用户名: 密码: 验证码:
锡阳极泥制取纯(NH_4)_2SnCl_6、Sb_4O_5Cl_2及纳米ATO的新工艺和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对锡、锑二次资源——电解锡阳极泥的原料特点,提出了一种全新的湿法精细冶金方法,该方法可实现二次资源的综合回收及高价值利用。在总结分析现有文献资料的基础上,对相关理论和工艺进行了深入研究,得出了有意义的结果。
     首先根据同时平衡原理和电中性原理分别对Sn(Ⅳ)-NH_4~+-Cl~--H_2O体系和Sn(Ⅳ)-Sb(Ⅲ)-NH_3-NH_4Cl-H_2O体系进行了热力学分析,并用电算指数方程法对这两个体系进行了热力学计算,绘制了体系的热力学关系图,在前一体系中,溶液中[Sn~(4+)]_T在pH=0.8时存在最大值。在pH<0.8时,由于体系中生成(NH_4)_2SnCl 6固体沉淀而使[Sn~(4+)]_T急剧下降:
     SnCl_1~(4-i)+2NH_4Cl=(NH_4)_2SnCl_6↓+(i-4)Cl~-
     在总铵浓度为3.0~4.0mol·L~(-1)范围内时,对[Sn~(4+)]_T的影响不显著,只是pH=0.8左右时,稍有影响;随着总氨浓度的提高,[Sn~(4+)]_T逐渐减小;总氯浓度与总铵浓度具有对应关系;pH
According to the chemical component characteristics of tin anode slurry, a new fine hydrometallurgy process was proposed for treating a typical tinny resource. This process not only can reclaim regenerative resources comprehensively, but also can produce some high value chemical products. Based on the analysis of existing literatures, This dissertation also were carried out some researches about the relative theories and technologies, gained some significant results.Firstly, according to the principles of simultaneous equilibrium and electronic charge neutrality, the thermodynamics in Sn(Ⅳ)-NH_4~+-Cl~--H_2O system and Sn(Ⅳ)-Sb(Ⅲ)-NH_3-NH_4Cl-H_2O system at normal condition had been analysed. Relation between all sorts of Me~(n+) concentration versus pH has been plotted. Based on thermodynamics analysis and calculation, some experiments were done to validate the calculation results. In the first system, the total concentration of ammonium and pH are the most important factors which determined whether (NH_4)_2SnCl_6 or Sn(OH)_4 existed in this system. Results further show when [HCl]≥ 6mol·l~(-1), Sn~(4+) in this system will be precipitated as the form of (NH4)_2SnCl_6:SnCl_i~(4-i)+2NH_4Cl=(NH_4)_2SnCl_6↓+(i-4)Cl~-The concentration of total stannic ions reached the max when pH is equal to 0.8; when pH<0.8, the concentration of total stannic ions declined sharply because of coming out of (NH_4)_2SnCl_6(s). When pH>0.8, the concentration of total stannic ions also decrease sharply, for there comes out of Sn(OH)_4(s). When pH<-l, this system is suited for preparing (NH_4)_2SnCl_6, while pH>1.5, this system is suited for preparing Sn(OH)_4.To the second system, based on the thermodynamics analysis results, was analysed the co-precipitation essential about this system. Results show that pH is the most important factor that determine the co-precipitation reaction direction and feasibility in this system. Results further show the ATO powders prepared by tradition process are actually the mixed compounds of Sn(OH)_4 and Sb_4O_5Cl_2.Then, a new hydrometallurgy process were deeply done for treating
    tin anode slurry to recover tin, antimony and copper, etc, Which includes oxidation-leaching by hydrochloric acid, precipitation tin, refining (NH4)2SnCl6, reduction-precipitation copper, hydrolyzation of SbCl3, refining Sb^sC^ and complex-co-precipitation to fabricate ATO powders, gained the optimal experiment conditions: (1) oxidation-leaching by hydrochloric acid: concentration of hydrochloric acid is 6mol-L"1, rate of liquid to solid is 7:1, leaching time is 2 hours, leaching temperature is 70 centigrade. (2) The optimal conditions of tin precipitation process are 3.5 times of theory quantity of chloride ammonium, reaction temperature of 25 °C, reaction time of 30-40 min; (3) reduction-precipitation copper : reaction time is 45 min, reaction temperature is 75 °C, quantity of ammonium chloride is one time of its theory quantity; (4) hydrolization of SbC^: normal temperature, 8.5 times of original solution cubage.Gained a excellent technique-economy target: (1) tin leaching rate, antimony leaching rate and copper leaching rate are 98.91%, 94.98% and 97.72%, respectively, (counted by liquid leaching rate); (2) tin precipitation rate can be reached more than 99%; (3) precipitating copper rate was 95.1%; (4) precipitating antimony rate is 98%.A kind of process successfully has been developed to refine (NH4)2SnCl6 and Sb^tOsC^. The optimal condition and steps of refining (NH^SnCk are as: Firstly, being used 5% analysis purity ammonium chloride to wash (NH4)2SnCl6 for three times quickly, rate of liquid to solid being 1:1, Secondly, being used 5g/L tartaric acid to quickly wash (NH4)2SnCl6 for three times again, also keep rate of liquid to solid being 1:1; in the end, gained 99.99 percent (NH^SnCle, which can meet with the purity demand of the raw materials for producing ATO or ITO. SD4O5CI2 refining optimal conditions and method are as: being used a solution consisting of 80% citric acid plus 10% salicylic plus 10% hydrochloric acid to wash impure Sb4O5Cl2, rate of liquid to solid being 2:l(mg/g), stirs it at normal temperature for 3 hours, being washed it by distilled water, is gained 99.9% of SD4O5CI2 after dryness.In order to prepare completely-mixed ATO powders, the author firstly used (NH^SnC^ and Sb4O5Cl2 as raw materials, proposed
    complex-co-precipitation process to produce antimony doped tin oxide, and did deep research about this proposition, ascertained the optimal reaction conditions. Which are as: pH value of 3, reaction temperature of 60°C, antimony concentration of 3%, heat treating temperature of 600X:, wash times of 6, dispersant of c. Synthetical experiment results show that this process can prepare even, well-shape and dispersive nano-phase ATO powder. Complex-co-precipitation process can avoided these shortcomings: conglomeration, limited original material, expensive cost, wasting lots of acid and alkali; different hydrolyzing speed of tin and antimony; uneven doped rate et al.
引文
[1] 黄位森,锡,北京:冶金工业出版社,2000,12-44
    [2] 云南锡业公司、昆明工学院《锡冶金》编写组,锡冶金,北京:冶金工业出版社,1976,12—45
    [3] 王忠.锡的最新资料[J].国外锡工业.1995,23(3):53-57.
    [4] 黄浩.锡化工产品研究[J].国外锡工业.1992.20(3):39-41。
    [5] 王忠,锡化学产品[J].国外锡工业.199422(2):29-35.
    [6] 杜长华,黄迎红等,云锡材料深度加工发展现状[J].云锡科技.1995:22(4)33-38.
    [7] C. C. Ho, K. C. Lee, The influence of hydrolysable metal cations on the electrokinetic behaviour of tin tailing slurry[J]. Colloids and surfaces A: Physicochemical and engineering aspects. 1995.(103): 11-21.
    [8] 朱玉芹.走向21世纪的锡冶炼科技[J].世界有色金属.1999,(10):15-19.
    [9] 黄书泽.云锡公司锡冶炼技术概况及近年进展[J].有色金属,1996,48(1):89-91.
    [10] 莫正荣.云锡锡冶炼过程中银走向分析和富集方法评述[J].云锡科技,1992,19(3):26-30.
    [11] 段之杰.用Ausmelt炼锡技术改造云锡粗炼系统[J].有色冶炼,2003,(2):1-4.
    [12] 黄桂香.影响锡冶炼回收率的主要因素及对策探讨[J].有色冶炼,1998,(4):36-40.
    [13] 谢书碧,曾仕贵.锡冶炼中铋的走向及回收[J].云锡科技,1996,(2):9-12.
    [14] 朱剑钊,司李彬.锡冶炼污水的治理[J].环境科技,1997,11(2):56-58.
    [15] 曾仕贵.锡冶炼流程中铜的走向与综合回收[J].云锡科技,1994,21(1):16-20.
    [16] 莫正荣.铜在锡冶炼工艺中的行为和对生产的影响[J].云锡科技,1991,18(4):29-35.
    [17] 杨桂林.我国第一台锡冶炼短窑[J].工程设计与研究,1992,(75):16-20.
    [18] 黄书泽.联合锡冶炼厂沈浸喷枪赛罗锡熔炼法的巨大进展[J].国外锡工业,1999,27(2):1-7.
    [19] 唐仲民.提高锡冶炼反射炉粗炼指标[J].云锡科技,1996,(3):9-10.
    [20] 肖凤.国际锡冶炼技术现状及其发展趋势述评[J].云锡科技,1989,16(1):6-10.
    [21] 黄书泽.澳斯麦特炉炼锡烟尘产生的机理及其控制[J].有色冶 炼,2003,(2):22-26.
    [22] G.P.Swayn,K.R.Pobilliaro等.奥斯迈特(Ausmelt)赛罗(Siro)冶炼技术在锡冶炼工艺上的最新发展动向[J].国外锡工业,1997,23(5):8-19.
    [23] 黄书泽.改革开放以来云锡公司锡冶炼科技工作的回顾与今后工作的设想[J].云锡科技,1995,22(2).14—19
    [24] 彭元胜.弱磁选在锡冶炼中的应用分析[J].有色金属设计,1997,24(3):16-19.
    [25] 宋兴城,黄书泽.澳斯麦特炉炼锡工艺与生产实践[J].有色冶炼,2003,(2):15-22.
    [26] 唐谟堂,赵天从.CR法处理高砷高锑复杂锡烟尘[J].中国有色金属学报,1992,2(4):37-40
    [27] 许秀莲,徐志峰.从锡电解阳极泥中综合回收Pb,Bi的研究[J].有色冶炼,2001,12(6):15-17
    [28] 杨新生,夏真,王洁.多金属高砷锡阳极泥综合回收实验[J].江西冶金,1998,16(1):23—25
    [29] 李时晨,王延龄.云锡焊锡阳极泥湿法处理工艺[J].云锡科技,1989,16 (1):40—46
    [30] 李时晨.云锡盐酸氯化-置换水解法处理锡铅阳极泥[J].云锡科技,1995,22(2):37—42
    [31] 姚昌仁.焊锡阳极泥浸铋渣处理新工艺的研究[J].有色冶炼,1994,(5):31—34
    [32] 李强.阳极泥尾渣直接生产锡化工产品的研究[J].北京有色矿冶总院学报,1994,3(1):62—66
    [33] 赵天从,汪键.有色金属提取手册锡锑汞分册.北京:冶金工业出版社,179—213
    [34] 何国华.锡阳极泥提取贵金属和有价金属的方法,中国专利,CN1090604A,1994
    [35] 何国华,王延岭.一种焊锡阳极泥硝酸渣提取银和金的方法,中国专利,CN1057865A,1992
    [36] 刘正华,孙粤庭.一种低银含量锡阳极泥提取银的方法,中国专利 CN1058993A,1992
    [37] Maurice C. Fuerstenau, Guoxin Wan, Selective separation of tin from a chloride leach solution[J]. Hydrometallurgy, 1997, (46): 229-234
    [38] 杨宗荣.从高砷铜阳极泥提取金银及有价金属的方法.中国专 利,CN1158905A,1997
    [39] 杨茂才,周杨霁,贺小昆.从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法。中国专利,CN1199780A,1998
    [40] 张旭,刘中华,电解阳极泥处理新工艺.中国专利,CN12685769A,2000
    [41] 刘伯琴.阳极泥处理[J].北京矿冶研究总院学报,1993,2(1):47—55
    [42] 王延龄.阳极泥合金块综合利用工艺[J].云锡科技,1989,16(3):29—32
    [43] 段群章.铅阳极泥中金、银、铜等金属提取新工艺[J].黄金,1995,16(12):41—43
    [44] 聂晓军,陈庆邦,刘如意.高锑低银铅阳极泥湿法提银及综合回收的研究[J].广东工学院学报,1996,13(4):51—57
    [45] 庄大明,张弓,刘家渡.几种功能薄膜及其产业化应用现状与前景[J].新材料产业,2001,25(8):45-51.
    [46] 孟扬,杨锡良,陈华仙等.高价态掺杂氧化物透明导电薄膜的研究[J].光电子技术,2001,21(1):17-24.
    [47] Thangaraju, B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO_2 thin films from SnCl_2 precursor[J]. Thin Solid Films, 2002,402(1-2): 71-78.
    [48] Grzeta, B, kalcec, E.; Goebbert, C., etc. Structural studies of nanocrystalline SnO_2 doped with antimony: XRD and Mossbauer spectroscopy[J], Journal of Physics and Chemistry of Solids, 2002, 65(3): 765-772.
    [49] Chow, T. P., Ghezzo, M.; Baliga, B. J. Antimony-doped tin oxide films deposited by the oxidation of tetramethyltin and trimethylantimony[J], Journal of the Electrochemical Society, 1982, 129(5): 1040-1045.
    [50] Unaogu, A.L. Okeke, C.E. Characterization of antimony-doped tin oxide films prepared by spray pyrolysis[J]. Solar Energy Materials, 1990,20(1-2): 29-36.
    [51] Wang, Kuo-Chu; Chang, Hui-Yu, Hu, Chun-Min, etc. Antistatic coating of CRT using doped tin oxides[J]. SID Conference Record of the International Display Research Conference, 1997, (3):410-412.
    [52] Mulla, I. S.; Soni, H. S.; Rao, V. J., etc. Deposition of improved optically selective conductive tin oxide films by spray pyrolysis[J]. Journal of Materials Science, 1986, 21(4):1280-1288.
    [53] J. C. Volta, P. Bussiere, G.Coudurier, et al. Tin-antimony mixed oxides: tentative active site identification[J].Appl.cataly. 1985.51 (12):6243-6280.
    [54] Monica Caldararu, M.F.Thomas, J.Bland, et al. Redox processes in Sb-containing mixed oxides used in oxidation catalysi[J].J. Mater Sci. 1982. 17:3275-3280.
    [55] J.Rockenberger, U.zum Felde, M.Tscher, et al. Near Edge X-ray Absoption Fine Structure measurement (XANES) and Extended X-ray Absorption Fine Structure Measurements(EXAFS) of the Valence State and coordination of Antimony in Doped Nanocrystalline SnO_2[J].J.Chem Phys. 2000. 112(9):4292~4304.
    [56] Swanson, Donald, Keith. Processes to prepare antimony doped tin oxide electroconductive powders.国际专利,WO98/15021,1998
    [57] 井理示.含氧化锡弱导电透明涂料.日本专利,JP特开平7-247445,1995
    [58] 邦彦.抗静电的水性涂料组合物.日本专利,JP特开平8-319371,1996
    [59] 丁常胜.水热法制备锑掺杂二氧化锡纳米粉体,[硕士学位论文].四川,四川联合大学,2002.
    [60] K.Y. Rajpure, M.N. Kusumade.etc. Effect of Sb doping on properties of conductive spray deposited SnO_2 thin films. Materials Chemistry and Physics 64 (2000):184 188
    [61] S. Shanthi, C. Subramanian.etc. Growth and characterization of antimony doped tin oxide thin films. Journal of Crystal Growth, 1999,197:858-864
    [62] K. Sun, J. Liu, and N. D. Browning, Correlated Atomic Resolution Microscopy and Spectroscopy Studiesof Sn (Sb) O_2 Nanophase Catalysts, Journal of Catalysis 205, (2002): 266-277
    [63] C. Marcel, M.S. Hegde, Electrochromic properties of antimony tin oxide (ATO) thin films synthesized by pulsed laser deposition, Electrochimica Acta, 2001, (46):2097-2104
    [64] Hiroaki Imai, Yukie Iwaya, Kazuhiko Shimizu, Hiroshi Hirashima. Preparation of Hollow Fibers of Tin Oxide with and without Antimony Doping [J]. Chem. Lett.2000:906~907
    [65] Byung kwen Kim Itaru Yasui. Synthesis of Hydrous SnO_2 and SnO_2-Coated TiO2 Powders by the Homogeneous preparation Method and their Characterization[J]. J. Mater.Sci. 1999,56:375-394.
    [66] E.Kh.Shokr, M.M.Wakkad,H.Abd El-Ghanny, et al. Sb-dopeing Effects on Optical and Electrical Parameters of SnO_2 Films[J].J.Phy.Chem Solids. 2000,61:75-85.
    [67] James P.Coleman, Anne T.Lynch, Puttanachetty Madhukar, et al. Antimony doped Tin Oxide Powders:Electrochromic Marerials for Printed Displays[J]. Solar Ener.Mater&Solar Cells. 1999.56:375-394.
    [68] Tanjew Nutz, Ulf zum Felde, Markus Haase. Wet-chemical Synthesis of Doped nano-particles: Blue-colored Colloids of n-doped SnO_2-Sb[J]. J.Chem. Phys.1999.110(24): 12142-12150.
    [69] Detlef Burgard. Christian Goebbert and Rudiger Nass.Synthesis of Nanocrystaline, Redispersable Antimony-Doped SnO_2 Particles for the Preparation of Conductive, Transparent Coatings[J]. J.of Sol-Gel Sci and Tech. 1998.13:789-792.
    [70] 李树尘.掺Sb:SnO2透明导电微粉.中国专利,CN00132075,2002
    [71] 卫芝贤.氧化共沉淀制备掺锑纳米二氧化锡.中国专利,CN1175692A,2003
    [72] 童华苏,胡俊明,俞有中.信息显示器的抗静电涂布材料.中国专利CN139485C,1995
    [73] W Kunda等.世界铜镍钴冶炼技术进展近况,金川译文集,1995,1-12
    [74] 胡宝兰,许民才.从含镍废料中提取高纯氧化镍新工艺研究[J].安徽化工,2001,115(5):40—41
    [75] 张东山,薛慧芳,赵洪远等.化学提纯法生产1~#金研究[J].黄金学报,1999,2(2):133—136
    [76] 杨显万,李敦钫.控制电位选择氯化的热力学分析[J].贵金属,Vol.11.No.4,1999.1—7
    [77] 王红鹰,郑伟,任致伟等.铜萃取剂(KM)的萃取性能研究[J].云南冶金,2003,32卷增刊。168—171
    [78] P. Navarro, J. Simpson, F.J. Alguacil, Removal of antimony Ⅲ from copper in sulphuric acid solutions by solvent extraction with LⅨ 1104SM[J], Hydrometallurgy, 1999,(53): 121-131
    [79] Mahmoud A. Rabah, Recovery of iron and copper from spent HCl used to clean up dirty car radiators[J], Hydrometallurgy, 2000,(56):75-92.
    [80] 彭饮华,陈述一,李绍民等.铜萃取剂BK992和LIX984的性能研究[J].有色金属(冶炼部分),2002,(5):18—20
    [81] Tang Mo-tang, Zhao Tian-cong, Thermodynamics research of SbCl_3 hydrolyzing.. J.CENT.SOUTH.INST.MIN.METALL, 1987, 18(5):522~528.
    [82] 阳卫军,由脆硫锑铅矿制备氯氧锑阻燃剂的理论与工艺研究(D).中南大学博士学位论文.2001,24-48.
    [83] 刘建国,锑矿石分析.北京:地质出版社,1997,12-23
    [84] 钟启愚,列醒泉,林世英等.杂质对锑白白度的影响[J].中南矿冶学院学报,1990,21(6):610—614.
    [85] 王建华,郭玉忠.超细粉体制备方法及其团聚问题[J].昆明理工大学学报.1996,22(1),71-77
    [86] 罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,21(2),57-61
    [87] Maskra A. Agglomeration durin the Drying Of fine SilicaPowders. Part Ⅱ, The Role Particle Solubility[J]. J Am Ceram Soc. 1997,80(7): 1715-1722.
    [88] Jones S L.Dehydration of Hydrous Zirconia[J]. J Am CeramSoc. 1988,71(4): 190-191.
    [89] Scheret G W. Drying gels (Ⅰ). General Theory[J]. J. Noncryst Solids. 1986, 87(1-2): 199-255.
    [90] Sug imato T. Preparation of Monodispered Collodial Particles[J]. Adv In Colloid An Interfac Sci. 1987, 28: 65-102.
    [91] Coble R L. Siteering, Crystalline Solids(Ⅰ), Inteimediate and Final State Diffussion Modles[J]. J Appl-yPhys. 1961.32(5): 1023-1030
    [92] 高桂兰.纳米ATO导电浆料制备的研究.[硕士学位论文],中南大学,14-15
    [93] 朱海清.超声波对沉淀二氧化硅的分散解聚研究[J].无机盐工业,2002,34(1):12-13.
    [94] 马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展[J].中国粉体技术,2002,8(3):28-31.
    [95] 于庆杰,李向东.超声波在超细粉体分散中的应用[J].济南纺织化纤科技,2002,(3):14-15
    [96] 刘学健,黄莉萍,古宏晨.高固含量氮化硅浆料的制备工艺[J],陶瓷学报.1999,20(1):1-4.
    [97] 迟艳波,一种无机抗静电水悬浮液的制备方法.中国专利,01131908.9..2003
    [98] 刘志强,李小斌,彭志宏等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化学通报,1999(7):54-57.
    [99] 李青山,张金朝等.热处理工艺对纳米级掺锑SnO_2导电粉结构和性能的影晌[J].中国陶瓷,2001,37(6):28-33
    [100] 李青山,张金朝等.热处理温度对Sb:SnO_2导电粉结构和性能的影响[J].玻璃与搪瓷,2001,(6):10-15
    [101] Dole S L, Scheiclecker R W, Shiers L E et al. Technique for preparing highly-sinterable oxide powders. Mater Sci and Eng, 1978; 32 (2):277-281
    [102] 郭瑞松,徐明覆,徐新华.防止ZrO_2(Y_2O_3)粉末团聚新工艺[J].硅酸盐通报.1988,7(6):39-43.
    [103] 张永红,陈明飞,彭天剑.共沸蒸馏法制备氧化铟粉体及性能研究[J].湖南有色金属,2002,18(4):26-28.
    [104] 易回阳.液相法制备纳米微粒的研究进展[J].化学世界,2002.(7):385-398.
    [105] 丁常胜.水热法制备锑掺杂SnO_2纳米粉体,[硕士学位论文].四川联合大学 24-25
    [106] 张保平.锰锌软磁铁氧体前驱体碳酸盐共沉淀过程基础理论及工艺研究,[博士学位论文],中南大学,46—53
    [107] 张建荣,顾达.湿化学法制备纳米ATO导电粉[J].功能材料,2002,33(3),122-126
    [108] 梁文平.表面活性剂及其在分散体系中的应用[J].日用化学工业,1999,(1):7-11
    [109] 顾志明,姬广斌.超细无机粉体的水中分散研究综述[J].南京理工大学学报,1999,23(5):470-473.
    [110] 任俊,卢寿兹.亲水性及疏水性颗粒在水中的分散行为研究[J].中国粉体技术,1999.5(2):6-9.
    [111] 任俊,卢寿兹.固体颗粒的分散[J].北京科技大学学报,1998,4(1):25-33
    [112] 任俊,卢寿兹.在水介质中分散剂对微细颗粒分散作用的影响[J].北京科技大学学报,1998,20(1):7-10.
    [113] 聂富生,李凤生.超细粉体在液相中的分散性研究进展[J].化工进展,1996,(4):24-28.
    [114] EVANS C J. Many uses of tin dioxide [J]. Tin and Uses,17(132): 5-8
    [115] Chopra, K. L Major S. Pandya D. K. Thin Solid Films, 1983, 102:1
    [116] Jarzebski Z M, Marton J P.J. Electrochem. Soc, 1976, 123 (9): 299-310.
    [117] Wan-Manie J.Herrmann, Jean-Louis, et al. Electrical behavior of powdered tin antimony mixed oxide catalysts[J], Chem. Faraday trans. 1979,75:1346-1355.
    [118] Loch, L. D. J. Electrochem. Soc, 110 (10) 1963:1082-1083
    [119] Mar, R. W. J. Phys. Chem. Solids, 1972, (33): 220-223
    [120] Paria, M. K. J Mater. Sci.1982, (17): 3275-3280
    [121] Vicent, Colin A, J, Electrochem, Soc, 1972, 110(4): 515-518
    [122] 薄占满.掺Sb二氧化锡半导体导电机理的实验探讨[J].无机材料学报,1990,Vol.5 No.4.324-330
    [123] Shokr E Kh, Wakkad M M, El-Ghamary H A, et al. J Phys Chem Solids [J].2000,61:75
    [124] J. Rockenberger, U. zem felde, M. Tscher, et al. Near edge X-ray absoption fine structure measurements and extended X-ray absorption time structure measurements of the state and coordination of antimony in doped nanocrystalline SnO2[J].J. Chem Phys.2000,112(9):4292-4303.
    [125] 郭玉忠,王剑华等.掺杂SnO_2透明导电薄膜电学及光学性能研究[J].无机材料学报,2002,17(1):131-138
    [126] 李青山,张金朝等.沉淀条件对纳米级Sb/SnO_2粒度和电性能的影响[J].应用化学,2002,19(2):163-168
    [127] 李青山,张金朝等.三防纳米级ATO透明导电薄膜材料的研究和应用[J].材料导报,2002,166(2):34-36
    [128] 刘杏芹,朱海宁等.Sb_xSn_(1-x)O_2固溶体系电学性能与导电机制研究[J].无机化学学报,1996,12(12):130-135
    [129] 范志新.ITO薄膜载流子浓度的理论上限[J].现代显示.2000,25,(3):18-22
    [130] 董发勤,万朴.矿物超细粉体性能检测与评价指标体系探讨[J].非金属矿,1999,22(A06),51-53.
    [131] 董发勤,万朴,彭同江,宋功宝.天然矿物晶体的超细效应及其表征[J],非金属矿,1999,22(A06),8-11.
    [132] 高纬.稀土氧化物纳米粉的制备研究,[博士学位论文],华东理工大学,27-31
    [133] Chi Yan-bo, Chen Xue-hua. A method to prepare the inorganic anlistatig suspend solution, 中国专利, CN C09K3/16, 2002.
    [134] K.Y. Rajpure, M.N. Kusumade. Effect of Sb doping on properties of conductive spray deposited SnO2 thin films. Materials Chemistry and Physics 2000, 64: 184-188.
    [135] S. Shanthi, C. Subramanian. Growth and characterization of antimony doped tin oxide thin films. Journal of Crystal Growth 1999, 197: 858-864.
    [136] Tanjew Nutz, Ulfzum Felde, Markus Haase. Wet-chemical Synthesis of Doped nano-particles: Blue-colored Colloids of n-doped SnO_2-Sb[J]. J.Chem. Phys.1999.110(24):12142-12150.
    [137] Sun. K, Liu. J, Browning. N. D. Correlated Atomic Resolution Microscopy and Spectroscopy Studiesof Sn (Sb) O_2 Nanophase Catalysts, Journal of Catalysis. 2002, 205:266-277.
    [138] C. Marcel, M.S. Hegde, Electrochromic properties of antimony tin oxide (ATO) thin films synthesized by pulsed laser deposition[J]. Electrochimica Acta. 2001, 46:2097-2104.
    [139] Zhang Jian-rong, Gu-da. Prepared ATO conductive powder by wet chemistry way[J]. 2002,33(3): 122-126.
    [140] Detlef Burgard. Christian Goebbert, Rudiger Nass. Synthesis of Nanocrystaline, Redispersable Antimony-Doped SnO_2 Particles for the Preparation of Conductive, Transparent Coatings[J]. J.of Sol-Gel Sci and Tech. 1998, 13:789-792.
    [141] Tang Motang, Zhao Tiancong. A thermodynamic study of the basic and negative potential fields of the systems of Sb-S-H_2O, J.CENT.SOUTH.INST.MIN.METALL,(in English), 1988,19(1):35-43.
    [142] Tang Mo-tang, Zhao Tian-cong. Principle and application of the new chlorination-hydrolyzing process. J. CENT. SOUTH. INST. MIN. METALL, 1992, 23(4): 405~411.
    [143] Tang Mo-tang, Zhao Tian-cong, Thermodynamics research of SbCl_3 hydrolyzing.. J. CENT. SOUTH. INST. MIN. METALL, 1987, 18(5): 522~528
    [144] Yang shenghai, Tang motang. Thermodynamics of Zn(Ⅱ)-NH_3-NH_4Cl-H_2O system. Trans. Nonferrous Met. Soc. China, 2000, 6(10): 830-833.
    [145] Tang motang, Lu junle, Yuan yansheng et al. On the ammonition-complex equilibria in the system of Zn(Ⅱ)-NH_3-(NH_4)_2SO_4-H_2O. J. CENT. SOUTH. INST. MIN. METALL, (in Chinese), 1994, 25(6): 701-705.
    [146] John A. Dean: Lange's Handbook of Chemistry[M]. London Press, Vol. 11, 1973: 9-3~71.
    [147] Robert M Smith, Arthur E Matell. Critical Stability Constants. Inorganic Complexes (Vol. 4), New York and London: Plenum Press. 1976, 207-334.
    [148] 唐谟堂,赵天从.三氯化锑水解体系的热力学研究[J],中南矿冶学院学报,1987,118(5):522-528.
    [149] 唐谟堂.氯化.干馏法的原理与实际应用(D),[博士学位论文],中南矿冶学院,17-34,1986.
    [150] 刘恩科,朱秉升,罗晋生.半导体物理学.北京:国防工业出版社,1996,34—39
    [151] 顾达,张建荣,刘正光等.一种掺锑二氧化锡浅色导电粉的制备方法.中国专利,H01B1/08,2001
    [152] 张建荣.锑掺杂二氧化锡粉的制备研究.[硕士学位论文],华东理工大学,45
    [153] Terrier C J, Chztelon P, Roger J A. Electrical and optical properties of Sb: SnO2 thin films Obtained by the Sol-Gel method[J]. Thin Solid Films, 1997, 295: 95-100
    [154] 李青山,张金朝,宋鹂等.锑掺杂浓度对二氧化锡纳米微粉的影响[J].无机材料学报,2002,17(6):1283-1287.
    [155] Tanjew Nutz, Markus, Haase. Wet chemical synthesis of doped nanoparticles: optimal properties of oxygen deficient and antimony doped colloidal SnO_2[J]. J. Phys. Chem. B, 2000, 104: 8430-8437.
    [156] K. C. Mishra, K. C. Johnson, P. C. Schmidt. Electronic structure of antimony doped tin oxide[J]. Am. Phy. Soc, 1995, 51: 13972-13976.
    [157] E. W. Giesekke. H. S. Gutousby. A proton magnetic resonnceand electron diffraction study of the thermal decomposition of Tin(Ⅳ)[J], Inorganic Chemistry, 1967, 6: 1294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700