用户名: 密码: 验证码:
氧化亚铜微纳米颗粒的制备及其光电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,半导体材料具有许多金属材料无法比拟的优点,己被广泛应用于航天、航空、电子等诸多领域。Cu20是一种少有的能被可见光激发的p型半导体材料,其禁带宽度约为2.0eV,在太阳能开发和利用以及催化剂和气敏材料等方面有着巨大的应用潜力。因此,对Cu20的研究引起了人们的广泛关注。本文采用电沉积和湿化学方法制备了不同形貌的Cu20微纳米结构,并探讨了其形成机理。在此基础上以Cu20作为光敏化剂,制备了Cu2O-TiO2和Cu2O-ZnO异质结,探讨了异质结微观形貌和结构对其光吸收和光电性能的影响。本文的主要研究内容如下:
     (1)采用脉冲电流的方法在单一的Cu(Ac)2电解液中制备了不同形貌的Cu20。通过改变电解液的状态可以实现八面体状和树枝状Cu20颗粒的可控制备。在静止的电解液中形成的是八面体状的Cu20颗粒,而在搅拌的电解液中形成的是树枝状的Cu20颗粒。通过对树枝状的Cu20颗粒显微结构进行表征,发现树枝状Cu20颗粒的每个分支都是沿着<110>方向生长的,基于此提出了树枝状Cu20颗粒在搅拌的电解液中的形成机理。在沉积过程中,首先是Cu原子析出,并沿着<110>密堆方向生长形成Cu晶格,然后O原子扩散进入Cu晶格形成Cu20晶格,最终形成沿着<110>方向结晶生长的树枝状Cu20颗粒。此外,八面体状Cu20薄膜和树枝状Cu20薄膜具有不同的半导体特性。八面体状Cu20薄膜表现出p型特性,而树枝状Cu20薄膜表现出n型特性,这一结果为设计用于太阳能电池的Cu20同质p-n结提供帮助。
     (2)通过恒压电化学沉积的方法制备了光滑平整的Cu20纳米晶薄膜。实验中发现,在Cu(Ac)2电解液中加入硫脲提高了Cu20的成膜性,这是因为硫脲起到两方面作用:1)作为Cu20的异质形核质点,提高了电沉积过程中Cu2O的形核率;2)作为Cu20晶核长大的抑制剂,减小Cu20的生长速率。通过对比实验,发现在沉积电位为-0.1V(vs.SCE)和硫脲浓度为0.5mM时,得到的Cu2O薄膜质量最好。通过光吸收和光电流测试,结果表明Cu20纳米薄膜可以吸收550nm左右的可见光,并且具有一定程度的可见光响应和光电流值,但是光电流随着时间延长发生明显的衰减。
     (3)采用室温湿化学的方法,在NaOH, N2H4·H2O和Cu盐的体系中快速地制备出了Cu2O纳米颗粒。在制备过程中,NaOH的量对Cu2O形貌的控制起到了关键作用,。当没有NaOH加入时,Cu2O为纳米颗粒团聚而成的球状颗粒;随着NaOH的加入Cu2O纳米颗粒变得较为分散,而当NaOH的量继续增加时,Cu2O纳米颗粒会继续发生团聚,变为纳米颗粒团聚而成的八面体颗粒。在制备过程中,N2H4·H2O对Cu2O形貌控制起到的作用不大,主要是改变Cu2O纳米颗粒的大小及团聚程度。随着N2H4·H2O的加入Cu2O纳米颗粒的尺寸减小,但是团聚程度增加。在整个制备体系中,溶剂对Cu2O形貌的控制起到了关键作用。通过控制水和乙醇的比例,实现了Cu2O由球状向八面体状的转变。随着乙醇含量的增加,Cu2O形貌会经历由球状纳米颗粒团聚体,到八面体纳米颗粒团聚体,再到光滑的八面体转变过程。整个转变过程,是由Ostwald ripen (OR)和Oriented attach (OA)两种经典的生长机理共同作用的。
     (4)通过阳极氧化和脉冲电流电沉积相结合的方法制备出Cu2O-TiO2异质结。在沉积Cu20的过程中,电解液的状态对Cu20的形貌有着很大的影响。相同的沉积电流密度下,在静止的溶液中形成的是八面体Cu2O,而在搅拌和超声扰动的溶液中形成的是枝状Cu2O。在静止溶液中,随着沉积电流密度的增加,光吸收强度和光电流值都会增加。在搅拌和超声溶液中,随着沉积电流密度的增加,光吸收强度和光电流值都是先增大后减小。这与枝状晶和八面体晶的形貌和结晶度有关。另外,通过阳极氧化结合恒压电沉积的方法制备出TNTs@Cu2O同轴异质结。TiO2纳米管表面存在肋骨状形貌的TiO2纳米颗粒和在沉积Cu2O时硫脲的加入对形成同轴异质结起到关键作用。TNTs@Cu2O同轴异质结在可见光的照射下有明显的光吸收和光电流响应。与普通Cu2O-TiO2异质结相比,其光电流响应程度有明显的提高,尤其是短路电流值,比普通的异质结大数十倍。
     (5)通过脉冲电流和恒压电沉积相结合的方法,制备出Cu2O-ZnO异质结。在电沉积ZnO的过程中,ZnO主要出现两种不同形貌,一种是片状的ZnO,一种是圆锥状的ZnO。通过调节电沉积中的电解液浓度,电流密度以及沉积时间,探讨了不同形貌ZnO的形成机理。通过对Cu2O-ZnO异质结的光吸收和光电流测试,可知制备的异质结在可见光范围内有明显的光吸收,在可见光的照射下有明显的可见光响应和光电流值,但是Cu2O-ZnO异质结稳定性较差。
It is well known that semiconductor materials have been used extensively in many fields, such as aerospace industry and electronics industry. As a metal-oxide p-type semiconductor with a band gap of about2.0eV, cuprous oxide (Cu2O) has attracted much research interest because of its potential applications in solar energy conversion, catalysis and gas sensors. In this paper, different morphologies of Cu2O were prepared by electrodeposition and wet chemical method, and the formation mechanisms of Cu2O particles were proposed on the basis of the experimental results. Furthermore, the heterostructures of Cu2O-TiO2and Cu2O-ZnO were fabricated using the Cu2O as photosensitive agent. The optical absorption and photocurrent of these heterostructures were also measured for extending the application of Cu2O in photoelectrical field. In order to optimize the structure of these heterostrucutures, the influence of microstructure on photoelectrical properties was discussed. The content and innovation of this thesis are listed as follows:
     (1) Different morphologies of Cu2O particles were prepared by galvanostatic electrodeposition in sole Cu(Ac)2electrolyte. Octahedral and dendrite-like Cu2O particles were controllably prepared by changing the electrolyte status. The octahedral Cu2O particles were fabricated in static electrolyte, and the dendrite-like Cu2O particles were fabricated in stirred electrolyte. By characterizing the microstructure of dendrite-like Cu2O particles, it was found that the growth directions of dendritic branches are all along the <110> directions. Therefore, the formation mechanism of Cu2O dendrite crystals prepared in stirred electrolyte was proposed on the basis of the experimental results. Firstly, the Cu atoms precipitated from the electrolyte and grew along close-packed directions (<110> directions) to form of Cu lattice. Then, oxygen atoms diffused into Cu lattice to form Cu2O lattice. Finally, the dendrite-like Cu2O was formed with dendritic branches growing along<110> directions. So, the dendrite-like Cu2O crystals formed under a kinetic growth regime. In addition, the conduction types of Cu2O particles were different for the octahedral and dendrite-like Cu2O particles. The octahedral Cu2O particles exhibited the p-type semiconducting behavior, and the dendrite-like CU2O particles presented n-type semiconducting characteristic. This conclusion will help design more effective Cu2O p-n homojunctions for solar energy conversion.
     (2) Smooth and uniform nanocrystal Cu2O thin films were prepared by potentiostatic deposition method. In our experimental system, the addition of thiourea in Cu (Ac)2electrolyte enhanced the quality of Cu2O thin film. This is because that thiourea had two effects on formation of Cu2O thin film:1) thiourea worked as the heterogeneous nucleation sites for increasing the nuclei density in Cu2O electrodeposition;2) thiourea worked as capping agent for inhibiting growth of Cu2O nuclei. The parameters of electrodeposition were optimized by a series of parallel experiments, and the best quality Cu2O thin films were prepared under the potential of-0.1V (vs.SCE) in0.5mM thiourea electrolyte. Through the optical absorption and photocurrent properties measurement, the results show that the Cu2O thin film presented obvious absorption around550nm, and exhibited some visible light responses and photocurrent value under visible light illumination. However, the photocurrent obviously decayed as prolonging the illumination time.
     (3) The Cu2O nanoparticles were quickly prepared in solution of NaOH, N2H4·H2O and copper salt at ambient temperature by wet chemical method. NaOH agent played an important role in controlling the morphology of Cu2O in this reaction system. The spheric Cu2O particles aggregated by Cu2O nanoparticles were fabricated without NaOH. The Cu2O nanoparticles became dispersive with increasing NaOH. However, the morphology of Cu2O developed into octahedron aggregated by Cu2O nanoparticles as continuously increasing NaOH. The N2H4·H2O had a little effect on the morphology of Cu2O in the reaction systems, N2H4·H2O changed the size of Cu2O nanoparticles and degree of aggregation. With increasing N2H4·H2O, the size of Cu2O decreased and the degree of aggregation increased. In addition, the solvent had a large effect on the morphology of Cu2O in the reaction system. By controlling the proportion of water and ethanol, the morphology of Cu2O changed from sphere to octahedron. The results show that the morphology of Cu2O experienced the evolution from spheric nanogranule aggregate, through octahedral nanogranule aggregate to smooth octahedron transformation process with increasing ethanol content. The formation mechanism can be explained by combined action of Ostwald ripen (OR) and Oriented attach (OA).
     (4) The Cu2O-TiO2heterostructures were prepared by combining anodic oxidation and galvanostatic pulse electrodeposition. The status of electrolyte and current density had large effects on the morphology of Cu2O particles in electrodeposition. Under the condition of same current density, the octahedral CU2O particles were formed in static electrolyte, and the branched Cu2O particles were formed in stirred electrolyte. Cu2O-TiO2heterostructure exhibited obvious optical absorption and visible light responses under visible light illumination. The optical absorption and photocurrent value increased with increasing current density in static electrolyte. However, the optical absorption and photocurrent value first increased and then decreased with increasing current density in stirred electrolyte, which was relevant with morphology and crystallinity of branched and octahedral Cu2O crystals. In addition, coaxial TNTs@Cu2O heterostructures were prepared by combining anodic oxidation and potentiostatic electrodeposition. The ribs of TNTs arrays and addition of thiourea played important roles in formation of coaxial TNTs@Cu2O heterostructures. The coaxial TNTs@Cu2O heterostructure exhibited obvious optical absorption and visible light responses under visible light illumination. The photocurrent value was sharply improved compared with that of simple heterostructure. Especially, the shortcut current value of coaxial TNTs@Cu2O heterostructure was several times that of simple heterostructure.
     (5) The Cu2O-ZnO heterostructures were prepared by combining galvanostatic pulse and potentiostatic electrodeposition. Two different morphologies of ZnO were appeared in electrodeposition of ZnO. One was flake-like, and the other was pyramidal. Further, through adjusting the concentration of electrolyte, current density and depositon time, the formation mechanism of different morphologies of ZnO was proposed. The optical absorption and photocurrent measurement of Cu2O-ZnO heterostructure shows that the heterostructures had obvious optical absorption in visible light range, and exhibited obvious visible light responses and photocurrent value under visible light illumination. However, the reproducibility and lifetime of the heterostructure were poor in phtotochemical measurements.
引文
[1]Shigeru I., Tsuyoshi T., Takeshi K., et al., Mechano-catalytic overall water splitting [J]. Chem. Commun,1998,25(2):2185-2190.
    [2]Snoke D., Wolfe J. P., Mysyrowicz A., Quantum saturation of a Bose gas:excitons in copper oxide (Cu2O) [J]. Phys. Rev. Lett.,1987,59(7):827-830.
    [3]Pollack G. P., Trivich D., Photoelectic properties of Cuprous Oxide [J]. J. Appl. Phys., 1975,46(1):163-172.
    [4]Rai B. P., Cuprous oxide solar cells:a review[J]. Solar Cell,1988,25(3):265-272.
    [5]Borgohain K., Murase N., Mahamuni S., Synthesis and properties of Cu2O quantum particles [J]. J. Appl. Phys.,2002,92(3):1292-1297.
    [6]Snoke D. W., Shields A. J., Cardona M., Phonon-absorption recombination luminescence of room-temperature excitons in copper (I) oxide [J]. Phys. Rev. B.1992,45(20): 11693-11697.
    [7]Wycko R. W. G., Crystal Structures 1[M], Second edition, Interscience Publishers, New York,1963,85-237.
    [8]陈之战,施尔畏,李汶军,等,水热条件下Cu2O的连生习性[J].人工晶体学报,2001,30(4).369-374.
    [9]Singh D. P., Neti N. R., Sinha, A. S. K., et al., Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper [J]. J. Phys. Chem. C,2007,111:1638-1645.
    [10]Siegfried M. J., Choi K.-S., Directing the architecture of cuprous oxide crystal during electrochemical growth [J]. Angew. Chem. Int. Ed.,2005,44:3218-3223.
    [11]McShane C. M., Choi, K.-S., Photocurrent enhancement of n-Type Cu2O electrodes achieved by controlling dendritic branching growth [J]. J. Am. Chem. Soc.,2009,131: 2561-2569.
    [12]Brown Kari E. R., Choi K.-S., Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films [J]. Chem.Commun.,2006,31:3311-3313.
    [13]Wei H. M., Gong H., Chen B. L., et al., Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure [J]. J. Phys. Chem. C,2012,116:10510-10515.
    [14]Golden T. D., Shumsky M. G., Zhou Y. C., et al., Electrochemical deposition of copper oxide films [J]. Chem. Mater.,1996,8:2499-2504.
    [15]Bohannan E. W., Shumsky M. G., Switzer J. A., Epitaxial electrodeposition of copper oxide on single-crystal gold (100) [J]. Chem. Mater.,1999,11:2289-2291.
    [16]Switzer J. A., Liu R., Bohannan E. W., et al., Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon [J]. J. phy. chem. B,2002,106:12369-12372.
    [17]Switzer J. A., Liu R., Bohannan E. W., Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP (001) [J]. Chem. Mater.,2003,15:4882-4885.
    [18]Sun F., Guo Y. P., Song W. B., et al., Morphological control of Cu2O micro-nanostructure film by eleetrodeposition [J]. J. Cryst. Growth,2007,304:425-429.
    [19]Wang W. Z., Wang G. H., Wang X. S., et al., Synthesis and charaeterization of Cu2O nanowires by a novel reduction route [J]. Adv. Mater,2002,14:67-69.
    [20]Gou L. F., Murphy C. J., Solution-phase synthesis of Cu2O nanocubes [J]. Nano Lett, 2003,3:231-234.
    [21]Lu C. H., Qi L. M., Yang J. H., et al, One-pot synthesis of octahedral Cu2O Nanocages via a catalytic solution route [J]. Adv. Mater.,2005,17:2562-2567.
    [22]Kuo C.-H, Chen C.-H, Huang M. H., Seed-mediated synthesis of mono-dispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm [J]. Adv. Funct. Mater.,2007,17:3773-3780.
    [23]Ho J.-Y., Huang M. H., Synihesis of submierometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity [J]. J. Phys. Chem.C,2009,113:14159-14164.
    [24]Chang Y., Zeng H. C., Manipulative synthesis of multi-pod frameworks for self-organization and self-amplification of Cu2O micro-crystals [J]. Cryst Growth Des,2004, 4:273-278.
    [25]Kim M. H., Lim B., Lee E. P., et al. Polyol synihesis of Cu2O nanopartieles:use of chloride to promote the formation of a cubic morphology [J]. J. Mater.Chem.,2008,18: 4069-4073
    [26]Dong Y. J., Li Y. D., Wang C., et al. Preparation of curous oxide particles of different crystallinity [J]. Journal of Colloid and Interface Science,2001,243:85-89.
    [27]Xu H. L., Wang W. Z., Template Synthesis of Multishelled Cu2O hollow spheres with a single-crystalline shell wall [J]. Angew. Chem. Int. Ed.,2007,46:1489-1492.
    [28]Ng C. H. B., Fan W. Y., Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth [J]. J. Phys. Chem. B.,2006,110:20801-20807.
    [29]Siegfried M. J., Choi K.-S., Elucidating the effect of additives on the growth and stability of Cu2O surfaces via Shape transformation of pre-grown Crystals [J]. J. Am. Chem. Soc.,2006,128:10356-10357.
    [30]Kuo C.-H., Huang M. H., Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures [J]. J. Phys. Chem. C,2008,112: 18355-18360.
    [31]Xu H. L., Wang W. Z., Zhu W., Shape Evolution and size-controllable sythesis of Cu2O octahedra and their morphology-dependent photocatalytic properties [J]. J. Phys.Chem. B.,2006,110:13829-13834.
    [32]Lu Y.-M., Chen C.-Y., Lin M. H., Effect of hydrogen plasma treatment on the electrical properties of sputtered N-doped cuprous oxide films [J]. Mat. Sci. Eng. B-Solid,2005, 118(1-3):179-182.
    [33]Musa A. O., Akomolafe T., Carter M. J., Production of cuprous oxide a solar cell material by thermal oxidation and a study of its physical and electrical properties [J]. Sol. Energ. Mat. Sol. C,1998,51 (3-4):305-316.
    [34]Hara M., Kondo T., Komoda M., et al., Cu2O as a Photocatalyst for overall Water splitting under visible light irradiation [J]. Chem.Commun.,1998,3:357-358.
    [35]Toth R. S., Kilkson R., Trivich D., Preparation of large area single-crystal cuprous oxide [J]. Journal of Applied Physics,1960,31:1117-1121.
    [36]O'Keeffe M., Moore W. J., Electrical conductivity of nanocrystalline cuprous oxide [J]. J. Chem. Phys,1961,35:1324-1328.
    [37]Young A. P., Schwartz C. M., Electrical conductivity and thermoelectric power of Cu2O [J]. J. Phys. Chem. solids,1969,30:249-252.
    [38]Mckinzie H. L., O'Keeffe M., High temperature hall effect in cuprous oxide [J]. Phys. Lett. A,1967,24:137-139.
    [39]Rakhshani A. E., Preparation, characteristics and photovoltaic properties of cuprous oxide-a review [J]. Solid State Electron,1986,29:7-17.
    [40]Papadimitriou L., Eeonomou N. A., Trivich D., Heterojunction Solar Cells on Cuprous Oxide [J]. Solar Cells,1981,3:73-80.
    [41]Herion J., Niekisch E. A., Scharl G., Investigation of metal oxide/cuprous oxide heterojunction solar cells [J]. Sol. Energy. Mat. Sol. C.,1980,4:101-102.
    [42]Liu Y., Turley H. K., Tumbleston J. R., et al., Minority carrier transport length of electrode posited Cu2O in ZnO/Cu2O heterojunetion solar cells [J]. Appl. Phys. Lett., 2011,98:162105-1-162105-3.
    [43]Izakil M., Shinagawal T., Mizuno K.-T., et al., Electrochemically constructed p-Cu2O/n-ZnO heterojunetion diode for photovoltaic device [J]. Journal of Physics D: Applied Physics.,2007,40:3326-3329.
    [44]Zhang D. K., Liu Y. C., Liu Y. L., et al., The electrical properties and the interfaces of Cu2O/ZnO/ITO p-i-n heterojunction [J]. Physica B,2004,351:178-183.
    [45]Gershon T., Musselman K. P., Marin A., et al., Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer [J]. Sol. Energ Mat Sol C.,2012,96:148-154.
    [46]Mittiga A., Salza E., Sarto F., et al., Heterojunction solar cell with 2% efficiency based on a Cu2O substrate [J]. Appl. Phys. Lett,2006,88:163502-163503.
    [47]Minami T., Nishi Y., Miyata T., et al., High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally Oxidized Cu2O Sheets [J]. Appl. Phys. Express, 2011,4:062301-1-062301-3
    [48]Tang Y., Chen Z., Jia Z., et al., Electrode position and characterization of nanocrystalline cuprous oxide thin films on TiO2 films [J]. Materials Letters,2005,59:434-438
    [49]Li D., Chien C.-J., Deora S., et al., Prototype of a scalable core-shell Cu2O/TiO2 solar cell [J]. Chemical Physies Letters,2011,501:446-450.
    [50]何星存,梁伟夏,黄智,等,可见光响应的“Cu核-Cu20壳”型光催化剂性能的研究[J].现代化工,2005,25:38-41.
    [51]陈金毅,刘小玲,李阊轮,等,纳米氧化亚铜可见光催化分解亚甲基蓝[J].华中师 范大学学报(自然科学版),2002,36:200-203.
    [52]刘小玲,陈金毅,周文涛,等,纳米氧化亚铜太阳光催化氧化法处理印染废水[J].华中师范大学学报(自然科学版),2002,36:475-477.
    [53]李越湘,吕功煊,李树本,半导体光催化分解水研究进展[J].分子催化,2001,15:72-78.
    [54]Zhang J. T., Liu J. F., Peng Q., et al., Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors [J]. Chem. Mater.,2006,18: 867-871.
    [55]Zhang H. G., Zhu Q. S., Zhang Y., et al., One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties [J]. Adv. Funct. Mater.,2007,17:2766-2777.
    [1]Siripala W., Ivanovskaya A., Jaramillo T. F., et al., A Cu2O/TiC>2 heterojunction thin film cathode for photoelectrocatalysis [J]. Solar Energy Materials and Solar Cells,2003,77(3): 229-237.
    [2]Han K., Tao M. C., Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities [J]. Sol. Energ. Mat. Sol.,2009, 93(1):153-157.
    [3]Yang H., Yang J. O., Tang A. D., et al., Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles [J]. Mater. Res. Bull.,2006,41(7):1310-1318.
    [4]Pang H., Gao F., Lu Q. Y., Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities [J]. CrystEngComm,2010,12(2): 406-412.
    [5]Mann S.,The Chemistry of Form [J]. Angew. Chem. Int. Ed.,2000,39(19):3392-3406.
    [6]Sun Y. G., Xia Y. N., Shape-controlled synthesis of gold and sliver nanoparticles [J]. Science,2002,298:2176-2179.
    [7]Xiao Z. L., Han Y. C., Kwok W. K., et al. Tuning the Architecture of Mesostructures by Electrodeposition [J]. J. Am. Chem. Soc.,2004,126(8):2316-2317.
    [8]Lee S M, Jun Y W, Cho S N, et al. Single-Crystalline Star-Shaped Nanocrystals and Their Evolution:Programming the Geometry of Nano-Building Blocks [J]. J. Am. Chem. Soc, 2002,124(38):11244-11245.
    [9]Siegfried M. J., Choi K.-S., Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals [J]. J. Am. Chem. Soc.,2006,128(32):10356-10357.
    [10]Siegfried M. J., Choi K.-S., Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution [J]. Adv. Mater.,2004,16(19):1743-1746.
    [11]Siegfried M. J., Choi K.-S., Directing the architecture of cuprous oxide crystals during electrochemical growth [J]. Angew. Chem. Int. Ed.2005,44(21):3218-3223.
    [12]Siegfried M. J., Choi K..-S., Elucidation of an overpotential-limited branching phenomenon observed during the electrocrystallization of cuprous oxide [J]. Angew. Chem. Int. Ed.,2008,47(2):368-372.
    [13]McShane M. C, Choi K.-S., Photocurrent Enhancement of n-Type Cu2O Electrodes Achieved by Controlling Dendritic Branching Growth [J]. J. Am. Chem. Soc.,2009, 131(7):2561-2569.
    [14]Kuo C,-H., Chen C.-H., Huang M. H., Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm [J]. Adv. Funct. Mater.,2007,17(18):3773-3780.
    [15]Ho J. Y., Huang M. H., Synthesis of Submicrometer-Sized CU2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity [J]. J. Phys. Chem. C.,2009,113(32):14159-14164.
    [16]Huang W. C., Lyu L. M., Yang Y. C., et al., Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity [J]. J. Am. Chem. Soc.,2012,134(2):1261-1267.
    [17]Wei H. M., Gong H. B., Wang Y. Z., et al, Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties [J]. CrystEngComm,2011,13(20):6065-6070.
    [18]Wei H. M., Gong H. B., Chen L., et al.. Photovoltaic Efficiency Enhancement of Cu2O Solar Cells Achieved by Controlling Homojunction Orientation and Surface Microstructure [J]. J. Phys. Chem.C,2012,116(19):10510-10515.
    [19]Tantavichet N., Pritzker M. D., Effect of plating mode, thiourea and chloride on the morphology of copper deposits produced in acidic sulphate solutions [J]. Electrochim. Acta,2005,50(9):1849-1861.
    [20]Tantavichet N., Damronglerd S., Chailapakul O., Influence of the interaction between chloride and thiourea on copper electrodeposition. Electrochim [J]. Acta,2009,55(1): 240-249.
    [21]Javet P., Hintermann H. E., Behavior of thiourea in cupric solution [J]. Electrochim. Acta, 1969,14(7):527-532.
    [22]Ratajczak H. M., Pajdowski L., Ostern M, Polarographic studies on aqueous copper (Ⅱ) solutions with thiourea. Ⅱ[J]. Electrochim. Acta,1975,20(6-7):431-434.
    [23]Suarez D. F., Olson F. A., Nodulation of electrodeposited copper in the presence of thiourea [J]. J. Appl. Electrochem.,1992,22(11):1002-1010.
    [24]Szymaszek A., Biernat J.. Pajdowski L., Polarographic studies on the effect of thiourea on deposition of copper in the presence of 2M sulfuric acid [J]. Electrochim. Acta,1977, 22:359-364.
    [25]El-Korashy A., El-Fadl A., Temperature dependence of the optical band gap of nearly perfect K2ZnCl4 single crystals in the ferroelectric phase [J]. Physica B 1999,271(1-4): 205-211.
    [26]Ishizuka S., Kato S., Okamoto Y., et al., Passivation of defects in polycrystalline Cu2O thin films by hydrogen or cyanide treatment [J]. Appl. Surf. Sci.,2003,216(1-4):94-97.
    [27]Ray S. C, Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties [J]. Solar Energy Materials and Solar Cells,2001,68(3-4):307-312.
    [28]Bak T., Nowotny J., Rekas M., et al, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J]. International Journal of Hydrogen Energy,2002,27(10):991-1022.
    [29]Zheng Z. K., Huang B. B., Wang Z. Y., et al.. Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions [J]. J. Phys. Chem. C,2009,113(32):14448-14453.
    [30]Huang L., Peng F., Yu H., et al., Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion [J]. Solid. State. Sci.,2009,11(1):129-138.
    [31]Bessekhouad Y., Robert D., Weber J.-V, Photocatalytic activity of Cu2O/TiO2, Bi2O3/ TiO2 and ZnMn2O4/TiO2 heterojunctions [J]. Catal.Today,2005,101(3-4):315-321.
    [1]Asar A., Namdeo S. G., Amish G. J., Low cost, surfactant-less, one pot synthesis of C112O nano-octahedra at room temperature [J]. J. Solid State Chemistry,2011,184(8): 2209-2214.
    [2]Poizot P., Laruelle S., Grugeon S., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407(6803): 496-499.
    [3]Li D. D., Chien C.-J., Deora S., et al., Prototype of a scalable core-shell Cu2O/TiO2 solar cell [J]. Chemical Physics Letters,2011,501 (4-6):446-450.
    [4]Han X. F., Han K. H., Tao M., Characterization of Cl-doped n-type Cu2O prepared by electrodeposition [J]. Thin Solid Films,2010,518(19):5363-5367.
    [5]Sharma P., Bhatti H. S., Synthesis of quasi-1D cuprous oxide nanostructure and its structural characterizations [J]. J. Physics and Chemistry of Solids,2008,69(7): 1718-1727.
    [6]Ho J. Y., Huang M. H., Synthesis of submicrometer-Sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity [J]. J. Phys. Chem. C,2009,113(32):14159-14164.
    [7]Kuo C.-H., Huang M. H., Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures [J]. J. Phys. Chem. C.,2008,112(47): 18355-18360.
    [8]Huang W.-C., Lyu L.-M, Yang Y.-C., et al, Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity [J], J. Am Chem. Soc.,2012,134(2):1261-1267.
    [9]Zhang J. T., Liu J. F., Peng Q., et al., Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors [J].Chem. Mater.,2006,18(4): 867-871.
    [10]Xu H. L., Wang W. Z., Zhu W., Shape evolution and size-controllable size-controllabe synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties[J]. J. Phys. Chem. B.,2006,110(28):13829-13834.
    [11]Wiley B., Herricks T., Sun Y. G., et al., Polyol synthesis of silver nanoparticles:use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons [J]. Nano Lett.,2004,4(9),1733-1739.
    [1]Zhang L. S., Wong K. H., Chen Z. G., et al, AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components[J]. Appl. Catal. a-Gen.,2009,363(1-2):221-229.
    [2]Liu L. F., Dong X. Y., Yang F. L., et al., Photocatalytic reduction of nitrate by Ag/TiO2 catalyst[J]. Chinese J. Inorg. Chem.,2008,24(2):211-217.
    [3]Leung T. Y., Chan C. Y, Hu C, et al., Photocatalytic disinfection of marine bacteria using fluorescent light[J]. Water Res.,2008,42(19):4827-4837.
    [4]刘平,周廷云,林华香,等,复合TiO2/SnO2光催化剂的耦合效应[J].物理化学学报,2001,17(3):273-277.
    [5]陈俊涛,李新军,杨莹,等,稀土元素掺杂TiO2薄膜光催化性能的影响[J].中国稀土学报,2003,21(1):67-71.
    [6]Arena F., Giovenco R., Torre T., et al., Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol [J]. Appl. Catal. B:Env.,2003,45:51-62.
    [7]Paramasivam I., Macak J. M., Schmuki P., Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles[J]. Electrochem. Commun.,2008,10(1):71-75.
    [8]Macak J. M., Zlamal M., Krysa J., et al., Self-organized TiO2 nanotube layers as highly efficient photocatalysts[J]. Small,2007,3(2):300-304.
    [9]Wang D. A., Hu T. C., Hu L. T., et al., Microstructured arrays of TiO2 nanotubes for improved photo-electrocatalysis and mechanical stability[J]. Adv. Funct. Mater.,2009, 19(12):1930-1938.
    [10]吴聪聪,卓燕君,朱沛宁,等,高长径比Ti02纳米管阵列的调控制备及其光阳极性能[J].无机材料学报,2009,24(5):897-901.
    [11]何洪波,常明,陈爱平,等,TiO2纳米管修饰镍电极及其光催化辅助电解水制氢性能研究[J].无机化学学报,2012,28(10):2097-2102.
    [12]Macak J. M., Tsuchiya H., Taveira L., et al., Smooth anodic TiO2 nanotubes[J]. Angew. Chem Int. Edit.,2005,44(45):7463-7465.
    [13]Bendavid A., Martin P. J., Jamting A., et al.. Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition[J]. Thin Solid Films.1999,356: 6-11.
    [14]Huang L., Zhang S., Peng F., et al., Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photo-catalysis[J]. Scripta. Mater.,2010,63(2):159-161.
    [15]刘灿,魏子栋,张骞,等,磁控溅射制备Cu20和Cu2O/TiO2复合膜及其光催化活性[J].无机材料学报,20 1 2,27(4):395-399.
    [16]Puntes V. F., Krishnan K. M., Alivisatos A. P., Colloidal nanocrystal shape and size control:the case of cobalt[J]. Science,2001,291:2115-2117.
    [17]Jin R., Cao Y. W., Mirkin C. A., et al., Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science,2001,294:1901-1903.
    [18]Huang L. S., Yang S. G., Li T., et al., Preparation of large-scale cupric oxide nanowires by thermal evaporation method[J]. J. Cryst. Growth.,2004,260:130-135.
    [19]Lee H. H., Lee C., Kuo Y. L., et al., A novel two-step MOCVD for producing thin copper films with a mixture of ethyl alcohol and water as the additive[J]. Thin Solid Films,2006,498:43-49.
    [20]Armelao L., Barreca D., Bertapelle M., et al., A sol-gel approach to nanophasic copper oxide thin films[J]. Thin Solid Films,2003:442,48-52.
    [21]Pierson J. F., Wiederkehr D., Billard A., Reactive magnetron sputtering of copper, silver, and gold[J]. Thin Solid Films,2005,478:196-205.
    [22]Ishizuka S., Kato S., Okamoto Y., et al., Passivation of defects in polycrystalline Cu2O thin films by hydrogen or cyanide treatment[J]. Appl.Surf.Sci.,2003,216:94-97.
    [23]Wang L. C., Tao M., Fabrication and Characterization of p-n homojunctions in cuprous oxide by electrochemical deposition semiconductor devices, materials, and Pprocessing[J]. Electrochem.solid.St.,2007,10:H248-H250.
    [24]Zhou Y. C., Switzer J. A., Galvanostatic electrodeposition and microstructure of copper (I) oxide film[J]. Mater. Res. Innov.,1998,2(1):22-27.
    [25]Switzer J. A., Hung C. J., Huang L. Y., et al, Electrochemical self-assembly of copper/cuprous oxide layered nanostructures[J]. J. Am. Chem. Soc.,1998,120: 3530-3531.
    [26]Mahalingam T., Chitra J. S. P., Rajendran S., et al, Galvanostatic deposition and characterization of cuprous oxide thin films[J]. J. Cryst. Growth,2000,216:304-310.
    [27]Daltin A. L., Addad A., Chopart J. P., Potentiostatic deposition and characterization of cuprous oxide films and nanowires[J]. J. Cryst. Growth,2005,282:414-420.
    [28]Hu F., Chan K., Yue C. T. M., Morphology and growth of electrodeposited cuprous oxide under different values of direct current density[J]. Thin Solid Films,2009,518: 120-125.
    [29]Yu J. G., Hai Y., Jaroniec M., Photocatalytic hydrogen production over CuO-modified titania[J]. J. Colloid. Interf. Sci.,2011,357(1):223-228.
    [30]Kuang S. Y., Luo S. L., Cai Q. Y., et al., Fabrication, characterization and photoelectron-chemical properties of Fe2O3 modified TiO2 nanotube arrays [J]. Appl. Surf. Sci.,2009, 255 (16):7385-7388.
    [1]Olsen L. C., Bohara R. C., Urie M. W., Explanation for low-efficiency Cu2O Schottky-barrier solar cells[J]. Appl. Phys. Lett.,1979,34:34-47.
    [2]Herion J., Niekisch E. A., Scharl G., Investigation of metal oxide/cuprous oxide heterojunction solar cells[J]. Sol. Energ. Mater.,1980,4:101-112.
    [3]Iwanowski R. J., Trivich D., Enhancement of the photovoltaic conversion efficiency in Cu/Cu2O Schottky barrier solar cells by H+ion irradiation [J]. Physica Status Solidi A., 1986,95(2):735-741.
    [4]Rai B. P., Cu2O Solar cells:A review [J]. Solar cells,2003,25:265-272.
    [5]Briskman R. N., Solar Energy Materials and Solar Cells [J], Sol. Energ. Mat. Sol. C.1992, 27:361-368.
    [6]Suehiro T., Sasaki T., Hiratate Y., Electronic properties of thin cuprous oxide sheet prepared by infrared light irradiation[J], Thin Solid Films,2001,383:318-320.
    [7]Pearton S. J., Norton D. P., Ip K., et al., Recent progress in processing and properties of ZnO [J]. Prog. Mater. Sci.,2005,50(3):293-340.
    [8]Zhang Y. S., Yu K., Jiang D. S., et al., Zinc oxide nanorod and nanowire for humidity sensor [J]. Appl. Surf. Sci.,2005,242:212-217.
    [9]Banerjee D., Jo S. H., Ren Z. F., Enhanced field emission of ZnO nanowires[J]. Adv. Mater.,2004,16:2028-2032.
    [10]Law M., Greene L. E., Johnson J. C., et al., Nanowire dye-sensitized solar cells [J]. Nat. Mater.,2005,4,455-445
    [11]Drobny V. F., Pulfrey D. L., Properties of reactively-sputtered copper oxide thin films [J]. Thin Solid Films,1979,61:89-98.
    [12]Wang X. D., Summers C. J., Wang Z. L., Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J]. Nano Lett.2004,4(3):423-426.
    [13]Park W. I., Yi G. C., Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. Adv. Mater.,2004,16:87-90.
    [14]O'Regan B., Schwartz D. T., Zakeeruddin S. M., Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics [J].Adv.Mater.2000,12: 1263-1267.
    [15]O'Regan B., Sklover V., Gratzel M., Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes [J]. J.Electrochem. Soc.2001,148:C498-C505.
    [16]Choi K.-S., Lichtenegger H. C., Stucky G. D., et al., Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces [J]. J. Am. Chem. Soc.2002,124:12402-12403.
    [17]陈志钢,唐一文,张丽莎,等,氧化锌薄膜的电化学沉积和表征[J].物理化学学报,2005,21(6):612-615

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700