sized Digital30-Second Blood-Glucose Meter [J]. Lancet,1987,1(8536):778-779.
    [53]Murray R W, Ewing A G, Durst R A. Chemically Modified Electrodes-Molecular Design F
    for Electroanalysis [J]. Analytical Chemistry,1987,59(5):A379-&.
    [54]Bindra D S, Zhang Y N, Wilson G S, et al. Design and Invitro Studies of A Needle-Type Glucose Sensor for Subcutaneous Monitoring [J]. Analytical Chemistry,1991,63(17):1692-1696.
    [55]Csoregi E, Schmidtke D W, Heller A. Design and Optimization of A Selective Subcutaneously Implantable Glucose Electrode Based on Wired Glucose-Oxidase [J]. Analytical Chemistry,1995,67(7):1240-1244.
    [56]Henry C. Getting under the Skin:Implantable Glucose Sensors [J]. Analytical Chemistry,1998,70(17):594A-598A.
    [57]Schmidtke D W, Freeland A C, Heller A, et al. Measurement and Modeling of the Transient Difference between Blood and Subcutaneous Glucose Concentrations in the Rat after Injection of Insulin [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(1):294-299.
    [58]Willner I, Katz E, Willner B. Electrical Contact of Redox Enzyme Layers Associated with Electrodes:Routes to Amperometric Biosensors [J]. Electroanalysis,1997,9(13):965-977.
    [59]Willner I, Katz E. Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications [J]. Angewandte Chemie-International Edition,2000,39(7):1180-1218.
    [60]Bartlett P N, Booth S, Caruana D J, et al. Modification of Glucose Oxidase by the Covalent Attachment of A Tetrathiafulvalene Derivative [J]. Analytical Chemistry,1997,69(4):734-742.
    [61]Riklin A, Katz E, Willner I, et al. Improving Enzyme-Electrode Contacts by Redox Modification of Cofactors [J]. Nature,1995,376(6542):672-675.
    [62]Xiao Y, Patolsky F, Katz E, et al."Plugging into Enzymes":Nanowiring of Redox Enzymes by A Gold Nanoparticle [J]. Science,2003,299(5614):1877-1881.
    [63]Gooding J J, Wibowo R, Liu J Q, et al. Protein Electrochemistry Using Aligned Carbon Nanotube Arrays [J]. Journal of the American Chemical Society,2003,125(30):9006-9007.
    [64]Patolsky F, Weizmann Y, Willner I. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors [J]. Angewandte Chemie-International Edition,2004,43(16):2113-2117.
    [65]Liu J Q, Chou A, Rahmat W, et al. Achieving Direct Electrical Connection to Glucose Oxidase Using Aligned Single Walled Carbon Nanotube Arrays [J]. Electroanalysis,2005,17(1):38-46.
    [66]Albery W J, Bartlett P N, Craston D H. Amperometric Enzyme Electrodes.2. Conducting Salts as Electrode Materials for the Oxidation of Glucose-Oxidase [J]. Journal of Electroanalytical Chemistry,1985,194(2):223-235.
    [67]Khan G F, Ohwa M, Wernet W. Design of A Stable Charge Transfer Complex Electrode for A Third-Generation Amperometric Glucose Sensor [J]. Analytical Chemistry,1996,68(17):2939-2945.
    [68]Palmisano F, Zambonin P G, Centonze D, et al. A Disposable, Reagentless, Third-Generation Glucose Biosensor Based on Overoxidized Poly(pyrrole)/Tetrathiafulvalene-Tetracyanopu inodimethane Composite [J]. Analytical Chemistry,2002,74(23):5913-5918.
    [69]Willner I, Heleg-Shabtai V, Blonder R, et al. Electrical Wiring of Glucose Oxidase by Reconstitution of FAD-Modified Monolayers Assembled onto Au-Electrodes [J]. Journal of the American Chemical Society,1996,118(42):10321-10322.
    [70]Zayats M, Katz E, Willner I. Electrical Contacting of Glucose Oxidase by Surface-Reconstitution of the Apo-Protein on A Relay-Boronic Acid-FAD Cofactor Monolayer [J]. Journal of the American Chemical Society,2002,124(10):2120-2121.
    [71]Yabuki S, Shinohara H, Aizawa M. Electro-Conductive Enzyme Membrane [J]. Journal of the Chemical Society-Chemical Communications,1989,(14):945-946.
    [72]Koopal C G J, Deruiter B, Nolte R J M. Amperometric Biosensor Based on Direct Communication between Glucose-Oxidase and A Conducting Polymer Inside the Pores of A Filtration on Membrane [J]. Journal of the Chemical Society-Chemical Communications,1991,(23):1691-1692.
    [73]Jing W, Yang Q. Mediator-Free Amperometric Determination of Glucose Based on Direct Electron Transfer between Glucose Oxidase and An Oxidized Boron-Doped Diamond Electrode [J]. Analytical and Bioanalytical Chemistry,2006,385(7):1330-1335.
    [74]Wang Y J, Caruso F. Enzyme Encapsulation in Nanoporous Silica Spherest [J]. Chemical Communications,2004,(13):1528-1529.
    [75]Wu S, Ju H X, Liu Y. Conductive Mesocellular Silica-Carbon Nanocomposite Foams for Immobilization, Direct Electrochemistry, and Biosensing of Proteins [J]. Advanced Functional Materials,2007,17(4):585-592.
    [76]Bao S J, Li C M, Zang J F, et al. New Nanostructured TiO2for Direct Electrochemistry and Glucose Sensor Applications [J]. Advanced Functional Materials,2008,18(4):591-599.
    [77]Renard E, Guerci B, Leguerrier A M, et al. Lower Rate of Initial Failures and Reduced Occurrence of Adverse Events with a New Catheter Model for Continuous Subcutaneous Insulin Infusion:Prospective, Two-Period, Observational, Multicenter Study [J]. Diabetes Technology&Therapeutics,2010,12(10):769-773.
    [78]Li J, Lin X Q. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Poly(o-Aminophenol) Film on Polypyrrole-Pt Nanocomposite Modified Glassy Carbon Electrode [J]. Biosensors&Bioelectronics,2007,22(12):2898-2905.
    [79]Wu B L, Zhang G M, Shuang S M, et al. Biosensors for Determination of Glucose with Glucose Oxidase Immobilized on An Eggshell Membrane [J]. Talanta,2004,64(2):546-553.
    [80]Han K C, Wu Z J, Lee J, et al. Activity of Glucose Oxidase Entrapped in Mesoporous Gels [J]. Biochemical Engineering Journal,2005,22(2):161-166.
    [81]Heller A, Feldman B. Electrochemistry in Diabetes Management [J]. Accounts of Chemical Research,2010,43(7):963-973.
    [82]Nagy L, Nagy G, Hajos P. Copper Electrode Based Amperometric Detector Cell for Sugar and Organic Acid Measurements [J]. Sensors and Actuators B-Chemical,2001,76(1-3):494-499.
    [83]Sun F, Li L, Liu P, et al. Nonenzymatic Electrochemical Glucose Sensor Based on Novel Copper Film [J]. Electroanalysis,2011,23(2):395-401.
    [84]Male K B, Hrapovic S, Liu Y L, et al. Electrochemical Detection of Carbohydrates Using Copper Nanoparticles and Carbon Nanotubes [J]. Analytica Chimica Acta,2004,516(1-2):35-41.
    [85]You T Y, Niwa O, Chen Z L, et al. An Amperometric Detector Formed of Highly Dispersed Ni Nanoparticles Embedded in A Graphite-Like Carbon Film Electrode for Sugar Determination [J]. Analytical Chemistry,2003,75(19):5191-5196.
    [86]Lu L M, Zhang L, Qu F L, et al. A Nano-Ni Based Ultrasensitive Nonenzymatic Electrochemical Sensor for Glucose:Enhancing Sensitivity through A Nanowire Array Strategy [J]. Biosensors&Bioelectronics,2009,25(1):218-223.
    [87]Tominaga M, Shimazoe T, Nagashima M, et al. Electrocatalytic Oxidation of Glucose at Gold-Silver Alloy, Silver and Gold Nanoparticles in An Alkaline Solution [J]. Journal of Electroanalytical Chemistry,2006,590(1):37-46.
    [88]Zhu H, Lu X Q, Li M X, et al. Nonenzymatic Glucose Voltammetric Sensor Based on Gold Nanoparticles/Carbon Nanotubes/Ionic Liquid Nanocomposite [J]. Talanta,2009,79(5):1446-1453.
    [89]Kurniawan F, Tsakova V, Mirsky V M. Gold Nanoparticles in Nonenzymatic Electrochemical Detection of Sugars [J]. Electroanalysis,2006,18(19-20):1937-1942.
    [90]Park S, Chung T D, Kim H C. Nonenzymatic Glucose Detection Using Mesoporous Platinum [J]. Analytical Chemistry,2003,75(13):3046-3049.
    [91]Wang X, Hui C G., Liu H., et al. Synthesis of CuO Nanostructures and Their Application for Nonenzymatic Glucose Sensing [J]. Sensors and Actuators B-Chemical,2010,144(1):220-225.
    [92]Reitz E, Jia W Z, Gentile M, et al. CuO Nanospheres Based Nonenzymatic Glucose Sensor [J]. Electroanalysis,2008,20(22):2482-2486.
    [93]Cao F, Guo S, Ma H Y, et al. Nickel Oxide Microfibers Immobilized onto Electrode by Electrospinning and Calcination for Nonenzymatic Glucose Sensor and Effect of Calcination Temperature on the Performance [J]. Biosensors&Bioelectronics,2011,26(5):2756-2760.
    [94]Chen Q, Wang J, Rayson G, et al. Sensor Array for Carbohydrates and Amino-Acids Based on Electrocatalytic Modified Electrodes [J]. Analytical Chemistry,1993,65(3):251-254.
    [95]Batchelor-McAuley C, Wildgoose G G, Compton R G, et al. Copper Oxide Nanoparticle Impurities Are Responsible for the Electroanalytical Detection of Glucose Seen Using Multiwalled Carbon Nanotubes [J]. Sensors and Actuators B-Chemical,2008,132(1):356-360.
    [96]Singh B, Laffir F, McCormac T, et al. PtAu/C Based Bimetallic Nanocomposites for Non-enzymatic Electrochemical Glucose Detection [J]. Sensors and Actuators B-Chemical,2010,150(1):80-92.
    [97]Wang J, Thomas D F, Chen A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks [J]. Analytical Chemistry,2008,80(4):997-1004.
    [98]Yeo I H, Johnson D C. Electrochemical Response of Small Organic Molecules at Nickel-Copper Alloy Electrodes [J]. Journal of Electroanalytical Chemistry,2001,495(2):110-119.
    [99]Zhang X J, Wang G F, Zhang W, et al. Fixure-Reduce Method for the Synthesis of Cu2O/MWCNTs Nanocomposites and Its Application as Enzyme-Free Glucose Sensor [J]. Biosensors&Bioelectronics,2009,24(11):3395-3398.
    [100]Chen J, Zhang W D, Ye J S. Nonenzymatic Electrochemical Glucose Sensor Based on MnO2/MWNTs Nanocomposite [J]. Electrochemistry Communications,2008,10(9):1268-1271.
    [101]Pletcher D. Electrocataly sis-Present and Future [J]. Journal of Applied Electrochemistry,1984,14(4):403-415.
    [102]Adzic R R, Hsiao M W, Yeager E B. Electrochemical Oxidation fo Glucose on Single-Crystal Gold Surfaces [J]. Journal of Electroanalytical Chemistry,1989,260(2):475-485.
    [103]Kokkinidis G, Leger J M, Lamy C. Structural Effects in Electrocataly sis-Oxidation of D-Glucose on Pt(100),(110) and (111) Single-Crystal Electrodes and the Effect of UPD Adlayers of Pb, Tl and Bi [J]. Journal of Electroanalytical Chemistry,1988,242(1-2):221-242.
    [104]Hsiao M W, Adzic R R, Yeager E B. Electrochemical Oxidation of Glucose on Single Crystal and Polycrystalline Gold Surfaces in Phosphate Buffer [J]. Journal of the Electrochemical Society,1996,143(3):759-767.
    [105]Vassilyev Y B, Khazova O A, Nikolaeva N N. Kinetics and Mechanism of Glucose Electrooxidation on Different Electrode-Catalysts.2. Effect of the Nature of the Electrode and the Electrooxidation Mechanism [J]. Journal of Electroanalytical Chemistry,1985,196(1):127-144.
    [106]Larew L A, Johnson D C. Concentration-Dependence of the Mechanism of Glucose-Oxidation at Gold Electrodes in Alkaline Media [J]. Journal of Electroanalytical Chemistry,1989,262(1-2):167-182.
    [107]Beden B, Largeaud F, Kokoh K B, et al. Fourier Transform Infrared Reflectance Spectroscopic Investigation of the Electrocatalytic Oxidation of D-Glucose:Identification of Rreactive Intermediates and Reaction Products [J]. Electrochimica Acta,1996,41(5):701-709.
    [108]Ernst S, Heitbaum J, Hamann C H. Electrooxidation of Glucose in Phosphate Buffer Solutions.1. Reactivity and Kinetics Below350MV-RHE [J]. Journal of Electroanalytical Chemistry,1979,100(1-2):173-183.
    [109]Yi Q F, Huang W, Yu W Q, et al. Hydrothermal Synthesis of Titanium-Supported Nickel Nanoflakes for Electrochemical Oxidation of Glucose [J]. Electroanalysis,2008,20(18):2016-2022.
    [110]Skou E. Electrochemical Oxidation of Glucose on Platinum.1. Oxidation in1MH2SO4[J]. Electrochimica Acta,1977,22(4):313-318.
    [111]Rao M L B, Drake R F. Studies of Electrooxidation of Dextrose in Neutral Media [J]. Journal of the Electrochemical Society,1969,116(3):334-&.
    [112]Bolzan A E, Iwasita T, Vielstich W. on the Electrochemical Oxidation of Glucose-Identification of Volatile Products by Online Mass-Spectroscopy [J]. Journal of the Electrochemical Society,1987,134(12):3052-3058.
    [113]Demele M F L, Videla H A, Arvia A J. Potentiodynamic Study of Glucose Electrooxidation at Bright Platinum-Electrodes [J]. Journal of the Electrochemical Society,1982,129(10):2207-2213.
    [114]Vassilyev Y B, Khazova O A, Nikolaeva N N. Kinetics and Mechanism of Glucose Electrooxidation on Diffenent Electrode-Catalysts.1. Adsorption and Oxidation on Platinum [J]. Journal of Electroanalytical Chemistry,1985,196(1):105-125.
    [115]Skou E M. Inhibition of Electrochemical Oxidation of Glucose at Platinum at pH=7.4by Chloride-Ions [J]. Acta Chemica Scandinavica,1973,27(6):2239-2241.
    [116]Gebhardt U, Luft G, Richter G J, et al. Development of An Implantable Electrocatalytic Glucose Sensor [J]. Bioelectrochemistry and Bioenergetics,1978,5(4):607-624.
    [117]Gough D A, Anderson F L, Giner J, et al. Effect of Coreactants on Electrochemical Glucose Oxidation [J]. Analytical Chemistry,1978,50(7):941-944.
    [118]Sakamoto M, Takamura K. Catalytic-Oxidation of Biological Components on Platinum-Electrodes Modified by Adsorbed Metals-Anodic-Oxidation of Glucose [J]. Bioelectrochemistry and Bioenergetics,1982,9(5):571-582.
    [119]Kokkinidis G, Xonoglou N. Comparative-Study of the Electrocatalytic Influence of Underprotential Heavy-Metal Adatoms the Anodic-Oxidation of Monosaccharides on Pt in Acid-Solutions [J]. Bioelectrochemistry and Bioenergetics,1985,14(4-6):375-387.
    [120]Xonoglou N, Kokkinidis G. Catalysis of the Oxidation of Monosaccharides on Platinum Surfaces Modified by Underpotential Submonolayers [J]. Bioelectrochemistry and Bioenergetics,1984,12(5-6):485-498.
    [121]Zhang X, Chan K Y, Tseung A C C. Electrochemical Oxidation of Glucose by Pt/WO3Electrode [J]. Journal of Electroanalytical Chemistry,1995,386(1-2):241-243.
    [122]Wittstock G, Strubing A, Szargan R, et al. Glucose Oxidation at Bismuth-Modified Platinum Electrodes [J]. Journal of Electroanalytical Chemistry,1998,444(1):61-73.
    [123]Huang J F.3-D Nanoporous Pt Electrode Prepared by a2-D UPD Monolayer Process [J]. Electroanalysis,2008,20(20):2229-2234.
    [124]Song Y Y, Zhang D, Gao W, et al. Nonenzymatic Glucose Detection by Using A Three-Dimensionally Ordered, Macroporous Platinum Template [J]. Chemistry-a European Journal,2005,11(7):2177-2182.
    [125]Chou C H, Chen J C, Tai C C, et al. A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water-Insensitive Zinc Chloride-l-Ethyl-3-Methylimidazolium Chloride Ionic Liquid [J]. Electroanalysis,2008,20(7):771-775.
    [126]Lee Y J, Park D J, Park J Y. Fully Packaged Nonenzymatic Glucose Microsensors With Nanoporous Platinum Electrodes for Anti-Fouling [J]. Ieee Sensors Journal,2008,8(11-12):1922-1927.
    [127]Lee Y J, Park D J, Park J Y, et al. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon [J]. Sensors,2008,8(10):6154-6164.
    [128]Joo S, Park S, Chung T D, et al. Integration of a Nanoporous Platinum Thin Film into a Microfluidic System for Non-enzymatic Electrochemical Glucose Sensing [J]. Analytical Sciences,2007,23(3):277-281.
    [129]Cao Z X, Zou Y J, Xiang C L, et al. Amperometric Glucose Biosensor Based on Ultrafine Platinum Nanoparticles [J]. Analytical Letters,2007,40(11):2116-2127.
    [130]Lu J, Do I, Drzal L T, et al. Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response [J]. Acs Nano,2008,2(9):1825-1832.
    [131]Yuan J H, Wang K, Xia X H. Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing [J]. Advanced Functional Materials,2005,15(5):803-809.
    [132]Myung Y, Jang D M, Cho Y J, et al. Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures [J]. Journal of Physical Chemistry C,2009,113(4):1251-1259.
    [133]Boo H, Park S, Ku B Y, et al. Ionic Strength-Controlled Virtual Area of Mesoporous Platinum Electrode [J]. Journal of the American Chemical Society,2004,126(14):4524-4525.
    [134]Park S, Boo H, Lee S Y, et al. Apparent Electrocatalysis on3D Nanoporous Platinum Film Electroplated from Hexagonal Lyotropic Liquid Crystalline Phase of Triton X-100[J]. ElectrochimicaActa,2008,53(21):6143-6148.
    [135]Holt-Hindle P, Nigro S, Asmussen M, et al. Amperometric Glucose Sensor Based on Platinum-Iridium Nanomaterials [J]. Electrochemistry Communications,2008,10(10):1438-1441.
    [136]Bai Y, Sun Y Y, Sun C Q. Pt-Pb Nanowire Array Electrode for Enzyme-free Glucose Detection [J]. Biosensors&Bioelectronics,2008,24(4):579-585.
    [137]Aoun S B, Bang G S, Koga T, et al. Electrocatalytic Oxidation of Sugars on Silver-UPD Single Crystal Gold Electrodes in Alkaline Solutions [J]. Electrochemistry Communications,2003,5(4):317-320.
    [138]Ben Aoun S, Dursun Z, Koga T, et al. Effect of Metal Ad-layers on Au(111) Electrodes on Electrocatalytic Oxidation of Glucose in An Alkaline Solution [J]. Journal of Electroanalytical Chemistry,2004,567(2):175-183.
    [139]Matsumoto F, Harada M, Koura N, et al. Electrochemical Oxidation of Glucose at Hg Adatom-Modified Au Electrode in Alkaline Aqueous Solution [J]. Electrochemistry Communications,2003,5(1):42-46.
    [140]Bai Y, Yang W W, Sun Y, et al. Enzyme-free Glucose Sensor Based on A Three-Dimensional Gold Film Electrode [J]. Sensors and Actuators B-Chemical,2008,134(2):471-476.
    [141]Li Y, Song Y Y, Yang C, et al. Hydrogen Bubble Dynamic Template Synthesis of Porous Gold for Nonenzymatic Electrochemical Detection of Glucose [J]. Electrochemistry Commu nications,2007,9(5):981-988.
    [142]Cho S, Kang C. Nonenzymatic Glucose Detection with Good Selectivity Against Ascorbic Acid on A Highly Porous Gold Electrode Subjected to Amalgamation Treatment [J]. Electroanalysis,2007,19(22):2315-2320.
    [143]Luo P F, Zhang F Z, Baldwin R P. Comparison of Metallic Electrodes for Constant-Potential Amperometric Detection of Carbohydrates, Amino-Acids and Related-Compounds in Flow Systems [J]. Analytica Chimica Acta,1991,244(2):169-178.
    [144]Fleischm M, Korinek K, Pletcher D. Oxidation of Organic Compounds at A Nickel Anode in Alkaline Solution [J]. Journal of Electroanalytical Chemistry,1971,31(1):39-&.
    [145]Toghill K E, Xiao L, Phillips M A, et al. The Non-enzymatic Determination of Glucose Using An Electrolytically Fabricated Nickel Microparticle Modified Boron-Doped Diamond Electrode or Nickel Foil Electrode [J]. Sensors and Actuators B-Chemical,2010,147(2):642-652.
    [146]Huang J F. Facile Preparation of An Ultrathin Nickel Film Coated Nanoporous Gold Electrode with the Unique Catalytic Activity to Oxidation of Glucose [J]. Chemical Communications,2009,(10):1270-1272.
    [147]Kano K, Torimura M, Esaka Y, et al. Electrocatalytic Oxidation of Carboydrates at Copper(II)-Modified Electrodes and Its Application to Flow-through Detecton [J]. Journal of Electroanalytical Chemistry,1994,372(1-2):137-143.
    [148]Kano K, Takagi K, Inoue K, et al. Copper Electrodes for Stable Subpicomole Detection of Carbohydrates in High-Performance Lliquid Chromatography [J]. Journal of Chromatography A,1996,721(1):53-57.
    [149]Prabhu S V, Baldwin R P. Constant Potential Amperometric Detection of Carbohydrates at A Copper-Based Chemically Modified Electrode [J]. Analytical Chemistry,1989,61(8):852-856.
    [150]Zhang L, Li H, Ni Y H, et al. Porous Cuprous Oxide Microcubes for Non-enzymatic Amperometric Hydrogen Peroxide and Glucose Sensing [J]. Electrochemistry Communications,2009,11(4):812-815.
    [151]Xu Q, Zhao Y, Xu J Z, et al. Preparation of Functionalized Copper Nanoparticles and Fabrication of A Glucose Sensor [J]. Sensors and Actuators B-Chemical,2006,114(1):379-386.
    [152]Casella I G, Gatta M, Guascito M R, et al. Highly-Dispersed Copper Microparticles on the Active Gold Substrate as An Amperometric Sensor for Glucose [J]. Analytica Chimica Acta,1997,357(1-2):63-71.
    [153]Zhao J, Wang F, Yu J J, et al. Electro-Oxidation of Glucose at Self-Assembled Monolayers Incorporated by Copper Particles [J]. Talanta,2006,70(2):449-454.
    [154]Liu H Y, Su X D, Tian X F, et al. Preparation and Electrocatalytic Pperformance of Functionalized Copper-Based Nanoparticles Supported on the Gold Surface [J]. Electroanalysis,2006.18(21):2055-2060.
    [155]Zhuang Z J, Su X D, Yuan H Y, et al. An Improved Sensitivity Non-enzymatic Glucose SensorBased on A CuO Nanowire Modified Cu Electrode [J]. Analyst,2008,133(1):126-132.
    [156]Li X, Zhu Q Y, Tong S F, et al. Self-Assembled Microstructure of Carbon Nanotubes for Enzymeless Glucose Sensor [J]. Sensors and Actuators B-Chemical,2009,136(2):444-450.
    [157]Sheu F S, Ye J S. Advances in Electrochemical Sensors UsingMulti-Walled Carbon Nanotubes [J]. Materials Technology,2004,19(1):11-12.
    [158]Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic Glucose Detection Using Multi-Walled Carbon Nanotube Electrodes [J]. Electrochemistry Communications,2004,6(1):66-70.
    [159]Wang J X, Sun X W, Cai X P, et al. Nonenzymatic Glucose Sensor Using Freestanding Single-Wall Carbon Nanotube Films [J]. Electrochemical and Solid State Letters,2007,10(5): J58-J60.
    [160]Wang J, Musameh M, Lin Y H. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors [J]. Journal of the American Chemical Society,2003,125(9):2408-2409.
    [161]Rong L Q, Yang C, Qian Q Y, et al. Study of the Nonenzymatic Glucose Sensor Based on Highly Dispersed Pt Nanoparticles Supported on Carbon Nanotubes [J]. Talanta,2007,72(2):819-824.
    [162]Li L H, Zhang W D. Preparation of Carbon Nanotubes Supported Platinum Nanoparticles by an Organic Colloidal Process for Nonenzymatic Glucose Sensing [J]. Microchimica Acta,2008,163(3-4):305-311.
    [163]Kang X H, Mai Z B, Zou X Y, et al. A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with A Copper Nanocluster/Multiwall Carbon Nano Tube-Modified Glassy Carbon Electrode [J]. Analytical Biochemistry,2007,363(1):143-150.
    [164]Cui H F, Ye J S, Zhang W D, et al. Selective and Sensitive Electrochemical Detection of Glucose in Neutral Solution Using Platinum-Lead Alloy Nanoparticle/Carbon Nanotube Nanocomposites [J]. Analytica Chimica Acta,2007,594(2):175-183.
    [165]Li L H, Zhang W D, Ye J S. Electrocatalytic Oxidation of Glucose at Carbon Nanotubes Supported PtRu Nanoparticles and Its Detection [J]. Electroanalysis,2008,20(20):2212-2216.
    [166]Stavyiannoudaki V, Vamvakaki V, Chaniotakis N. Comparison of Protein Immobilisation Methods onto Oxidised and Native Carbon Nanofibres for Optimum Biosensor Development [J]. Analytical and Bioanalytical Chemistry,2009,395(2):429-435.
    [167]Rathod D, Dickinson C, Egan D, et al. Platinum Nanoparticle Decoration of Carbon Materials with Applications in Non-enzymatic Glucose Sensing [J]. Sensors and Actuators B-Chemical,2010,143(2):547-554.
    [168]Liu Y, Teng H, Hou H Q, et al. Nonenzymatic Glucose Sensor Based on Renewable Electrospun Ni Nanoparticle-Loaded Carbon Nanofiber Paste Electrode [J]. Biosensors&Bioelectronics,2009,24(11):3329-3334.
    [169]Uchikado R, Rao T N, Tryk D A, et al. Metal-modified diamond electrode as an electrochemical detector for glucose [J]. Chemistry Letters,2001(2):144-145.
    [170]Song Y J, Doomes E E, Prindle J, et al. Investigations into Sulfobetaine-Stabilized Cu Nanoparticle Formation:Toward Development of A Microfluidic Synthesis [J]. Journal of Physical Chemistry B,2005,109(19):9330-9338.
    [171]Wang X B, Liu W M, Yan F Y, et al. Synthesis of Dialkyl Dithiophosphate Surface-Capped Copper Nanoclusters [J]. Chemistry Letters,2004,33(2):196-197.
    [172]Chen S W, Sommers J M. Alkanethiolate-Protected Copper Nanoparticles:Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution [J]. Journal of Physical Chemistry B,2001,105(37):8816-8820.
    [173]Ang T P, Wee T S A, Chin W S. Three-Dimensional Self-Assembled Monolayer (3D SAM) of n-Alkanethiols on Copper Nanoclusters [J]. Journal of Physical Chemistry B,2004,108(30):11001-11010.
    [174]Tzhayik O, Sawant P, Efrima S, et al. Xanthate Capping of Silver, Copper, and Gold Colloids [J]. Langmuir,2002,18(8):3364-3369.
    [175]Song X Y, Sun S X, Zhang W M, et al. A Method for the Synthesis of Spherical Copper Nanoparticles in the Organic Phase [J]. Journal of Colloid and Interface Science,2004,273(2):463-469.
    [176]Pulkkinen P, Shan J, Leppanen K, et al. Poly(ethylene imine) and Tetraethylenepentamine as Protecting Agents for Metallic Copper Nanoparticles [J]. Acs Applied Materials&Interfaces,2009,1(2):519-525.
    [177]Wu S H, Chen D H. Synthesis of High-Concentration Cu Nanoparticles in Aqueous CTAB Solutions [J]. Journal of Colloid and Interface Science,2004,273(1):165-169.
    [178]Zhou G J, Lu M K, Yang Z S. Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core-Shell Nanostructures [J]. Langmuir,2006,22(13):5900-5903.
    [179]Wang Y H, Chen P L, Liu M H. Synthesis of Well-Defined Copper Nanocubes by A One-Pot Solution Process [J]. Nanotechnology,2006,17(24):6000-6006.
    [180]Liu Z P, Yang Y, Liang J B, et al. Synthesis of Copper Nanowires via A Complex-Surfactant-Assisted Hydrothermal Reduction Process [J]. Journal of Physical Chemistry B,2003,107(46):12658-12661.
    [181]Chang Y, Lye M L, Zeng H C. Large-Scale Synthesis of High-Quality Ultralong copper nanowires [J]. Langmuir,2005,21(9):3746-3748.
    [182]Cao M H, Hu C W, Wang Y H, et al. A Controllable Synthetic Route to Cu, Cu2O, and CuO Nanotubes and Nanorods [J]. Chemical Communications,2003,(15):1884-1885.
    [183]Wu C W, Mosher B P, Zeng T F. One-Step Green Route to Narrowly Dispersed Copper Nanocrystals [J]. Journal of Nanoparticle Research,2006,8(6):965-969.
    [184]Zhao M Q, Sun L, Crooks R M. Preparation of Cu Nanoclusters within Dendrimer Templates [J]. Journal of the American Chemical Society,1998,120(19):4877-4878.
    [185]Zhao M Q, Crooks R M. Intradendrimer Exchange of Metal Nanoparticles [J]. Chemistry of Materials,1999,11(11):3379-3385.
    [186]Crooks R M, Zhao M Q, Sun L, et al. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis [J]. Accounts of Chemical Research,2001,34(3):181-190.
    [187]Balogh L, Tomalia D A. Poly(amidoamine) Dendrimer-Templated Nanocomposites.1. Synthesis of Zerovalent Copper Nanoclusters [J]. Journal of the American Chemical Society,1998,120(29):7355-7356.
    [188]Floriano P N, Noble C O, Schoonmaker J M, et al. Cu(0) Nanoclusters Derived from Poly(Propylene Imine) Dendrimer Complexes of CU(II)[J]. Journal of the American Chemical Society,2001,123(43):10545-10553.
    [189]Lisiecki I, Pileni M P. Copper Metallic Particles Synthesized in-Situ in Reverse Micelles-Influence of Various Parameters on the Size of the Particles [J]. Journal of Physical Chemistry,1995,99(14):5077-5082.
    [190]Salzemann C, Lisiecki L, Urban J, et al. Anisotropic Copper Nanocrystals Synthesized in a Supersaturated Medium:Nanocrystal Growth [J]. Langmuir,2004,20(26):11772-11777.
    [191]Pileni M P. the Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals [J]. Nature Materials,2003,2(3):145-150.
    [192]Filankembo A, Pileni M P. Shape Control of Copper Nanocrystals [J]. Applied Surface Science,2000,164:260-267.
    [193]Vazquez-Vazquez C, Banobre-Lopez M, Mitra A, et al. Synthesis of Small Atomic Copper Clusters in Microemulsions [J]. Langmuir,2009,25(14):8208-8216.
    [194]Sangregorio C, Galeotti M, Bardi U, et al. Synthesis of Cu3Au Nanocluster Alloy in Reverse Micelles [J]. Langmuir,1996,12(24):5800-5802.
    [195]Qiu S Q, Dong J X, Chen G X. Preparation of Cu Nanoparticles from Water-in-Oil Microemulsions [J]. Journal of Colloid and Interface Science,1999,216(2):230-234.
    [196]Ohde H, Hunt F, Wai C M. Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion [J]. Chemistry of Materials,2001,13(11):4130-4135.
    [197]Son S U, Park I K, Park J, et al. Synthesis of Cu2O Coated Cu Nanoparticles and Their Successful Applications to Ullmann-type Animation Coupling Reactions of Aryl Chlorides [J]. Chemical Communications,2004,(7):778-779.
    [198]Mott D, Galkowski J, Wang L Y, et al. Synthesis of Size-Controlled and Shaped Copper Nanoparticles [J]. Langmuir,2007,23(10):5740-5745.
    [199]Hambrock J, Becker R, Birkner A, et al. A Non-aqueous Organometallic Route to Highly Monodispersed Copper Nanoparticles Using Cu(OCH(Me)CH2NMe2)(2)[J]. Chemical Communications,2002,(1):68-69.
    [200]Bunge S D, Boyle T J, Headley T J. Synthesis of Coinage-Metal Nanoparticles from Mesityl Precursors [J]. Nano Letters,2003,3(7):901-905.
    [201]Fievet F, Fievetvincent F, Lagier J P, et al. Controlled Nucleation and Growth of Micrometer-Size Copper Particles Prepared by the Polyol Process [J]. Journal of Materials Chemistry,1993,3(6):627-632.
    [202]Park B K, Jeong S, Kim D, et al. Synthesis and Size Control of Monodisperse Copper Nanoparticles by Polyol Method [J]. Journal of Colloid and Interface Science,2007,311(2):417-424.
    [203]Nakamura T, Tsukahara Y, Sakata T, et al. Preparation of Monodispersed Cu Nanoparticles by Microwave-Assisted Alcohol Reduction [J]. Bulletin of the Chemical Society of Japan,2007,80(1):224-232.
    [204]Zhu H T, Zhang C Y, Yin Y S. Novel Synthesis of Copper Nanoparticles:Influence of the Synthesis Conditions on the Particle Size [J]. Nanotechnology,2005,16(12):3079-3083.
    [205]Duan J L, Liu J, Mo D, et al. Controlled Crystallinity and Crystallographic Orientation of Cu Nanowires Fabricated in Ion-Track Templates [J]. Nanotechnology,2010,21(36).
    [206]Tian M L, Wang J U, Kurtz J, et al. Electrochemical Growth of Single-CrystalMmetal Nanowires via A Two-Dimensional Nucleation and Growth Mechanism [J]. Nano Letters,2003,3(7):919-923.
    [207]Zhong S, Koch T, Wang M, et al. Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition [J]. Small,2009,5(20):2265-2270.
    [208]Haas I, Shanmugam S, Gedanken A. Pulsed Sonoelectrochemical Synthesis of Size-Controlled Copper Nanoparticles Stabilized by Poly(n-Vinylpyrrolidone)[J]. Journal of Physical Chemistry B,2006,110(34):16947-16952.
    [209]Xu L P, Sithambaram S, Zhang Y S, et al. Novel Urchin-like CuO Synthesized by a Facile Reflux Method with Efficient Olefin Epoxidation Catalytic Performance [J]. Chemistry of Materials,2009,21(7):1253-1259.
    [210]Rathmell A R, Bergin S M, Hua Y L, et al. The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films [J]. Advanced Materials,2010,22(32):3558-+.
    [211]Heller A, Feldman B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management [J]. Chemical Reviews,2008,108(7):2482-2505.
    [212]Su L A, Jia W Z, Hou C J, et al. Microbial biosensors:A review [J]. Biosensors& Bioelectronics,2011,26(5):1788-1799.
    [213]Yao S J, Appleby A J, Geisel A, et al. Anodic Oxidation of Carbohydrates and Their Derivatives in Neutral Saline Solution [J]. Nature,1969,224(5222):921-&.
    [214]Hrapovic S, Liu Y L, Male K B, et al. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes [J]. Analytical Chemistry,2004,76(4):1083-1088.
    [215]Su L A, Jia W Z, Zhang L C, et al. Facile Synthesis of a Platinum Nanoflower Monolayer on a Single-Walled Carbon Nanotube Membrane and Its Application in Glucose Detection [J]. Journal of Physical Chemistry C,2010,114(42):18121-18125.
    [216]Park S, Boo H, Chung T D. Electrochemical Non-enzymatic Glucose Sensors [J]. Analytica Chimica Acta,2006,556(1):46-57.
    [217]Jena B K, Raj C R. Enzyme-Free Amperometric Sensing of Glucose by Using Gold Nanoparticles [J]. Chemistry-a European Journal,2006,12(10):2702-2708.
    [218]Xia Y, Huang W, Zheng J F, et al. Nonenzymatic Amperometric Response of Glucose on A Nanoporous Gold Film Electrode Fabricated by A Rapid and Simple Eectrochemical Method [J]. Biosensors&Bioelectronics,2011,26(8):3555-3561.
    [219]Xiao X Y, Montano G A, Edwards T L, et al. Lithographically Defined3D Nanoporous Nonenzymatic Glucose Sensors [J]. Biosensors&Bioelectronics,2011,26(8):3641-3646.
    [220]Meng L, Jin J, Yang G X, et al. Nonenzymatic Electrochemical Detection of Glucose Based on Palladium-Single-Walled Carbon Nanotube Hybrid Nanostructures [J]. Analytical Chemistry,2009,81(17):7271-7280.
    [221]Wu H X, Cao W M, Li Y, et al. in Situ Growth of Copper Nanoparticles on Multiwalled Carbon Nanotubes and Their Application as Non-enzymatic Glucose Sensor Materials [J]. ElectrochimicaActa,2010,55(11):3734-3740.
    [222]Yang J A, Zhang W D, Gunasekaran S. An Amperometric Non-enzymatic Glucose Sensor by Electrodepositing Copper Nanocubes onto Vertically Well-aligned Multi-walled Carbon Nanotube Arrays [J]. Biosensors&Bioelectronics,2010,26(1):279-284.
    [223]Jiang L C, Zhang W D. A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles-Modified Carbon Nanotube Electrode [J]. Biosensors&Bioelectronics,2010,25(6):1402-1407.
    [224]Wang W, Zhang L L, Tong S F, et al. Three-Dimensional Network Films of Electrospun Copper Oxide Nanofibers for Glucose Determination [J]. Biosensors&Bioelectronics,2009,25(4):708-714.
    [225]El Khatib K M, Hameed R M A. Development of Cu2O/Carbon Vulcan XC-72as Non-enzymatic Sensor for Glucose Determination [J]. Biosensors&Bioelectronics,2011,26(8):3542-3548.
    [226]Li C L, Su Y, Zhang S W, et al. An Improved Sensitivity Nonenzymatic Glucose Biosensor Based on A CU(x)O Modified Electrode [J]. Biosensors&Bioelectronics,2010,26(2):903-907.
    [227]Lee H, Yoon S W, Kim E J, et al. In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials [J]. Nano Letters,2007,7(3):778-784.
    [228]Wanekaya A K, Chen W, Myung N V, et al. Nanowire-Based Electrochemical Biosensors [J]. Electroanalysis,2006,18(6):533-550.
    [229]Xia Y N, Yang P D, Sun Y G, et al. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications [J]. Advanced Materials,2003,15(5):353-389.
    [230]Marioli J M, Kuwana T. Eelectrochemical Characterization of Carbohydrate Oxidatio at Copper Electrodes [J]. Electrochimica Acta,1992,37(7):1187-1197.
    [231]Luo P F, Prabhu S V, Baldwin R P. Constant Potential Amperometric Detection at A Copper-Based Electrode-Electrode Formation and Operation [J]. Analytical Chemistry,1990,62(7):752-755.
    [232]Ding Y, Wang Y, Su L, et al. Electrospun Co(3)O(4) Nanofibers for Sensitive and Selective Glucose Detection [J]. Biosensors&Bioelectronics,2010,26(2):542-548.
    [233]Ding Y, Wang Y, Su L.A., et al. Preparation and Characterization of NiO-Ag Nanofibers, NiO Nanofibers, and Porous Ag:towards the Development of A Highly Sensitive and Selective Non-enzymatic Glucose Sensor [J]. Journal of Materials Chemistry,2010,20(44):9918-9926.
    [234]Kawasaki T, Akanuma H, Yamanouchi T Y. Increased Fructose Concentrations in Blood and Urine in Patients with Diabetes [J]. Diabetes Care,2002,25(2):353-357.
    [235]Vinet B, Panzini B, Boucher M, et al. Automated Enzymatic Assay for the Determination of Sucrose in Serum and Urine and Its Use as A Marker of Gastric Damage [J]. Clinical Chemistry,1998,44(11):2369-2371.
    [236]Eder D. Carbon Nanotube-Inorganic Hybrids [J]. Chemical Reviews,2010,110(3):1348-1385.
    [237]Jacobs C B, Peairs M J, Venton B J. Review:Carbon Nanotube Based Electrochemical Sensors for Biomolecules [J]. Analytica Chimica Acta,2010,662(2):105-127.
    [238]Holloway A F, Craven D A, Xiao L, et al. Developing Random Network Theory for Carbon Nanotube Modified Electrode Voltammetry:Introduction and Application to Estimating the Potential Drop between MWCNT-MWCNT Contacts [J]. Journal of Physical Chemistry C,2008,112(35):13729-13738.
    [239]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of Carbon Nanotubes [J]. Chemical Reviews,2006,106(3):1105-1136.
    [240]Zhang A M, Dong J L, Xu Q H, et al. Palladium Cluster Filled in Inner of Carbon Nanotubes and Their Catalytic Properties in Lliquid Phase Benzene Hydrogenation [J]. Catalysis Today,2004,93-5:347-352.
    [241]Bian J, Xiao M, Wang S J, et al. Carbon Nanotubes Supported Cu-Ni Bimetallic Catalysts and Their Properties for the Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide [J]. Applied Surface Science,2009,255(16):7188-7196.
    [242]Peng X H, Chen J Y, Misewich J A, et al. Carbon Nanotube-Nanocrystal Heterostructures [J]. Chemical Society Reviews,2009,38(4):1076-1098.
    [243]Tang Z Y, Kotov N A. One-Dimensional Assemblies of Nanoparticles:Preparation, Properties, and Promise [J]. Advanced Materials,2005,17(8):951-962.
    [244]Correa-Duarte M.A.Liz-Marzan L.M., Carbon nanotubes as templates for one-dimensional nanoparticle assemblies [J]. Journal of Materials Chemistry,2006.16(1):22-25.
    [245]Sainsbury T, Fitzmaurice D. Templated Assembly of Semiconductor and Insulator Nanoparticles at the Surface of Covalently Modified Multiwalled Carbon Nanotubes [J]. Chemistry of Materials,2004,16(19):3780-3790.
    [246]Wang Y H, Yang R T, Heinzel J M. Desulfurization of Jet Fuel JP-5Light Fraction by MCM-41and SBA-15Supported Cuprous Oxide for Fuel Cell Applications [J]. Industrial&Engineering Chemistry Research,2009,48(1):142-147.
    [247]Helaili N, Bessekhouad Y, Bouguelia A, et al. Visible light degradation of Orange Ⅱ using xCu(y)O(z)/TiO2heterojunctions [J]. Journal of Hazardous Materials,2009,168(1):484-492.
    [248]Valange S, Derouault A, Barrault J, et al. One-Step Generation of Highly Selective Hhydrogenation Catalysts Involving Sub-Nanometric Cu2O Supported on Mesoporous Alumina:Strategies to Control Their Size and Dispersion [J]. Journal of Molecular Catalysis a-Chemical,2005,228(1-2):255-266.
    [249]Wang X, Chen W K, Lu C H. A Periodic Density Functional Theory Study of the Dehydrogenation of Methanol over CuCl(111) Surface [J]. Applied Surface Science,2008,254(15):4421-4431.
    [250]Martinez-Ruiz A, Alonso-Nunez G. New Synthesis of Cu2O and Cu Nanoparticles on Multi-wall Carbon Nanotubes [J]. Materials Research Bulletin,2008,43(6):1492-1496.
    [251]Yu Y, Ma L L, Huang W Y, et al. Sonication Assisted Deposition of Cu2O Nanoparticles on Multiwall Carbon Nanotubes with Polyol Process [J]. Carbon,2005,43(3):670-673.
    [252]Luo Y S, Ren Q F, Li J L, et al. Synthesis and Optical Properties of Multiwalled Carbon Nanotubes Beaded with Cu2O Nanospheres [J]. Nanotechnology,2006,17(23):5836-5840.
    [253]Zhang L S, Li J L, Chen Z G, et al. Preparation of Fenton Reagent with H2O2Generated by Solar Light-Illuminated Nano-Cu2O/MWNTs Composites [J]. Applied Catalysis a-General,2006,299:292-297.
    [254]Wang X Y, Zhang F, Xia B Y, et al. Controlled Modification of Multi-Walled Carbon Nanotubes with CuO2, Cu2O and Cu Nanoparticles [J]. Solid State Sciences,2009,11(3):655-659.
    [255]Reddy K R, Sin B C, Yoo C H, et al. A New One-Step Synthesis Method for Coating Multi-Walled Carbon Nanotubes with Cuprous Oxide Nanoparticles [J]. Scripta Materialia,2008,58(11):1010-1013.
    [256]Cui H F, Ye J S, Liu X, et al. Pt-Pb Alloy Nanoparticle/Carbon Nanotube Nanocomposite:A Strong Electrocatalyst for Glucose Oxidation [J]. Nanotechnology,2006,17(9):2334-2339.
    [257]Xiao F, Zhao F Q, Mei D P, et al. Nonenzymatic Glucose Sensor Based on Ultrasonic-Electrode Position of Bimetallic PtM (M=Ru, Pd and Au) Nanoparticles on Carbon Nanotubes-Ionic Lliquid Composite Film [J]. Biosensors&Bioelectronics,2009,24(12):3481-3486.
    [258]Ebbesen T W, Hiura H, Bisher M E, et al. Decoration of Carbon Nanotubes [J]. Advanced Materials,1996,8(2):155-&.
    [259]Gao C, Li W W, Jin Y Z, et al. Facile and Large-Scale Synthesis and Characterization of Carbon Nanotube/Silver Nanocrystal Nanohybrids [J]. Nanotechnology,2006,17(12):2882-2890.
    [260]Popovic K D, Tripkovic A V, Adzic R R. Oxidation of D-Glucose on Single-Crystal Platinum-Electrodes-A Mechanistic Study [J]. Journal of Electroanalytical Chemistry,1992,339(1-2):227-245.
    [261]Luo M Z, Baldwin R P. Characterization of Carbohydrate Oxidation at Copper Electrodes [J]. Journal of Electroanalytical Chemistry,1995,387(1-2):87-94.
    [262]Nonaka H, Matsumura Y. Electrochemical Oxidation of Carbon Monoxide, Methanol, Formic Acid, Ethanol, and Acetic Acid on A Platinum Electrode under Hot Aqueous Conditions [J]. Journal of Electroanalytical Chemistry,2002,520(1-2):101-110.
    [263]Su L, Jia W Z, Schempf A, et al. Palladium/Titanium Dioxide Nanofibers for Glycerol Electrooxidation in Alkaline Medium [J]. Electrochemistry Communications,2009,11(11):2199-2202.
    [264]Vega F A, Nunez C G, Weigel B, et al. On-Line Monitoring of Galactoside Conjugates and Glycerol by Flow Injection Analysis [J]. Analytica Chimica Acta,1998,373(1):57-62.
    [265]Miao X M, Yuan R, Chai Y Q, et al. Direct Electrocatalytic Reduction of Hydrogen Peroxide Based on Nafion and Copper Oxide Nanoparticles Modified Pt Electrode [J]. Journal of Electroanalytical Chemistry,2008,612(2):157-163.
    [266]Le W Z, Liu Y Q. Preparation of Nano-Copper Oxide Modified Glassy Carbon Electrode by A Novel Film Plating/Potential Cycling Method and Its Characterization [J]. Sensors and Actuators B-Chemical,2009,141(1):147-153.
    [267]Ping J F, Ru S P, Fan K, et al. Copper Oxide Nanoparticles and Ionic Liquid Modified Carbon Electrode for the Non-enzymatic Electrochemical Sensing of Hydrogen Peroxide [J]. MicrochimicaActa,2010,171(1-2):117-123.
    [268]Zhang X J, Wang G F, Liu X W, et al. Different CuO Nanostructures:Synthesis, Characterization, and Applications for Glucose Sensors [J]. Journal of Physical Chemistry C,2008,112(43):16845-16849.
    [269]Wang J, Zhang W D, Fabrication of CuO Nanoplatelets for Highly Sensitive Enzyme-Free Determination of Glucose [J]. Electrochimica Acta,2011,56(22):7510-7516.
    [270]Li S Z, Zhang H, Ji Y J, et al. CuO Nanodendrites Synthesized by A Novel Hydrothermal Route [J]. Nanotechnology,2004,15(11):1428-1432.
    [271]Liu Q, Liu H J, Liang Y Y, et al. Large-Scale Synthesis of Single-Crystalline CuO Nanoplatelets by A Hydrothermal Process [J]. Materials Research Bulletin,2006,41(4):697-702.
    [272]Song X Y, Sun S X, Zhang W M, et al. Synthesis of Cu(OH)2Nanowires at Aqueous-Organic Interfaces [J]. Journal of Physical Chemistry B,2004,108(17):5200-5205.
    [273]Song M J, Hwang S W, Whang D. Non-enzymatic Electrochemical CuO Nanoflowers Sensor for Hydrogen Peroxide Detection [J]. Talanta,2010,80(5):1648-1652.
    [274]Jia W, Guo M, Zheng Z, et al. Vertically Aligned CuO Nanowires Based Electrode for Amperometric Detection of Hydrogen Peroxide [J]. Electroanalysis,2008,20(19):2153-2157.
    [275]Zhang X J, Wang G F, Zhang W, et al. Seed-Mediated Growth Method for Epitaxial Array of CuO Nanowires on Surface of Cu Nanostructures and Its Application as A Glucose Sensor [J]. Journal of Physical Chemistry C,2008,112(24):8856-8862.
    [276]Wang G F, Wei Y, Zhang W, et al. Enzyme-free Amperometric Sensing of Glucose Using Cu-CuO Nanowire Composites [J]. Microchimica Acta,2010,168(1-2):87-92.
    [277]Zhang X J, Gu A X, Wang G F, et al. Fabrication of CuO Nanowalls on Cu Substrate for A High Performance Enzyme-Free Glucose Sensor [J]. Crystengcomm,2010,12(4):1120-1126.
    [278]Hassan H B, Hamid Z A. Electrodeposited Cu-CuO Composite Films for Electrochemical Detection of Glucose [J]. International Journal of Electrochemical Science,2011,6(11):5741-5758.
    [279]Zhang Y C, Su L, Manuzzi D, et al. Ultrasensitive and Selective Non-Enzymatic Glucose Detection Using Copper Nanowires [J]. Biosensors&Bioelectronics,2012,31(1):426-432.
    [280]Filipic G, Cvelbar U. Copper Oxide Nanowires:A Review of Growth [J]. Nanotechnology,2012,23(19).
    [281]Zhao Y, Zhao J, Ma D, et al., Synthesis, Growth Mechanism of Different Cu Nanostructures and Their Application for Non-enzymatic Glucose Sensing [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2012,409:105-111.
    [282]Jamshidi Z, Farhangian H, Tehrani Z A. Glucose Interaction with Au, Ag, and Cu Clusters: Theoretical Investigation [J]. International Journal of Quantum Chemistry,2012, DOI:10.1002/qua.24122.
    [283]Yanai T, Tew D P, Handy N C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP)[J]. Chemical Physics Letters,2004,393(1-3):51-57.
    [284]Rappoport D, Furche F. Property-Optimized Gaussian Basis Sets for Molecular Response Calculations [J].Journal of Chemical Physics,2010,133(13).
    [285]Boys S F, Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some procedures with reduced errors [J]. Molecular Physics,1970,19(4):553-556.
    [286]Pakiari A H, Jamshidi Z. Interaction of Coinage Metal Clusters with Chalcogen Dihydrides [J]. Journal of Physical Chemistry A,2008,112(34):7969-7975.
    [287]Bader R F W. A Quantum-Theory of Molecular-Structure and Its Applications [J]. Chemical Reviews,1991,91(5):893-928.
    [288]Bader R F W. A Bond Path:A Universal Indicator of Bonded Interactions [J]. Journal of Physical Chemistry A,1998,102(37):7314-7323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700