用户名: 密码: 验证码:
无机层状纳米材料的制备表征与应用(BN,MoS_2)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机层状纳米材料具有广阔的应用前景,是一类具有特殊结构和性能的新型纳米功能材料,也是目前化学与材料研究领域的前沿与热点。本论文旨在探索采用简便的化学原理和制备方法合成具有空心特征的层状无机纳米材料并探究所制备的无机空心层状微纳米材料的形成机制与潜在应用,取得了一系列的创新性成果。本论文提出了在固相高温高压体系中制备亚微米级氮化硼空心格子的反应机制,对所合成的六方相氮化硼空心格子进行催化剂的负载并对该复合体系的光催化性能进行了初步探讨。本论文还研究了由液相溶剂热合成的纳米片自组装的二硫化钼(MoS2)层级空心结构,包括层级结构的MoS2空心球和MoS2空心管,探索了它们的形成机制和结构特点。同时主要研究了所制备的MoS2空心球和空心管在锂离子电池负极材料方面的应用。论文主要内容归纳如下:
     1在本章研究中,六方相的氮化硼亚微米级空心格子(BNMB)通过选择KBH4, NH4F和Zn粉做为反应物在450℃反应20h制得.原产物的形成过程通过XRD,TEM和EDS分析得出反应过程中原位生成的立方相的KZnF3中间体作为模板形成BNMB。由于所制备的BNMB具有独特的结构特征,高的比表面积以及优异的化学稳定性被用作催化剂载体。在接下来的实验中采用一种简单的湿化学法制备出SnO2/BNMB复合材料。这种复合材料的紫外漫反射光谱显示其吸收边缘在~470nm,使其有望在光催化反应中得到应用。实验结果表明SnO2/BNMB在催化降解甲基橙(MO)时显示了优异的光催化活性,在可见光的照射下,30min降解率达到92%。这种良好的光催化活性主要是由于材料较窄的带隙,对MO强的吸附能力以及在SnO2/BNMB界面对电荷的有效分离。
     2由于MoS2具有的层状结构和高的理论比容量,被认为是一种潜在的锂离子电池负极材料。但是由于低的电导率,使其循环稳定性和倍率性能较差。在本章工作中,通过一种简单有效的合成方法得到分子层间距增加的纳米片自组装的层级MoS2空心球,这些空心球的尺寸在400~800nm左右。MoS2的层级空心结构的形成机制基于一种中间产物K2NaMoO3F3作为自牺牲模板成功制备。所获得的层级MoS2空心球状颗粒在锂离子电池性能测试中显示了优异的电化学性能,在100mAg-1的电流密度下80个循环后容量仍能维持在902mAh g-1,当电流密度1000mAg-1时,容量为780mAh g-1,具备较好的倍率性能。所制备的MoS2电极材料的锂离子脱嵌行为被研究。此外基于实验结果,所制备的层级MoS2空心球作为电极材料良好性能的原因也进行了初步的探讨主要归因于材料的层级结构和空心特征,S-Mo-S分子层增加的层间距以及较高的比表面积。
     3目前为止,MoS2空心管的研究还比较少,相关的报道往往存在制备工艺苛刻、较高的成本以及对环境污染比较严重等问题。本章工作通过一种温和的溶剂热方法制备出大量的由纳米片自组装的MoS2层级管状空心结构。在制备过程中通过加入MnCl2·4H2O形成棒状结构的MnMoO4。在反应过程中,棒状结构的MnMoO4不仅提供钼源同时还作为形成管状空心结构的自牺牲模板。这种褶皱状的表面结合其空心特征不仅有利于材料与电解液的接触使Li+有效的脱嵌,还可以在充放电过程中使其体积膨胀得到一定的缓冲进而增强其循环性能。其电化学性能测试显示了较高的储锂能力和较好的循环稳定性。这种层级管状结构的1D纳米材料是纳米片和纳米管的结合,具有较大的比表面积允许电解液中的Li+与活性物质充分有效接触、缩短了电荷的传输距离、并且1D的纳米结构用作电极材料被认为是有利于电子的传输,因此显示了较好的倍率性能。
Inorganic layer hollow materials have many promising applications based on their unique structure and special properties. They are the front and hot research fields of chemistry and materials currently. The goal of this dissertation is to explore the facile chemistry principle and synthesis approach to obtain inorganic hollow nano/micro materials and further study their application. The innovative achievements of this dissertation include:propose the reaction mechanism of synthesis of novel boron nitride submicro-boxes in solid-phase system under high-temperature and high-pressure environments. SnO2photocatalyst was deposited on BNMB by a simple wet chemistry method and the photocatalytic performance of SnO2/BNMB has been investigated. This dissertation also prepare the MoS2hierarchical hollow structures, hollow spheres and tubes, which assembled by nanosheets synthesized by the liquid-phase solvothermal technique. We explore the possible formation mechanisms, structural features and their lithium storage performance of the MoS2hierarchical hollow structures. Thesis is summarized as follows:
     1In this study, hexagonal boron nitride submicro-boxes (BNMB)(0.50~1.4μm) have been synthesized by using KBH4, NH4F and Zn in a stainless steel autoclave at450℃. The formation process was studied by XRD, TEM and EDS, and it is considered that the in situ formed KZnF3intermediate cubes serve as templates for the formation of BNMB. The as-formed BNMB, with unique structural features, high specific surface area and good chemical properties, can be applied as a catalyst support for SnO2. The UV-Vis diffuse reflectance spectrum of SnO2/BNMB shows the absorption edge in the visible region (-470run), making it suitable for photocatalytic application. The experimental result indicates that the SnO2/BNMB exhibited excellent photocatalytic activity on the degradation of methyl orange (MO), which was up to92%after30min of visible-light irradiation. The good photocatalytic activity was attributed mainly to its suitable band gap energy, strong adsorption ability for MO, and effective charge separation at the SnO2/BNMB photocatalyst interface.
     2MoS2, due to its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS2, with the diameter of400~800μm, assembled by increased interlayer-distance nanosheets are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K2NaMoO3F3, as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of902mAh g-1at100mA g-1after80cycles, much higher than the solid counterparts. At a current density of1000mA g-1, the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at780mAh g-1. The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.
     3Hierarchical hollow nanotubes assembled by nanosheets have been fabricated in high yield by a mild solvothermal route at low temperature. A possible formation mechanism of the samples was also proposed. During the reaction process, the MnMo04nanorods were firstly formed at a lower temperature, in which the intermediate crystals resulted from the reaction between MoO42-and Mn2+and formed in-situ and then served as the self-sacrificed template. The highly wrinkled surface combined with the hollow structure would offer a huge specific surface area for electrochemical reactions, which benefits the electrode material to interact effectively with the Li+in the electrolyte and shorten the diffusion length of the charge carriers. Meanwhile, there are much empty space in this electrode material, which can effectively tolerate the volume change during the discharge/charge processes. Furthermore, the introduction of hollow channel inside the1D nanostructures can enhance the effective interaction and reduce the diffusion distance of lithium ions between the electrolyte and the electrode. The hierarchical hollow nanotubes show the better electrochemical performance.
引文
1. F. Basile, G. Fornasari, V. Rosetti, et al. Effect of the Mg/Al ratio of the hydrotalcite-type precursor on the dispersion and activity of Rh and Ru catalysts for the partial oxidation of methane. Catal. Today,2004,91,293.
    2. Z. P Xu, H. C. Zeng. Interconversion of brucite-like and hydrotalcite-like phases in cobalt hydroxide compounds. Chem. Mater.,2002,12,5185.
    3. Z.W. Zhang, M. Michael, J. Chem. Mater.,1996,8,257.
    4. B. Bujoli, O. Pena, P. Pavadeau, J. L. Bideau, et al. Synthesis, structure, and magnetic properties of a new lamellar iron phosphonate, FeⅡ(C2H5PO3)·H2O, Chem. Mater.,1993,5,583.
    5. B. Yalcin, A. Cakmak., The role of plasticizer on the exfoliation anddispersion and fracture behavior of clay particles in PVC matrix:acomprehensive morphological study. Polymer,2004,45,6623.
    6. M. Marino, K. Donaghy, Synthesis of carborane containing diphosphonate hangers for zirconium phosphate materials. Abstract of papers of the American chemical society,2003,225,618.
    7.李侃社,蔡会武,樊晓萍,闫兰英,聚合物层状无机物纳米复合材料研究进展,西安科技学院学报,2001,212,140.
    8.白新德,蔡俊,尤引娟,纳米复合材料-石墨层间化合物(GICs)的结构分析,复合材料学报,1996,13,53.
    9. K. T. Holman, A. M. Pivovar, M. D.Ward, Engineering crystal symmetry and polar order in molecular host frameworks. Science,2001,294,1907.
    10. S. Yoda, Y. Sakurai, A. Endo, et al. Synthesis of titania-pillaredmontmorillonite via intercalation of titanium alkoxide dissolved insupercritical carbon dioxide. J. Mater. Chem.,2004,14,2763.
    11. Z. S. Wang, T. Sasaki, M. Muramatsu, Y. Ebina, T. Tanaka, L. Z. Wang, M. Watanabe, Self-Assembled Multilayers of Titania Nanoparticles and Nanosheets with Polyelectrolytes, Chem. Mater.,2003,15,807.
    12. Y. Xu, L. H. An, L. L. Koh, Investigations into the engineering of inorganic/organic Solids:hydrotherrnal synthesis and structure characterization of one-dimensional molybdenum oxide polymers. Chem.Mater.,1996,8,814.
    13. Z. H. Liang, K. B. Tang, S. Y. Zeng, T. W. Li, D. Wang, H. G. Zheng, Synthesis and characterization of a new four-layer AuriVillius phase Bi2SrNa2Nb4O15and its protonated fom. J. Solid State Chem.,2008,181,2565.
    14. C. J. Rawn, M. W. Barsoum, T. El-Raghy et al. Structure of Ti4AlN3-a layered Mn+IAXn nitride. Materials Research Bulletin,2000,35,1785.
    15. Z. H. Liu, K. Ooi, H. Kanoh, W. P. Tang, et al. Synthesis of Thermally Stable Silica-Pillared Layered Manganese Oxide by an Intercalation/Solvothermal Reaction. Chem. Mater.,2001,13,473.
    16. J. L.Atwood, J. E. D. Davies, F. Vogtle, J. M. Lehll, Solid state supramolecular chemistry:Two- and three- dimensional inorganic networks, Comprehensive supramolecular chemistry,1996,1,7.
    17. A. Clearfield, Role of Ion Exchange in Solid-state Chemistry, Chem. Rev.1988,88, 125.
    18. H. Izawa, S. Kikkawa, M. Koizumi, Effect of intercalated alkylammounium on cation exchange properties of H2Ti3O7,J. Solid State Chem.,1987,69,336.
    19. T. Sasaki, M. Watanabe, Y. Komatsu, Y. Fujiki, Sodium ion/hydrogen ion-exchange process on layered hydrous titanium dioxide, Bull. Chem. Soc. Jpn., 1985,58,3500.
    20. C. Airoldi, L. M. Nunes, R.F. Farias, The intercalation of n-alkyldiamines into crystalline layered titanate, Mater. Res. Bull,2000,35,2081.
    21. H. Izawa, Formation and properties of n-alkylammonium complexes with layered tri and tetratitanates, Polyhedron,1983,2,741.
    22. A. lerf, Intercalation compounds in layered host lattices:supramolecular chemistry in nanodimensions, Handbook of Nanostructured Materials and Nanotechnology, Chapter.1., Academic Press, San Diego,1999,1.
    23. T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, H. Nakazawa, Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it, J. Am. Chem. Soc,1996,118,8239.
    24. T. Sasaki, M. Watanabe, Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties, J.Phys. Chem. B,1997,101,10159.
    25. D. W. Kim, A. Blumstein, J. Kumar, S. K. Tripathy, Layered aluminosilicate/chromophore nanocomposites and their electrostatic layer-by-layer assembly, Chem Mater.,2001,13,243.
    26. R. Abe, K. Shimohara, A. Tanaka, M. Hara, et al. Preparation of thin films of a layered titanate by the exfoliation of CsxTi(2-x)/4O4, Chem. Mater,1998,10,329.
    27. T. Sasaki, M. Watanabe, Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem Soc.,1998,120,4682.
    28. R. Clement, O. Gamier, J. Jegoudez, Inorg. Chem.,1986,25,1404.
    29. T. J.Pianavaia, Intercalated clay catalysts. Science,1983,220,365.
    30. J. W. Johnson, A. J. Jaeobson, W. M. Butler, et al. Molecular recognition of alcohols by layered compounds with alternating organic and inorganic layers. J. Am. Chem Soc.,1989,111,381.
    31. E. Ruiz-Hitzky, Conducting Polymers Intercalated in Layered Solids. Adv. Mater., 1993,5,334.
    32. A. Fitch, J. Du, H. M. Gan, et al. Effect of clay charge on swelling:a clay-modified electrode study. Clays Clay Miner.,1995,43,607.
    33. Y. Komatsu, Y. Fujiki, Chem. Lett.,1980,12,1525.
    34. R. Prihodko, M. Sychev, et al. Layered double hydroxides as catalysts for aromatic nitrile hydrolysis, Microporous and Mesoporous Materials,2002,56, 241.
    35. G. W. Brindley, G. Brown, Crystal structure of clay minerals and their X-ray identification, Mineralogical Society, London,1980,495.
    36. T. J. Pinnavaia, Intercalated Clay Catalysts. Science,1983,220,365.
    37.杜以波,D. G. Evans,孙鹏,段雪,阴离子型层柱材料研究进展,化学通报,2000,5,20.
    38. M. Hervieu, B. Raveau, A Laye Structure:The Titanoniobate CsTi2NbO7. Journal of Solid State Chemistry,1980,32,161.
    39. M. Hervieu, H. Rebbah, G. Desgardin, et al. Layer Structure:The Oxides A3Ti5NbO14. Journal of Solid State Chemistry,1980,35,200.
    40. B. Besteiro, C. Picard, A. Pineau, et al. Intercalation of nitrogen compounds between the [Fe0.5Nb1.5O5]- sheets of a protonic ferriniobate. Journal of Materials Science Letters,1998,17,1581.
    41.李春,何杰,张传银,铌酸盐光催化剂的合成与应用研究.山西化工,2008,3.
    42. Z. Jiang, J. Wang, L. Meng, Y. Huang, L. Liu, A highly efficient chemical sensor material for ethanol:Al2O3/Graphene nanocomposites fabricated from graphene oxide. Chem. Commun (Camb).,2011,47,6350.
    43.刘云,吴平霄,唐剑文等.聚羟基铝柱撑蒙脱石吸附重金属离子实验研究.矿物岩石,2005,25,122.
    44. H. Liu, X. Du, X. Xing, G. Wang, S. Z. Qiao, Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. Chem. Commun (Camb).,2012,48,865.
    45. D. Wang, D. Choi, J. Li, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano.,2009,3,907.
    46. I. Shakir, M. Shahid, D. J. Kang, MoO3 and CU0.33M0O3 nanorods for unprecedented UV/Visible light photocatalysis. Chem. Commun (Camb).,2010, 46.4324.
    47. S. M. Paek, J. H. Kang, H. Jung, S. J. Hwang, J. H. Choy, Enhanced lithium storage capacity and cyclic performance of nanostructured TiO2-MoO3 hybrid electrode. Chem. Commun (Camb).,2009,7536.
    48. Y. Wang, K. Takahashi, K. H. Lee, et al. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Functional Mater.,2006, 16,1133.
    49. J. Liu, H. Xia, D. F. Xue, et al. Double-shelled nanocapsules of V2O5-Based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc.,2009,131,12086.
    50. J. Kim, A. Manthiram, A manganese oxyiodide cathode for rechargeable lithium batteries. Nature,1997,390,265.
    51. S. O. Brien, M. Yin, Synthesis of Monodisperse Nanocrystals of Manganese Oxides. J. Am. Chem. Soc.,2003,125,10180.
    52. J. Y. Luo, J. J. Zhang, Y. Y. Xia, Highly Electrochemical Reaction of Lithium in theOrdered Mesopomsus (3-MnO2. Chem. Mater.,2006,18,5618.
    53. M. T. Martinez, A. S. Lima, N. Bocchi, M. F. S. Teixeira, Voltammctdc performance andapplication of a sensor for sodium ions constructed with layered birnessite-typemanganese oxide. Talanta,2009,80,519.
    54. X. S. Yang, X. Chen, X. Zhang, W. S. Yang, D. G. Evans, Intercalation of methylene blue into layered manganese oxide and application of the resulting material in a reagenflesshydrogen peroxide biosensor. Seas. Actuators B,2008, 129,784.
    55. K. Hosono, I. Matsubara, N. Murayama, S. Woosuck, N. Izu, Synthesis ofpolypyrrole/Mo03 hybrid thin films and their volatile organic compound gns-sensing properties. Chem.Mater.,2005,17,349.
    56. A. Gil, L. M. Gandia, M. A. Vicente, Recent advances in the synthesis and catalyticapplication ofpillared clays. Catal Rev-Sci Eng,2000,42(1-2),145.
    57.刘燕,郭灿雄,孙鹏等,混合金属氧化物柱撑α-磷酸锆的研究.无机化学学报,2002,18,166.
    58. N. Hiyoslli, N. Yamamoto, T. Okuhara, Novel preparation of vanadyl pyrophosphate forselective oxidation of n-butane utilizing intercalation and exfoliation. Chem Lett,2001,5,484.
    59. M. Shuai, A. F. Mejia, Y.-W. Chang, Z. Cheng, Hydrothermal synthesis of layered a-zirconium phosphate disks:control of aspect ratio and polydispersity for nano-architecture. Crystengcomm,2013,15,1970.
    60. S. Larach, R. E. Shrader, Electroluminescence from Boron Nitride. Phys. Rev., 1956,102,582.
    61. S. Larach, R. E. Shrader, Multiband Luminescence in Boron Nitride. Phys. Rev., 1956,104,68.
    62. L. Kleinman, J. C. Phillips, Self-Consistent Calculations for Cubic Boron Nitride. Phys. Rev.,1960,117,460.
    63. P. J. Giellisse, S. S. Mitra, J. N. Plerdl, R. D. Griffis, Lattice Infrared Spectra of Boron Nitride and Boron Monophosphide. Phys. Rev.,1967,155,1039.
    64. M. Anpo, T. Shima, S. Kodama, Photocatalytic hydrogenation of propyne with water on small-particle Titania:size quantization effects and reaction intermediates. J. Phys. Chem.,1987,91,4305.
    65. P. Ball, L. Garwin, Science at the atomic scale. Nature,1992,355,761.
    66. W. P. Halperin, Quantum size effects in metal particles. Rev. Moden. Phys.,1986, 58,533.
    67. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett.,1990,56,2379.
    68. H. Edgar, Prospects for device implementation of wide band gap semiconductors. J. Mater. Res.,1992,7,235.
    69. T. Ishii, T. Sato, Growth of single crystals of hexagonal boron nitride. J. Cryst. Growth,1983,61,689.
    70. G. Satta, G. Cappellini, M. Palummo, Ab initio optical properties of BN in the cubic and in the layered hexagonal phase. Com. Mater. Sci.,2001,22,78.
    71. S. P. S. Aray, A. D'amico, Preparation, properties and applications of boron nitride thin films. Thin Solid Films,1998,157,267.
    72. Y. Pan, K. Huo, Y. Hu, J. Fu, Y. Lu, Z. Dai, Z. Hu, Y. Chen, Boron nitride nanocages synthesized by a moderate thermochemical approach. Small,2005,1, 1199.
    73. C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie, T. Sekiguchi, Large-scale fabrication of boron nitride nanohorn. Appl Phys Lett,2005,87,063107.
    74. S. Bernard, V. Salles, J. Li, A. Brioude, M. Bechelany, U. B. Demirci, P. Miele, High-yield synthesis of hollow boron nitride nano-polyhedrons. J Mater Chem 2011,21,8694.
    75. F. F. Xu, Y. Bando, R. Z. Ma, et al. Formation, Structure, and Structural Properties of a New Filamentary Tubular Form:Hollow Conical-Helix of Graphitic Boron Nitride, J. Am. Chem. Soc.,2003,125,8032.
    76. M. Chen, M. Ge, W. Zhang, Preparation and properties of hollow BN fibers derived from polymeric precursors. Journal of the European Ceramic Society, 2012,32,3521.
    77. G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui, Q. Wang, Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Energy & Environmental Science,2012,5, 7072.
    78. G. Wen, B. Zhong, X. Huang, H. Yu, X. Zhang, T. Zhang, H. Bai, Novel BN Hollow Microspheres with Open Mouths-Facile Synthesis, Growth Mechanism, Resonant Raman Scattering Effect, and Cathodoluminescence Performance. Eur. J. Inorg. Chem.,2010,2010,5538.
    79. Z. G. Chen, J. Zou, G. Liu, F. Li, et al. Novel Boron Nitride Hollow Nanoribbons, ACS Nano.,2008,2,2183.
    80. Y. C. Zhu, Y. Bando, L. W. Yin, D. Golberg, Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals. Chemistry,2004,10, 3667.
    81. F. Xu, Y. Xie, et al. Synergic Nitrogen Source Route to Inorganic Fullerene-like Boron Nitride with Vessel, Hollow Sphere, Onion, and Peanut Nanostructures, Inorg. Chem.2004,43,822.
    82. J. Li, H. Lin, Y. Chen, Q. Su, Q. Huang, The effect of iron oxide on the formation of boron nitride nanotubes. J. Chemical Engineering,2011,174,687.
    83.G. L. Wood, R. T. Paine, Aerosol Synthesis of Hollow Spherical Morphology Boron Nitride Particles, Chem. Mater.,2006,18,4716.
    84. Z. J. Zhang, Q. J. Xue, Synthesis and characterization of a molybdenum disulfidenanocluster. J. Phys. Chem.,1994,98(49),12973.
    85. E. Benavente, M. A. Santa Ana, A. F. Mendizabal, et al. Intercalation chemistry ofmolybdenum disulfide. Coordin. Chem. Rev.,2002,224(1-2),87.
    86. P. D. Fleischauer, J. R. Lince, P. A. Bertrand, et al. Electronic structure and lubricationproperties of molybdenum disulfide:a qualitative molecular orbital approach. Langmuir,1989,5(4),1009.
    87.王汝霖,润滑剂摩擦化学,中国石化出版社,1994,340-341.
    88. P. T. Murray, V. J. Dyhouse, L. Grzulis, et al. Physics and chemistry of materials withlayered structures. Mater. Res. Soc. Symp. Proc.,1991,201,513.
    89. N. Renevier, M. Lobiondo, V. C. Fox, et al. Performance of MoS2/metal composite coatings used for dry machining and other industrial applications. Surf. Coat. Tech.,2000,123,84.
    90. A. Savan, P. E. fluger, R. Goller, et al. Use of nanoscaled multilayer and compound films to realize a soft lubrication phase within a hard, wear-resistant matrix. Surf. Coat. Tech.,2000,126,159.
    91. N. M. Renevier, V. C. Fox, D. G. Teer, et al Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf. Coat. Tech.,2000,127,24.
    92. H. Wang, B. Xu, J. Liu, et al Characterization and antifriction on the solid lubrication MoS2 film prepared by chemical reaction technique. Sci. Tech. Adv. Mater.,2005,6,535.
    93. K. E. Dungey, M. D. Curtis, E. P. James, et al Structural characterization and thermal stability of MoS2 intercalation compounds. Chem. Mater.,1998,10, 2152.
    94. L. Rapoport, V. Leshchinsky, R. Tenne, et al Tribological properties of WS2 nanoparticles under mixed lubrication. Wear,2003,255,785.
    95. G. S. Calabrese. M. S. Wrighton, Photoelectrochemical oxidation of sulfur dioxide instrong acid solution:iodide-mediated oxidation at illuminated metal dichalcogenideelectrodes. J. Am. Chem. Soc,1981,103,6273.
    96. S. E. Moore, J. H. Lunsford, The role of hydrogen in the reaction of water with surface carbon to form methane. J. Catal.,1982,77,297.
    97. J. Valyon, R. J. Schneiden, W. K. Hall, et al Site selective chemisorption on sulfide dmolybdena-alumina catalysts. J. Catal.,1984,85,277.
    98. K. E. Dungey, M. D. Curtis, E. P. Hahn James, et al. Behavior of MoS2 intercalation compounds in HDS catalysis. J. Catal.,1998,175,129.
    99. G. Seifert, H. Terrones, M. Terrones, et al Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett.,2000,85,146.
    100.张文钲.纳米级二硫化钼的研发现状.中国钼业,2000,24,23.
    101. T. R. Thurston, J. P. Wilcoxon, Photooxidation of organic chemicals catalyzed by Nanoscale MoS2. J. Phys. Chem. B,1999,103,11.
    102. S. M. Paek, J. H. Kang, H. Jung, S. J. Hwang, J. H. Choy, Enhanced lithium storage capacity and cyclic performance of nanostructured TiO2-MoO3 hybrid electrode. Chem. Commun (Camb).,2009,7536.
    103. G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, H. Liu, Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun (Camb).,2010,46,1106.
    104. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J. P. Lemmon, Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries. Chem. Mater.,2010,22,4522.
    105. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, et al Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater. Chem.,2011,21,6251.
    106. H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, S. Z. Qiao, Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage. Adv. Energy Mater.,2012,2,970.
    107. X. L. Li, Y. D. Li, MoS2 nanostructures:synthesis and electrochemical Mg2+ intercalation. J. Phys. Chem. B.,2004,108,13893.
    108. X. L. Li, J. P. Ge, Y. D. Li, et al Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem. Eur. J.,2004,10,6163.
    109. K. P. Loh, H. Zhang, W. Z. Chen, W. Ji, J. Phys. Chem. B,2006,110,1235.
    110. Q. Li, E. C. Walter, R. M. Penner, et al Molybdenum disulfide nanowires and nanoribbons by eleetroehemieal/chemieal synthesis. J. Phys. Chem. B.,2005, 109,3169.
    111. Q. Li, J. T. Newberg, R. M. Penner, et al Poly crystalline molybdenum disulfide(2H-MoS2) nano-and Microribbons by electrochemical-chemical synthesis. Nano. Lett.,2004,4,277.
    112. Y. Mastai, M. Homyonfer, A. Gedonken, et al Room temperature sonoelectctrochemcal synthesis of molybdenum sulfide fullerene-like nanoparticles. Adv. Mater.,1999,11,1010.
    113. L. Margulis, G. Salitra, R. Tenne, et al Polyhedral and cylindrical structures of tungsten disulphide. Nature,1992,360,444.
    114. Y. Feldman, E. Wasserman, D. J. Srolovitz, et al High-Rate, Gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science,1995,267,222.
    115. Y. Feldman, A. Zak, R. Tenne, et al Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. J. Am. Chem. Soc.,2000,122,11108.
    115. L. Cizaire, B. Vacher, R. Tenne, et al. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Tech.,2002,160, 282.
    116. D. Duphil, S. Bastide, C. Levy-Clement, Chemical synthesis of molybdenum disulfide nanoparticles in an organic solution, J Mater Chem.,2002,12,2430.
    117. S. E. Skrabalak, K. S. Suslick, J. Am. Chem.Soc.,2005,127,9990.
    1. X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater.2008,20,3987.
    2. S. J. Liu, X. X. Wu, B. Hu, J. Y. Gong, S. H. Yu, Cryst. Growth. Des.,2009,9, 1511.
    3. M. R. Kim, D. J. Jang, Chem. Commun.,2008,5218.
    4. Y. G. Sun, Y. N. Xia, Science,2002,298,2176.
    5. Z. M. Peng, H. J. You, J. B. Wu, H. Yang, Nano Lett.,2010,10,1492.
    6. X. D. Su, J. Z. Zhao, H. Bala, Y. C. Zhu, Y. Gao, S. S. Ma, Z. C. Wang, J. Phys. Chem. C,2007,111,14689.
    7. S. H. Jiao, L. F. Xu, K. Jiang, D. S. Xu, Adv. Mater.,2006,18,1174.
    8. X. F. Yang, J. X. Fu, C. J. Jin, J. Chen, C. L. Liang, M. M. Wu, W. Z. Zhou, J. Am. Chem. Soc.,2010,132,14279.
    9. T. He, D. R. Chen, X. L. Jiao, Y. L. Wang, Adv. Mater.,2006,18,1078.
    10. Z. Y. Wang, D. Y. Luan, C. M. Li, F. B. Su, S. Madhavi, F. Y. C. Boey, X. W. Lou, J. Am. Chem. Soc.,2010,132,16271.
    U.S. Bastide, D. Duphil, J. P. Borra, C. Levy-Clement, Adv. Mater.,2006,18,106.
    12. D. F. Liu, S. H. Yang, S. T. Lee, J. Phys. Chem. C,2008,112,7110.
    13. S. T. Chen, X. L. Zhang, X. M. Hou, Q. Zhou, W. H. Tan, Cryst. Growth. Des., 2010,10,1257.
    14. C. S. Mei, Z. C. Liu, P. Y. Wen, Z. K. Xie, W. M. Hua, Z. Gao, J. Mater. Chem., 2008,18,3496.
    15. X. F. Yang, J. X. Fu, C. J. Jin, J. Chen, C. L. Liang, M. M. Wu, W. Z. Zhou, J. Am. Chem. Soc.,2010,132,14279.
    16. R. Haubner, M. Wilhelm, R. Weissenbacher, B. Lux, Struct. Bond.,2002,102,1.
    17. M. D. Ganji, H. Yazdani, A. Mirnejad, Physica E,2010,42,2184.
    18. X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C. R. Bertozzi, J. Am. Chem. Soc.,2009,131,890.
    19. M. Bechelany, A. Brioude, P. Stadelmann, S. Bernard, D. Cornu, P. Miele, J. Phys. Chem. C,2008,112,18325.
    20. Z. G. Chen, J. Zou, G. Liu, F. Li, Y. Wang, L. Z. Wang, X. L. Yuan, T. Sekiguchi, H. M. Cheng, G. Q. Lu, ACS Nano,2008,2,2183.
    21. T. Ohashi, Y. T. Wang,S. Shimada, J. Mater. Chem.,2010,20,5129.
    22. Z. H. Yang, L. Shi, L. Y. Chen, Y. L. Gu, P. J. Cai, A. W. Zhao, Y. T. Qian, Chem. Phys. Lett.,2005,405,229.
    23. H. J. Wang, F. Q. Sun, Y. Zhang, L. S. Li, H. Y. Chen, Q. S. Wu, J. C. Yu, J. Mater. Chem.,2010,20,5641.
    24. G. Wang, W. Lu, J. H. Li, J. Y. Choi, Y. Jeong, S. Y. Choi, J. B. Park, M. K. Ryu, K. Lee, small,2006,2,1436.
    25. J. C. S. Wu, Y. C. Fan, C. A. Lin, Ind. Eng.Chem. Res.,2003,42,3225.
    26. D. Szmigiel, W. Rarog-Pilecka, E. Miskiewicz, E. Maciejewska, Z. Kaszkur, J. W. Sobczak, Z. Kowalczyka, Catal. Lett.,2005,100,79.
    27. G. Postole, A. Gervasini, M. Caldararu, B. Bonnetot, A. Auroux, Appl. Catal. A, 2007,325,227.
    28. J. C. S. Wu, C. Y. Chen, S. D. Lin, Catal. Lett.,2005,102,223.
    29. E. Dvininova, M. Ignata, P. Barvinschi, M. A. Smithersc, E. Popovici, J. Hazard. Mater.,2010,177,150.
    30. H. Yamashita, H. Nose, Y. Kuwahara, Y. Nishida, S. Yuan, K. Mori, Appl. Catal. A, 2008,350,164.
    31. Y. Kuwahara, K. Maki, Y. Matsumura, T. Kamegawa, K. Mori, H. Yamashita, J. Phys. Chem. C,2009,113,1552.
    32. M. Shang, W. Z. Wang, L. Zhang, J. Hazard. Mater.,2009,167,803.
    33. C. Y. Zhi, Y. Bando, C. C. Tang, D.Golberg, J. Phys. Chem. B,2006,110,8548.
    34. M. Chhowalla, G. A. J. Amaratunga, Nature,2000,407,164.
    35. R. Geick, C. H. Perry, G Rupprecht, Phys. Rev.,1966,146,543.
    36. J. S. Laurent, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, E. Rosencher, L. Goux-Capes, Phys. Rev. Lett.,2005,94,03 7405.
    37. B. S. Zou, Y. Zhang, L. Z. Xiao, T. J. Li, J. Appl. Phys.,1993,73,4689.
    38. W. Q. Han, H. G Yu, C. Y. Zhi, J. B. Wang, Z. Liu, T. Sekiguchi, Y Bando, Nano Lett.,2008,8,491.
    39. L. C. Wang, L. Q. Xu, C. H. Sun, Y. T. Qian, J. Mater. Chem.,2009,19,1989.
    40. L. Q. Xu, J. H. Zhan, J. Q. Hu, Y. Bando, X. L. Yuan, T. Sekiguchi, M. Mitome, D. Golberg,Adv. Mater.,2007,19,2141.
    41. J. H. Park, P. M. Woodward, Int. J. Inorg. Mater.,2000,2,153.
    42. M. Sun, D. Z. Li, W. J. Li, Y. B. Chen, Z. X. Chen, Y. H. He, X. Z. Fu, J. Phys. Chem. C,2008,112,18076.
    43. S. S. Wu, H. Q. Cao, S. F. Yin, et al. J. Phys. Chem. C,2009,113,17893.
    1. C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol,2008,3,31.
    2. T. H. Han, W. J. Lee, et al. Adv. Mater.,2010,22,2060.
    3. A. Manthiram, J. Phys. Chem. Lett.,2011,2,176.
    4. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science,2011,334,75.
    5. E. Benavente, M. A. S. Ana, F. Mendizabal, G. Gonzalez, Coord. Chem. Rev.,2002, 224,87.
    6. R. Tenne, Angew. Chem. Int. Ed.,2003,42,5124.
    7. H. Li, W. J. Li, L. Ma, W. X. Chen, J. M. Wang, J. Alloys Compd.,2009,471,442.
    8. S. J. Ding, D. Y. Zhang, J. S. Chen, X. W. Lou, Nanoscale,2012,4,95.
    9. G. D. Du, Z. P. Guo, S. Q. Wang, R. Zeng, Z. X. Chen, H. K. Liu, Chem. Commun., 2010,46,1106.
    10. J. Xiao, D. W. Choi, L. Cosimbescu, P. Koech, J. Liu, J. P. Lemmon, Chem. Mater.,2010,22,4522.
    11.K. Chang, W. X. Chen, L. Ma, et al. J. Mater. Chem.,2011,21,6251.
    12. H. Liu, D. W. Su, R. F. Zhou, B. Sun, G. X. Wang, S. Z. Qiao, Adv. Energy Mater.,2012,2,970.
    13. H. Hwang, H. Kim, J. Cho, Nano Lett.,2011,11,4826.
    14. X. Y. Lai, J. E. Halpert, D. Wang, Energy Environ. Sci.,2012,5,5604.
    15. L. Zhou, D. Y. Zhao, X. W. Lou, Angew. Chem. Int. Ed.,2012,51,239.
    16. J. X. Zhu, W. H. Shi, N. Xiao, X. H. Rui, H. T. Tan, X. H. Lu, H. H. Hng, J. Ma, Q. Y. Yan, ACS Appl. Mater. Interfaces,2012,4,2769.
    17. Q. H. Wang, L. F. Jiao, Y. Han, H. M. Du, W. X. Peng, Q. N. Huan, D. W. Song, Y. C. Si, Y. J. Wang, H. T. Yuan, J. Phys. Chem. C,2011,115,8300.
    18. X. Wang, X. L. Wu, Y. G. Guo, Y. T. Zhong, X. Q. Cao, Y. Ma, J. N. Yao, Adv. Funct. Mater.,2010,20,1680.
    19. Q. Q. Xiong, J. P. Tu, Y. Lu, J. Chen, Y. X. Yu, Y. Q. Qiao, X. L. Wang, C. D. Gu,J. Phys. Chem. C,2012,116,6495.
    20. S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan, Y. G. Guo, Chem. Mater.,2008,20,3617.
    21. X. S. Zhou, Y. X. Yin, L. J. Wan, Y. G. Guo, J. Mater. Chem.,2012,22,17456.
    22. G. W. Li, C. S. Li, H. Tang, K. S. Cao, J. Chen, F. F. Wang, Y. Jin, J. Alloys Compd.,2010,501,275.
    23. J. Etzkorn, H. A. Therese, F. Rocker, N. Zink, U. Kolb, W. Tremel, Adv. Mater., 2005,17,2372.
    24. X. L. Li, Y. D. Li, J. Phys. Chem. B,2004,108,13893.
    25. N. A. Dhas, K. S. Suslick, J. Am. Chem. Soc.,2005,127,2368.
    26. L. N. Ye, C. Z. Wu, W. Guo, Y. Xie, Chem. Commun.,2006,4738.
    27. Q. Wang, J. H. Li, J. Phys. Chem. C,2007,111,1675.
    28. S. J. Ding, J. S. Chen, X. W. Lou, Chem. Eur. J.,2011,17,13142.
    29. X. P. Fang, X. Q. Yu, S. F. Liao, Y. F. Shi, Y. S. Hu, Z. X. Wang, G. D. Stucky, L. Q. Chen, Micropor. Mesopor. Mat.,2012,151,418.
    30. X. S. Zhou, L. J. Wan, Y. G. Guo, Nanoscale,2012,4,5868.
    31. K. Chang, W. X. Chen, J. Mater. Chem.,2011,21,17175.
    32. J. Xiao, X. J. Wang, X. Q. Yang, S. D. Xun, G. Liu, P. K. Koech, J. Liu, J. P. Lemmon, Adv. Funct. Mater.,2011,21,2840.
    33. X. P. Fang, X. W. Guo, Y. Mao, C. X. Hua, L. Y. Shen, Y. S. Hu, Z. X. Wang, F. Wu, L. Q. Chen, Chem. Asian J.,2012,7,1013.
    1. Y. Wang, G. Cao, Adv.Mater.,2008,20,2251.
    2. S. Flandroisa, B. Simonb, Carbon,1999,37,165.
    3. H. Li, Z. Wang, L. Chen, X. Huang, Adv.Mater.,2009,21,4593.
    4. X. W. Lou, L. A. Archer, Z. Yang, Adv.Mater.,2008,20,3987.
    5. P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem. Int. Ed.,2008,47,2930.
    6. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Environ. Sci. Technol.,2011,4,2682.
    7. B. Liu, S. Wei, Y. Xing, D. Liu, et al. Chemistry 2010,16,6625.
    8. X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev.,2013,42,1934.
    9. H. Liu, D. Su, G. Wang, S. Z. Qiao, J Mater. Chem.,2012,22,17437.
    10. C. Xu, Y. Zeng, X, Rui, N. Xiao, et al. ACS Nano.,2012,6,4713.
    11. J. Yin, H. Cao, Z. Zhou, J. Zhang, M. Qu, J. Mater. Chem.,2012,22,23963.
    12. G. X. Wang, S. Bewlay, J. Yao, H. K. Liu, S. X. Dou, Electrochem. Solid-State Lett.,2004,7, A321.
    13. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc.,2011,133, 7296.
    14. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, et al. Chem. Mater.,2010,22,4522.
    15. S. K. Park, S. H. Yu, S. Woo, J. Ha, J. Shin, Y. E. Sung, Y. Piao, Crystengcomm 2012,14,8323.
    16. C. Zhang, H. B. Wu, Z. Guo, X. W. Lou, Electrochem. Commun.,2012,20,7.
    17. S. Ding, D. Zhang, J. S. Chen, X. W. Lou, Nanoscale 2012,4,95.
    18. M. Remskar, A. Mrzel, M. Virsek, A. Jesih, Adv.Mater.,2007,19,4276.
    19. X. Fang, X. Yu, S. Liao, Y. Shi, Y. S. Hu, Z. Wang, G. D. Stucky, L. Chen, Microporous Mesoporous Mater.,2012,151,418.
    20. H. Hwang, H. Kim, J. Cho, Nano Lett.,2011,11,4826.
    21. C. Feng, J. Ma, H. Li, et al. Mater. Res. Bull.,2009,44,1811.
    22. T. Yang, X. Feng, Q. Tang, W. Yang, J. Fang, et al. J. Alloy Compd.,2011,509, L236.
    23. F. Hoshyargar, A. Yella, M. Panthofer, W. Tremel, Chem. Mater.,2011,23,4716.
    24. C. M. Zelenski, Peter. K. Dorhout, J. Am. Chem. Soc.1998,120.734.
    25. G. D. Du, Z. P. Guo, S. Q. Wang, R. Zeng, Z. X. Chen, H. K. Liu, Chem. Commun.2010,46,1106.
    26. S. J. Ding, J. S. Chen, X. W. Lou, Chem. Eur. J.2011,17,13142.
    27. X. P. Fang, X. Q. Yu, S. F. Liao, Y. F. Shi, Y. S. Hu, Z. X. Wang, G. D. Stucky, L Q. Chen, Micropor. Mesopor. Mat.2012,151,418.
    28. X. S. Zhou, L. J. Wan, Y. G. Guo, Nanoscale 2012,4,5868.
    29. K. Chang, W. X. Chen, J. Mater. Chem.2011,21,17175.
    30. J. Xiao, X. J. Wang, X. Q. Yang, S. D. Xun, G. Liu, P. K. Koech, J. Liu, J. P. Lemmon, Adv. Funct. Mater.2011,21,2840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700