用户名: 密码: 验证码:
从含富铟铁酸锌的锌浸渣中微波浸出铟锌的机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铟作为一种具有独特物理化学性能的稀散金属,在国民经济中的作用和地位非常重要。伴随着市场对铟需求量的剧增及铟矿的过度开采,富铟资源逐步走向枯竭,贫铟资源的开发变得尤为重要。铟一般伴生于锌、锡等有色金属矿中。目前,锌冶炼普遍采用焙烧—浸出—电积的湿法炼锌工艺,在该工艺的高温焙烧工段,锌精矿中所含的铁和锌在高温氧化作用下不可避免地生成铁酸锌(ZnFe2O4),同时伴生的铟也以置换或填充的形式进入铁酸锌晶格中,形成富铟铁酸锌(IBZF)。富铟铁酸锌类似于铁酸锌,具有完好的正八面体结构,稳定性好,常规酸浸对其溶解无能为力,属难浸的载铟物相。因此,伴生铟的锌矿经湿法炼锌浸出过程产生的锌浸渣,为含富铟铁酸锌的贫铟固体废弃物,属于一类待开发利用的贫铟资源。
     微波由于具有独特的选择性加热、体积加热等特点,通过分子的高速转动产生内摩擦热,能够使得被加热的分子得到活化,因此在矿物处理方面有着重要的应用,其中微波用于矿物浸出技术是湿法冶金领域很有发展的一项新技术,特别在处理难选、低品位矿物方面有其优越之处。为了从含富铟铁酸锌这一难浸物相的锌浸渣中有效回收铟、锌,克服传统浸出法的诸多缺点,课题利用微波辐射作为酸浸强化方法,研究含富铟铁酸锌的锌浸渣微波浸出铟、锌。
     首先以人工合成富铟铁酸锌为研究对象,通过实验揭示微波辐射强化铟、锌浸出的内在机制,并建立微波强化下富铟铁酸锌中铟、锌浸出动力学模型。在此基础上,以工业锌浸渣为原料进行微波强化浸出铟、锌实验研究,建立锌浸渣的等温、非等温动力学模型,获得微波辐射锌浸渣的铟、锌浸出的优化工艺条件。主要研究内容与结论如下:
     (1)硫酸溶液、锌浸渣在微波场中温升行为研究。考察微波功率、硫酸浓度对液体物相-硫酸溶液微波温升行为的影响;并考察微波功率、锌浸渣固体物料质量对固体物相-锌浸渣微波温升行为的影响。结果显示,不同微波功率下硫酸溶液温度最终都趋向于一个恒定值,随着微波功率增大其相应温升速度加大,达到最高温度所需时间缩短;在相同微波功率下,硫酸溶液达到最高的恒定温度值随硫酸溶液浓度的增大而提高,而硫酸溶液的温升速度随硫酸溶液浓度的增大逐渐降低。微波功率越大,锌浸渣固体物料的温升越快,最后都趋向于一个稳定的温度值,微波功率越大锌浸渣稳定的温度数值也越大;在一定微波功率下,锌浸渣物料达到最高的温度随着物料质量的增加而变化,是一先增加再减小的趋势,在某一物料质量时会出现最大值。
     (2)富铟铁酸锌的铟、锌微波等温浸出研究。对富铟铁酸锌恒温下微波加热浸出铟、锌的可行性进行研究,开展微波酸浸铟、锌恒温动力学研究并与常规水浴酸浸下铟、锌恒温动力学进行对比。采用比表面积分析仪、XRD和SEM对富铟铁酸锌样品的比表面积、晶体结构和颗粒形貌进行表征分析。最后对微波辐射强化酸浸富铟铁酸锌做探讨性机理分析。结果显示,微波加热浸出富铟铁酸锌明显优于常规水浴加热浸出,微波强化加热浸出富铟铁酸锌是可行的。搅拌速度400r/min可以消除反应外扩散;颗粒粒度对浸出率的影响不大;随着反应温度的升高和硫酸浓度的增大,铟、锌的浸出率增大。微波加热下,当温度与硫酸浓度增加到一定程度,温度和硫酸浓度对铟、锌的浸出影响减弱。采用表面化学反应控制的未反应缩核模型可以很好的拟合铟、锌的浸出率数据。微波加热下铟浸出的活化能Ea,In,MH77.374kJ/mol,比常规水浴加热下的铟浸出活化能Ea,In,MH53.555kJ/mol增大;微波加热铟浸出的AK0,In,MH相对常规水浴加热铟浸出的AK0,In,CH增高,其频率因子的比值K0,In,MH/K0,In,CH高达10818.36。微波加热下锌浸出的活化能73.747kJ/mol,比常规水浴加热下的锌浸出活化能57.467kJ/mol增大;微波加热锌浸出的AK0,Zn,MH相对常规水浴加热锌浸出的AK0,Zn,CH增高,其频率因子的比值K0,Zn,MH/K0,Zn,CH为600.00。微波加热导致频率因子的剧烈增大为微波条件下浸出速率加大的主要因素。微波场内H2SO4与ZnFe2O4、ZnFe2-mInmO4有效碰撞极大提高,为微波非热效应的强化作用。富铟铁酸锌中的铟在微波场中具有一定的被选择性强化浸出特性。
     (3)含富铟铁酸锌的锌浸渣铟、锌微波等温浸出研究。对锌浸渣恒温下微波加热浸出铟、锌可行性进行研究,并开展微波加热和常规水浴加热下锌浸渣中铟、锌浸出恒温动力学研究,进行动力学数据对比。结果显示,微波加热浸出锌浸渣中铟、锌明显优于常规水浴加热浸出,微波强化加热浸出锌浸渣中铟、锌是可行的。搅拌速度500r/min可以消除反应外扩散;随着反应温度升高和硫酸浓度增大,铟、锌的浸出率增大。微波加热下,当温度与硫酸浓度增加到一定程度,温度和硫酸浓度对铟、锌的浸出影响减弱。表面化学反应控制的未反应缩核模型是锌浸渣中铟、锌浸出率数据拟合的理想模型。微波加热下铟浸出的表观活化能63.532kJ/mol比常规水浴加热下的铟浸出表观活化能54.536kJ/mol增大;相对常规水浴加热下的铟浸出AK0,In,CH5.33×105,微波加热下铟浸出的AK0,In,MH增高至1.57×107。同样,微波加热下锌浸出的表观活化能59.249kJ/mol比常规水浴加热下的锌浸出表观活化能52.666kJ/mol增大;相对常规水浴加热下的锌浸出的AK0,Zn,CH2.74×105,微波加热下锌浸出的AK0,Zn,MH也增高至3.36×106。微波加热浸出体系中反应物间有效碰撞总次数的显著提升,为微波强化锌浸渣中铟、锌浸出的主要因素。
     (4)含富铟铁酸锌的锌浸渣铟、锌微波非等温浸出研究。研究微波恒功率辐射对锌浸渣中铟、锌的非等温浸出行为,并做相应动力学模型推导和计算,得到锌浸渣中铟、锌的微波酸浸非等温动力学模型。结果显示,随着硫酸浓度的提高,铟、锌的浸出率增大,但硫酸浓度超过1.5mol/L时,铟、锌浸出率增加均变缓慢。反应体系的搅拌速度超过400r/min能够消除锌浸渣微波酸浸反应外扩散。随着微波功率的增大及反应时间的延长,反应体系的温度呈上升的趋势,其升温速率与温度呈非线性关系。不同功率的微波辐射能够改变锌浸渣非等温酸浸铟、锌的反应活化能和频率因子,对反应的影响为非线性的。随着微波功率的增大,反应的活化能及频率因子首先减小,微波功率增大到一定程度,反应活化能和频率因子又增大。
     (5)含富铟铁酸锌的锌浸渣微波酸浸铟、锌的工艺研究。以含富铟铁酸锌的锌浸渣为原料,考察常规酸浸、微波预处理+常规酸浸、微波酸浸、微波预处理+微波酸浸四种不同工艺方案浸出铟、锌的效果,在确定工艺方案的基础上,对浸出工艺条件进行了优化,得出了最优的浸出工艺路线。结果表明,四种考察工艺中,含富铟铁酸锌的锌浸渣微波直接酸浸工艺具有明显优势。相对于常规酸浸工艺,微波直接酸浸工艺对铟、锌的浸出效果有了明显的提高,从而降低浸过程对温度和硫酸浓度的高依赖性,有效缩短了浸出时间,强化了浸出过程。针对微波辐射的独特优势结合含富铟铁酸锌的锌浸渣的组分特点,并综合考虑简化工艺条件和节约能源等,微波直接酸浸铟、锌的优化工艺条件为:微波酸浸搅拌速度550r/min、硫酸初始浓度1.5mol/L、液固比10、温度75℃、反应时间90min。在优化工艺条件,铟的浸出率可由常规浸出的57.1%提高到77.0%,锌的浸出率可由常规浸出的54.2%提高到74.2%。
     微波加热技术对富铟铁酸锌及含富铟铁酸锌的锌浸渣的浸出行为与动力学均有显著的影响,微波的独特加热特性大大强化了铟、锌的浸出,使难浸物料富铟铁酸锌中的有价金属铟、锌得以高效浸出。
Indium is a kind of rare metal with unique physical and chemical properties, and it palys an important role in the national economy. With the surging demand for indium in market and the overexploitation of indium mine, rich indium resources are drying up gradually, and the utilization of poor indium resources is becoming particularly important. Indium is commonly found in zinc, tin and other non-ferrous ores. At present, most zinc refining plants operate a roasting-leaching-electrowinning process. In the course of roasting, Fe and Zn in zinc concentrate ore will inevitably produce zinc ferrite (ZnFe2O4). Meanwhile, indium will enter into zinc ferrite lattice by replacement or gap filling to produce indium-bearing zinc ferrite (IBZF). Indium-bearing zinc ferrite like zinc ferrite belongs to the spinel compounds, which has perfect octahedral structure. Hence, indium-bearing zinc ferrite has has excellent chemical stability, and it is insoluble in common acid solution. Hence, Indium-bearing zinc ferrite is a kind of refractory indium-bearing solid. Zinc leach residues, produced from indium-bearing zinc ores in zinc hydrometallurgy, always contain indium-bearing zinc ferrite and belong to the poor indium resource which is up for the utilization of indium.
     Microwave has some unique features such as selective heating and volume heating, and it can create internal friction heat in the interior of heated materials by the high speed rotation of material molecular. The internal friction heat can activate the heated moleculars in materials. Thus, microwave has important applications in mineral processing. In hydrometallurgy fields, the microwave applications in mineral leaching technology is a promising new technology to treat refractory or low grade ores. In order to leach indium and zinc from zinc leach residues containing indium-bearing zinc ferrite, and to avoid the disadvantages of the traditional leaching method, the microwave was chosen to intensify the leaching process for zinc leach residues.
     Artificially synthesized indium-bearing zinc ferrite was used as the research material in leaching experiments. The intensifying mechanism for leaching of indium and zinc by microwave was studied. Meanwhile, the kinetic model of indium and zinc leaching was explored. And on this basis, the microwave intensification of leaching indium and zinc from zinc leach residues was studied, and the kinetics for steady and unsteady state leaching were also studied. The optimum technology conditions of indium and zinc leaching from zinc leach residues under microwave heating was explored. The research contents and conclusions were as follows:
     (1) The temperature increasing behavior of sulfuric acid solution and zinc leach residues under microwave heating was studied. The temperature increasing behavior of sulfuric had no phenomenon of out of control of temperature. As the microwave power increased, the temperature increasing rate was increased. With the time going, the temperature of sulfuric acid tended to a constant value, and the bigger the microwave power was, the shorter the value of the heating time for sulfuric acid would be. In addition, as the sulfuric acid concentration increased, the temperature increasing rate of sulfuric acid decreased. As the microwave power increased, the temperature increasing rate of zinc leach residues was also increased. With the time going, the temperature of zinc leach residues tended to a constant value. The bigger the microwave power was, the bigger the the temperature constant value of zinc leach residues would be. The temperature increasing behavior of zinc leach residues had no phenomenon of out of control of temperature. As the material quantity of zinc leach residues increased, the temperature was firstly increased and then decreased. The maximum of temperature existed at a certain value of material quantity.
     (2) At constant temperature, the leaching of indium and zinc from indium-bearing zinc ferrite under microwave heating was studied. The feasibility of indium and zinc leaching from indium-bearing zinc ferrite at constant temperature under microwave heating was discussed. The dynamics of indium and zinc leaching from indium-bearing zinc ferrite at constant temperature under microwave heating were studied, and then the dynamics were compared with those at the same temperature under conventional heating. The indium-bearing zinc ferrite samples were teseted by specific surface area analyzer, XRD and scanning electron microscopy (SEM) to analyze the specific surface area, the crystalline structure and the particle morphology, respectively. The intensifying mechanism of the leaching of indium-bearing zinc ferrite under microwave heating was explored. It was showed that the leaching of indium-bearing zinc ferrite under microwave heating was obviously superior to that under conventional heating. The leaching of indium-bearing zinc ferrite by microwave intensification was feasible. When the stirring speed was over400r/min, the effect of external diffusion was eliminated completely. The apparent particle granularity has little effect on the indium and zinc leaching. The leaching efficiences of indium and zinc were both increased with the increase of temperature and sulfuric acid concentration under microwave heating, while the effect of temperature and sulfuric acid concentration on leaching reaction weaken when the temperature and the sulfuric acid concentration increased certain values. Unreacted shrinking core model controlled by surface chemical reaction could primely fit the leaching data of indium and zinc. The activation energy of indium leaching under microwave heating (Ea,In,MH,77.374kJ/mol) was bigger than that under conventional heating (Ea,In,CH,53.555kJ/mol). The value of AK0,In,MH under microwave heating was much bigger than AK0,In,cH under conventional heating. The ratio of frequency factor A0,In,MH/K0,In,cH was reached up to10818.36. Similarly, the activation energy of zinc leaching under microwave heating (Ea,Zn,MH,73.747kJ/mol) was bigger than that under conventional heating (Ea,Zn,CH,57.467kJ/mol), while the value of AK0,Zn,MH under microwave heating was much bigger than AK0,Zn,CH under conventional heating. The Ratio of frequency factor K0,Zn,MH/K0,Zn,cH was600.00. In a word, the drastic increase of the frequency factor K0,MH under microwave heating was the most important factor to intensify the leaching of indium and zinc under microwave heating. The increase of effective collision between H2SO4and ZnFe2O4, ZnFe2-mInmO4in microwave field was the results of non-thermal effect of microwave. The selective leaching of indium from indium-bearing zinc ferrite can be achieved by microwave.
     (3) At constant temperature, the leaching of indium and zinc from zinc leach residues, which contain indium-bearing zinc ferrite, under microwave heating was studied. The feasibility of indium and zinc leaching from zinc leach residues at constant temperature under microwave heating was discussed. The dynamics of indium and zinc leaching from zinc leach residues under microwave heating were studied, and then the dynamics were compared with those at the same temperature under conventional heating. It was showed that the leaching of indium and zinc from zinc leach residues under microwave heating was obviously superior to that under conventional heating. The leaching of zinc leaching residues by microwave intensification was feasible. When the stirring speed was over500r/min, the effect of external diffusion was eliminated completely. The leaching efficiences of indium and zinc from zinc leaching residues were both increased with the increase of temperature and sulfuric acid concentration under microwave heating, while the effect of temperature and sulfuric acid concentration on leaching reaction weaken when the temperature and the sulfuric acid concentration increased certain values. Unreacted shrinking core model controlled by surface chemical reaction could primely fit the leaching data of indium and zinc from zinc leaching residues. The activation energy of indium leaching under microwave heating (Ea,In,MH,63.532kJ/mol) was bigger than that under conventional heating (Ea,In,CH,54.536kJ/mol), while the value of AK0,In,MH(1.57x107) under microwave heating was much bigger than the value of AK0,In,CH (5.33×105) under conventional heating. Similarly, The activation energy of zinc leaching under microwave heating (Ea,Zn,MH,59.249kJ/mol) was bigger than that under conventional heating (Ea,Zn,CH,52.666kJ/mol),while the value of AK0,Zn,MH (3.36×106)under microwave heating was bigger than the value of AK0,Zn,CH (2.74×105) under conventional heating. The increase of effective collision between H2SO4and ZnFe2O4, ZnFe2-mInmO4in microwave field was the most important factor to intensify the leaching of indium and zinc from zinc leaching residues.
     (4) With constant microwave power, the leaching of indium and zinc from zinc leach residues, which contain indium-bearing zinc ferrite, under microwave heating was studied. The leaching behaviours of indium and zinc from zinc leach residues under microwave heating with constant microwave power were summarized, and the unsteady state dynamics of indium and zinc leaching under microwave heating with constant microwave power were also studied. As the increase of the concentration of sulfuric acid, both the leaching efficiencies of indium and zinc were increased. When the concentration of sulfuric acid was more than1.5mol/L, the leaching efficiencies of indium and zinc increased quite slowly with the increase of the concentration of sulfuric acid. When the stirring speed was over400r/min, the liquid membrane resistance was eliminated completely. As the increase of microwave power and leaching time, the temperature was increased. The relation of temperature to leaching time was non-linear. The change of microwave power had an influence on the activation energy and the frequency factor for the leaching of indium and zinc from zinc leaching residues. The relation between the microwave power and the activation energy was non-linear, and the relation between the microwave power and the frequency factor was also non-linear. With the increase of the microwave power, both the activation energy and the frequency factor firstly decreased, and then increased.
     (5) Leaching of indium and zinc form zinc leach residues, which contain indium-bearing zinc ferrite, was studied using different leaching processes. The processes were as follows:conventional acid leaching (conventional heating), microwave pretreatment (heating zinc leach residues with microwave) plus conventional acid leaching, microwave acid leaching (microwave heating), and microwave pretreatment plus microwave acid leaching. The optimal leaching process was chosen in view of the leaching of zinc leach residues, and the leaching conditions of the optimal leaching process were optimized. The results showed that in the four leaching processes, the process of microwave acid leaching was most effective for the indium leaching efficiency. Compared with the process of conventional acid leaching, the process of microwave acid leaching made the influence of leaching temperature and sulfuric acid concentration on leaching weaken. Moreover, the process of microwave acid leaching shortened the leaching time, and intensified the leaching of indium and zinc from zinc leach residues. Considering the unique advantage of microwave radiation and the component characteristics of the zinc leach residues, the optimum conditions for leaching of zinc leach residues by microwave acid leaching under microwave heating were as follows:stirring speed550r/min, initial concentration of sulfuric acid1.5mol/L, ratio of liquid to solid10, leaching temperature75℃, and leaching time90min. Under the optimum conditions of microwave acid leaching, the leaching efficiencies of indium and zinc which were only57.1%and54.2%in process of conventional acid leaching increased to77.0%and74.2%, respectively.
     Microwave heating had significant effect both on the leaching behaviours and the leaching dynamics for indium-bearing zinc ferrite and zinc leach residues containing indium-bearing zinc ferrite. Due to its unique heating properties, microwave greatly intensified the leaching of indium and zinc. The leaching of indium and zinc from the refractory material of indium-bearing zinc ferrite was efficiently finished under microwave heating.
引文
[1]Alfantazi A M, Moskalyk R R. Processing of indium:a review [J]. Minerals Engineering, 2003,16(8):687-694
    [2]王顺昌,齐守智.铟的资源、应用和市场[J].世界有色金属,2000,(12):22-24
    [4]黄小珂.广西铟工业发展浅论[J].有色金属,2003,55(1):140-145
    [5]洪托,秦德先,田毓龙,等.铟市场形势及中国铟资源特点[J].云南地理环境研究,2004,16(3):27-31
    [6]黄小珂.广西铟工业发展浅论[J].有色金属,2003,55(1):140-145
    [7]冯同春,杨斌,刘大春,等.铟的生产技术进展及产业现状[J].冶金丛刊,2007,(2):42-46
    [8]王树楷.铟冶金[M].北京:冶金工业出版社,2006
    [9]王辉.从铅浮渣反射炉烟尘提取铟的试验研究[J].稀有金属,2007,31(S1):32-38
    [10]邓孟俐,谢冰.锌冶炼工艺过程中铟、锗的综合回收[J].稀有金属与硬质合金,2007,35(2):21-24
    [11]刘家祥,甘勇,张艳.利用ITO废靶材回收金属铟[J].稀有金属,2004,28(5):947-950
    [12]Hsieh S, Chen C, Say W C. Process for recovery of indium from ITO scraps and metallurgic microstructures [J]. Materials Science and Engineering B,2009,158(1-3): 82-87
    [13]王智勇.完善铟冶炼工艺提升粗铟质量的探讨[J].湖南有色金属,2008,24(5):20-22
    [14]Jha M K, Kumar V, Singh R J. Review of hydrometallurgical recovery of zinc from industrial wastes [J]. Resources, Conservation and Recycling,2001,33(1):1-22
    [15]杨文栋.湿法炼锌工艺中的综合回收[J].湿法冶金,2009,28(2):101-104
    [16]Abdel-Latif M A. Fundamentals of zinc recovery from metallurgical wastes in the Enviroplas process [J]. Minerals Engineering,2002,15(11):945-952
    [17]李严辉,张欣,杨永峰,等.ITO废靶中铟的回收[J].中国稀土学报,2002,20(增刊):256-258
    [18]陈坚,姚吉升,周友元,等.ITO废靶回收金属铟[J].稀有金属,2003,27(1):101-103
    [19]黎铉海,李秀敏,潘柳萍,等.机械活化强化ITO废料中铟浸出的动力学研究[J].金属矿山,2006,(357):46-48
    [20]Jankola W A. Zinc pressure leaching at Cominco [J]. Hydrometallurgy,1995,39(1-3): 63-70
    [21]Krysa B D. Zinc pressure leaching at HBMS [J]. Hydrometallurgy,1995,39(1-3):71-77
    [22]Liang D Q, Wang J K, Wang Y H. Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite [J]. Hydrometallurgy,2009,95(1-2): 5-7
    [23]Ruiz M C, Abarzua E, Padilla R. Oxygen pressure leaching of white metal [J]. Hydrometallurgy,2007,86(3-4):131-139
    [24]Padilla R, Vega D, Ruiz M C. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media [J]. Hydrometallurgy,2007,86(1-2):80-88
    [25]Georgiou D, Papangelakis V G. Behaviour of cobalt during sulphuric acid pressure leaching of a limonitic laterite [J]. Hydrometallurgy,2009,100(1-2):35-40
    [26]Loveday B K. The use of oxygen in high pressure acid leaching of nickel laterites [J]. Minerals Engineering,2008,21(7):533-538
    [27]Chen J, Huang K. A new technique for extraction of platinum group metals by pressure cyanidation [J]. Hydrometallurgy,2006,82(3-4):164-171
    [28]Yao J H, Li X H, Pan L P, et al. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite [J]. Hydrometallurgy,2010,102(1-4): 95-100
    [29]Li X H, Zhang Y J, Yao J H, et al. Kinetics of Indium Extraction from Mechanically Activated ITO Scrap [J]. Materials Sciences and Applications,2011,(2):521-525
    [30]Li X H, Zhang Y J, Qin Q L, et al. Indium recovery from zinc oxide flue dust by oxidative pressure leaching [J]. Transactions of Nonferrous Metals Society of China, 2010,20(sl):s141-s145
    [31]Yao J H, Li X H, Li Y W. Study on indium leaching from mechanically activated hard zinc residue [J]. Journal of Mining and Metallurgy B-Metallurgy,2011,47 (1) B:63-72
    [32]东北工学院有色重金属冶炼教研室.锌冶金学[M].上海:上海教育出版社,1960
    [33]杨大锦,廖元双,徐亚飞等.锌冶金工艺概述[J].云南冶金,2002,31(6):22-26
    [34]彭容秋.锌冶金[M].长沙:中南大学出版社,2005
    [35]Jha M K, Kumar V, Singh R J. Review of hydrometallurgical recovery of zinc from industrial wastes [J]. Resources, Conservation and Recycling,2001,33(1):1-22
    [36]梁可.锌冶金工艺概述[J].有色金属设计,2004,31(4):13-17,29
    [37]张博.技术创新拓展锌资源[J].中国有色金属,2012,(24):38-39
    [38]丁德玲.锌粉和纳米氧化锌的制备[D].北京:北京化工大学,2006
    [39]Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature [J]. Applied Physics Letters,2002,81(19):3648-3650
    [40]Wang Z. Zinc oxide nanostructures:growth, properties and applications [J]. Journal of Physics:Condensed Matter,2004,16(25):830-857
    [41]刘三军,欧乐明.中国锌冶炼工业现状[J].矿物保护与利用,2003,(6):36-40
    [42]胡东风.镉对长周期锌电积影响的试验研究[D].昆明:昆明理工大学,2008
    [43]马茁卉.我国锌资源形势分析及可持续利用[J].当代经济,2010(10):94-96
    [44]代涛,于汶加.中国未来铅锌资源安全形势分析[J].矿业研究与开发,2013,33(3): 116-121
    [45]李若贵.我国铅锌冶炼工艺现状及发展[J].中国有色冶金,2010,(6):13-20
    [46]Souza A D, Pina P S, Leao V A. Bioleaching and chemical leaching as an integrated process in the zinc industry [J]. Minerals Engineering,2007,20(6):591-599
    [47]Balarini J C, Polli L D O, Miranda T L S, et al. Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc [J]. Minerals Engineering,2008,21(1):100-110
    [48]蒋继穆.我国铅锌冶炼现状与持续发展[J].中国有色金属学报,2004,14:52-62
    [49]孟波,王吉坤,张红耀.锌冶金技术的发展概况[J].云南冶金,2010,39(2):99-101.
    [50]王维玮.淘汰落后锌产能提速[J].中国金属通报,2010,(38):19
    [51]蒋继穆.我国锌冶炼现状[J].世界有色金属,2001,(10):8-11.
    [52]张杰.提高竖罐炼锌工艺蒸锌冶炼回收率的实践[J].有色矿冶,2011,27(6):22-23
    [53]李仕庆.锌渣电炉炼锌初探[J].世界有色金属,2000,(8):19-20,28
    [54]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003,(2):20-23
    [55]刘特明,陈德喜.电炉炼锌工艺实践与探讨[J].有色冶炼,1998,27(5):11-15
    [56]汤文俚.ISP工艺在韶冶的发展与实践[J].湖南有色金属,2006,22(6):21-23,54
    [57]沈庆峰.从低品位氧化锌矿浸出渣中回收锌的工艺研究及其产业化[D].昆明:昆明理工大学,2006
    [58]Swisher J H, Vohra D. Zinc smelting with coal as the principal heat source and reducing agent [J]. Metallurgical and Materials Transactions B,1993,24(4):593-598
    [59]Lee F T, Hayes P C. Microstructural changes on the reduction of imperial smelting furnace sinters [J]. Metallurgical and Materials Transactions B,1993,24(1):39-51
    [60]王华,田海军.密闭鼓风炉炼锌工艺实践[J].有色冶金设计与研究,2009,30(5):24-26
    [61]白桦.对ISP工艺进行改进的探讨[J].工程设计与研究,2008,(124):12-13,21
    [62]沈庆峰.从低品位氧化锌矿浸出渣中回收锌的工艺研究及其产业化[D].昆明:昆明理工大学,2006
    [63]刘洪萍.锌湿法冶金工艺概述[J].金属世界,2009,(5):53-57
    [64]Wu M, Nakano M, She J. A model-based expert control system for the leaching process in zinc hydrometallurgy [J]. Expert Systems with Applications,1999,16(2):135-143
    [65]Vahidi E, Rashchi F. Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA [J]. Minerals Engineering,2009,22(2):204-206
    [66]Li M, Peng B, Chai L, et al. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon [J]. Journal of Hazardous Materials,2012,237-238: 323-330
    [67]周玉琳.湿法炼锌中铁的行为与控制方法[J].湖南有色金属,2009,25(6):18-20
    [68]杨斌.对湿法炼锌中热酸浸出-黄钾铁矾工艺的探讨[J].甘肃冶金,2010,32(3): 56-58
    [69]Turan M D, Altundogan H S, Tumen Fikret. Recovery of zinc and lead from zinc plant residue [J]. Hydrometallurgy,2004,75(1-4):169-176
    [70]何醒民.我国湿法炼锌技术的发展与展望[J].工程设计和研究,2005,(118):25-27,54
    [71]陈永明.盐酸体系炼锌渣提铟及铁资源有效利用的工艺与理论研究[D].长沙:中南大学,2009
    [72]Claassen J O, Meyer E H O, Rennie J, et al. Iron precipitation from zinc-rich solutions: defining the Zincor Process [J]. Hydrometallurgy,2002,67(1-3):87-108
    [73]赵华,秦法聪,廉彩会.高温高酸浸出在传统炼锌工艺中应用的研究[J].中国有色冶金,2009,(5):63-65
    [74]Ismael M R C, Carvalho J M R. Iron recovery from sulphate leach liquors in zinc hydrometallurgy [J]. Minerals Engineering,2003,16(1):31-39
    [75]Ozberk E, Jankola W A, Vecchiarelli M, et al. Commercial operations of the Sherritt zinc pressure leach process [J]. Hydrometallurgy,1995,39(1-3):49-52
    [76]Akcil A, Ciftci H. Metals recovery from multimetal sulphide concentrates (CuFeS2-PbS-ZnS):combination of thermal process and pressure leaching [J]. International Journal of Mineral Processing,2003,71(1-4):233-246
    [77]Bolorunduro S A, Dreisinger D B, Van Weert G. Zinc and silver recoveries from zinc-lead-iron complex sulphides by pressure oxidation [J]. Minerals Engineering,2003, 16(4):375-389
    [78]Xie K Q, Yang X W, Wang J K, et al. Kinetic study on pressure leaching of high iron sphalerite concentrate [J]. Transactions of Nonferrous Metals Society of China,2007, 17(1):187-194
    [79]唐德全,周明人.提升湿法炼锌工艺水平——传统工艺嫁接富氧直接浸出技术[J].中国有色金属,2009,(2):72-73
    [80]董巧龙.锌精矿常压浸出与加压浸出工艺比较[J].中国有色冶金,2007,(4):24-26
    [81]王福生,车欣.锌浸渣综合利用现状及发展趋势[J].天津化工,2010,24(3):1-3
    [82]黄柱成,蔡江松,杨永斌,等.锌浸渣中有价元素的综合利用[J].矿产综合利用,2002(3):46-48
    [83]马喜红,覃文庆,吴雪兰,等.热酸浸出锌浸渣中镓锗的研究[J].矿冶工程,2012,32(2):71-75
    [84]王纪明,彭兵,柴立元,等.锌浸渣还原焙烧-磁选回收铁[J].中国有色金属学报.2012,22(5):1455-1460
    [85]彭海良.常规湿法炼锌中铁酸锌的行为研究[J].湖南有色金属,2004,20(5):20-22
    [86]Chen T T, Dutrozac J E. Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates [J]. JOM,2004,56:46-51
    [87]刘俊峰,易平贵,黄可龙.常压酸浸对闪锌矿的条件对锌浸出率的影响[J].中国有 色金属学报,2000,10(5):728-731
    [88]康晓红,谢慧琴,卢立柱.有机溶剂在浆萃取对锌精矿直接浸出的影响[J].中国有色金属学报,2001,11(5):906-908
    [89]Balarini J C, Polli L D O, Miranda T L S, et al. Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc [J]. Minerals Engineering,2008,21(1):100-110
    [90]彭海良.常规湿法炼锌中铁酸锌的行为研究[J].湖南有色金属,2004,20(5):20-22
    [91]Graydon J W, Kirk D W. The mechanism of ferrite formation from iron sulfides during zinc roasting [J]. Metallurgical and Materials Transactions B,1988,19(4):777-785
    [92]Xia D K, Pickles C A. Kinetics of zinc ferrite formation in the rate deceleration period [J]. Metallurgical and Materials Transactions B,1997,28(4):671-677
    [93]Leclerc N, Meux E, Lecuire J. Hydrometallurgical extraction of zinc from zinc ferrites [J]. Hydrometallurgy,2003,70(1-3):175-183
    [94]黄炜,谢颂明.锌焙砂还原焙烧工艺的试验研究[J].有色冶炼,2008,29(4):31-33.
    [95]陈少纯,周令治,邹家炎,等.铁酸锌的还原分解和其中锗的行为研究[J].广东有色金属学报,1991,1(1):26-31
    [96]窦明民.锌冶金中铁酸锌生成及离解机理研究[J].云南冶金,2003,32(增刊):63-65
    [97]Langova S, Lesko J, Matysek D. Selective leaching of zinc from zinc ferrite with hydrochloric acid [J]. Hydrometallurgy,2008,95(3-4):179-182
    [98]Yao J H, Li X H, Pan L P, et al. Kinetics of leaching zinc and indium from indium-bearing zinc ferrite mechanically activated by tumbling mill[J]. Minerals & Metallurgical Processing,2013,30(1):45-52
    [99]Leclerc N, Meux E, Lecuire J. Hydrometallurgical extraction of zinc from zinc ferrites [J]. Hydrometallurgy,2003,70(1-3):175-183
    [100]刘玉婷,周英,尹大伟,宴会新微波技术在化学化工上的应用化学世界2010,(8):505-508
    [101]杨雄飞.微波加热在钢铁工业中的应用概述[J].世界金属导报,2007,(7):1-2
    [102]金钦汉.微波化学[M].北京:科学出版社,1999.
    [103]彭金辉,杨显万.微波能技术新应用[M].昆明:云南科技出版社,1997
    [104]Metaxas A C,Meredith R J. Industrial microwave heating[M]. London:Peter Peregrinus, 1993
    [105]张华莲,胡希明,赖声礼.微波对化学反应作用的动力学原理研究[J].华南理工大学学报(自然科学版),1997,25(9):47-50
    [106]丁培墉.物理化学[M].北京:冶金工业出版社,1979
    [107]任之恭.微波量子物理学[M].北京:科学出版社,1980
    [108]雷鹰,李雨,彭金辉,等.微波选择性加热在矿冶过程中的应用进展[J].材料导报,2011,25(8):119-122
    [109]赵俊蔚,赵国惠,郑晔,等.微波加热在矿冶方面的应用研究现状[J].黄金,2008, 29(12):39-42
    [110]张文朴.微波加热技术在冶金工业中的应用研发进展[J].中国钼业,2007,31(6):20-23
    [111]佟志芳,毕诗文,杨毅宏.微波加热在冶金领域中应用研究现状[J].材料与冶金学报,2004,3(2):117-120
    [112]Xia D K, Pickeles C A. Microwave applications in extractive metallurgy-a review and applications of microwave energy in extractive metallurgy [J]. CIM Bull,1997,90(1011): 96-107
    [113]Kingman S W, Rowoson N A. Microwave treatment of minerals-a review [J]. Minerals Engineering,1998,11(11):1081-1087
    [114]Kingman S W, Jackson K, Cumbane A, et al. Recent development in microwave-assisted comminution [J]. International Journal of Mineral Processing,2004, 74:71-83
    [115]Al-Harahsheh M, Kingman S W. Microwave-assisted leaching-a review [J]. Hydrometallurgy,2004,73:189-203
    [116]Haque K Z. Microwave energy for mineral treatment process-a brief review [J]. International Journal of Mineral Processing,1999,57:1-24
    [117]Ding W A. Leaching behaviour of complex sulphide concentrate with ferric chloride by microwave irradiation [J].Rare Metals,1997,16(2):153-155
    [118]Huang H J, Rowson N A. Application of microwave pre-oxidation in improving gold recovery of a refractory gold ore [J]. Rare Metals,2000,19(3):161-171
    [119]华一新,谭春娥,谢爱军,等.微波加热低品位氧化镍矿石的FeCl3氯化[J].有色金属,2000,52(1):59-61
    [120]华一新,刘纯鹏,乐莉.微波促进Mn02分节的动力学[J].中国有色金属学报,1998,8(3):497-501
    [121]许冬,阮胜寿,贾荣,等.锌冶炼废渣中铟回收技术综述[J].材料研究与应用,2009,3(4):231-233
    [122]冯同春,杨斌,刘大春,等.铟的生产技术进展及产业现状[J].冶金丛刊,2007,(2):42-46
    [123]刘大春,杨斌,戴永年,等.云南省铟资源及其产业发展[J].广东有色金属学报,2005,15(1):1-3
    [124]侬健桃.我国铟产业现状及发展[J].有色冶炼,2002,(4):12-14
    [125]刘洪萍.锌湿法冶金工艺概述[J].金属世界,2009,(5):53-57
    [126]Wu M, Nakano M, She J. A model-based expert control system for the leaching process in zinc hydrometallurgy [J]. Expert Systems with Applications,1999,16(2):135-143
    [127]Klimkiewicz R, Wolska J, Przepiera A, et al. The zinc ferrite obtained by oxidative precipitation method as a catalyst in n-butanol conversion[J]. Materials Research Bulletin,2009,44(1):15-20
    [128]Nachbaur V,Tauvel G,Verdier T,et al.Mecanosynthesis of partially inverted zinc ferrite[J].Nippon Kinzoku Gakkaishi,1999,63(3):345-351
    [129]Jha M K;Kumar V,Singh R J.Review of hydrometallurgical recovery of zinc from industrial wastes[J].Resources,Conservation and Recycling,2001,33(1):1-22
    [130]杨文栋.湿法炼锌工艺中的综合回收[J].湿法冶金,2009,28(2):101-104
    [131]Abdel-Latif M A.Fundamentals of zinc recovery from metallurgical wastes in the Enviroplas process [J].Minerals Engineering,2002,15(11):945-952
    [132]吕伯康,刘洋.锌渣浸出渣高温挥发富集铟锗试验研究[J].南方金属,2007,(3):7-9
    [133]王露娟,温加冰,闫杰军.提取铟工艺流程改革试验研究[J].有色矿冶,2000,16(2):31-34
    [134]黎铉海,刘伟涛,潘柳萍,等.机械活化强化从锑渣氧粉中回收铟锑的工艺研究[J].金属矿山,2004,8(增刊):489-492
    [135]黎铉海,李秀敏,潘柳萍.机械活化强化ITO废料中铟浸出的动力学研究[J].金属矿山,2006,(3):46-48
    [136]黎铉海,姚金环.搅拌磨机械活化硬锌渣浸铟的动力学研究[J].金属矿山,2007,(3):41-44
    [137]黎铉海,阳健,韦岩松,等.机械活化强化锌渣氧粉铟浸出的工艺研究[J].稀有金属,2008,32(6):811-814
    [138]韦岩松,吴志鸿,张燕娟,等.含铟锌渣氧粉加压氧化浸铟的工艺研究[J].金属矿山,2009,(11):73-75
    [139]Yao J H, Li X H. Study on indium leaching from indium-poor zinc residue enhaced by ultrasonic treatment[J]. Advanced Materials Research,2011,201-203:1770-1773
    [140]Zhang Y J, Li X H, Pan L P, et al. Effect of mechanical activation on extracting indium from neutral leach residue of zinc calcine[J]. Advanced Materials Research,2011,201-203:1810-1815
    [141]Yao J H, Li X H, Pan L P, et al. Kinetics of leaching zinc and indium from indium-bearing zinc ferrite mechanically activated by tumbling mill [J]. Minerals & Metallurgical Processing,2013,30(1):45-52
    [142]Li X H, Zhang Y J, Qin Q L, et al. Indium recovery from zinc oxide flue dust by oxidative pressue leaching[J]. Transactions of Nonferrous Metals Society of China, 2010,20(sl):141-145
    [143]邵明望,张文敏.微波化学与工程[M].合肥:安徽大学出版社,1999
    [144]张燕娟.机械活化强化含铟铁酸锌的锌浸渣中锌、铟浸出的理论及工艺研究[D].南宁:广西大学,2011
    [145]姚金环.从铟铁酸锌中用机械活化方法强化浸出铟、锌的机理研究[D].南宁:广西大学,2013
    [146]Demirkiran N. Dissolution kinetics of ulexite in ammonium nitrate solutions [J]. Hydrometallurgy,2009,95(3-4):198-202
    [147]Demirkiran N. Dissolution kinetics of ulexite in ammonium nitrate solutions [J]. Hydrometallurgy,2009,95(3-4):198-202
    [148]Souza A D, Pina P S, Santos F M F, et al. Effect of iron in zinc silicate concentrate on leaching with sulphuric acid [J]. Hydrometallurgy,2009,95(3-4):207-214
    [149]Demirkiran N, Kunkiil A. Dissolution kinetics of ulexite in perchloric acid solutions [J]. International Journal of Mineral Processing,2007,83(1-2):76-80
    [150]何东升.石煤型钒矿焙烧-浸出过程的理论研究[D].长沙:中南大学,2009
    [151]蒋汉派.湿法冶金过程物理化学[M].北京:冶金工业出版社,1987
    [152]孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998
    [153]《浸矿技术》编委会.浸矿技术[M].北京:原子能出版社,1994
    [154]肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社,1997
    [155]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998
    [156]Safari V, Arzpeyma G, Rashchi F, et al. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica [J]. International Journal of Mineral Processing, 2009,93(1):79-83
    [157]Veglio F, Trifoni M, Pagnanelli F, et al. Shrinking core model with variable activation energy:a kinetic model of manganiferous ore leaching with sulphuric acid and lactose [J]. Hydrometallurgy,2001,60(2):167-179
    [158]Okur, H., Tekin, T., Ozer, A.K.,Bayramoglu, M.,2002. Effect of ultrasound on the dissolution of colemanite in H2SO4. Hydrometallurgy 67 (1-3),79-86
    [159]畅永锋,翟秀静,符岩,等.还原焙烧红土矿的硫酸浸出动力学[J].分子科学学报,2008,24(4):241-245
    [160]Sokic M D, Markovic B, Zivkovic D. Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid [J]. Hydrometallurgy,2009,95(3-4):273-279
    [161]Yao J H, Li X H, Pan L P, et al. Kinetics of leaching zinc and indium from indium-bearing zinc ferrite mechanically activated by tumbling mill [J]. Minerals & Metallurgical Processing,2013,30(1):45-52
    [162]Bian X, Yin S H, Luo Y, et al. Leaching kinetics of bastnaesite concentrate in HCl solution [J]. Transactions of Nonferrous Metals Society of China,2011,21 (10): 2306-2310
    [163]陈亮,谭凯旋,刘江,等.伊犁盆地某砂岩铀矿的浸出动力学特征[J].金属矿山,2013,(3):18-20
    [164]张琳叶,莫家梅,黎铉海,等.合成富铟铁酸锌中铟的硫酸浸出行为研究[J].金属矿山,2013,(8):84-87
    [165]Zhang Y J, Li X H, Pan L P, et al. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite [J]. Hydrometallurgy,2010, 102(1-4):95-100
    [166]彭金辉,刘秉国.微波煅烧技术及其应用[M].北京:科学出版社,2013
    [167]B.P. Rao, K.H. Rao. Distribution of In3+ ions in indium-substituted Ni-Zn-Ti ferrites[J]. Journal of Magnetism and Magnetic Materials,2005,292,44-48
    [168]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社:2006
    [169]Hoz. A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects[J]. Chemical Society Reviews,2005,34(2):164-178.
    [170]丁培墉.物理化学[M].北京:冶金工业出版社,1979
    [171]汤建伟,许秀成,张宝林,等.微波作用磷矿分解反应非等温动力学研究[J].化学反应工程与工艺,2004,20(2):110-116
    [172]彭金辉,刘纯鹏.微波场中FeCl3溶液浸出闪锌矿动力学[J].中国有色金属学报,1992,2(1):46-49
    [173]古晋川.微波强化硅藻土矿提纯机理研究[D].成都:四川大学,2003
    [174]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995
    [175]Klimkiewicz R, Wolska J, Przepiera A, et al. The zinc ferrite obtained by oxidative precipitation method as a catalyst in n-butanol conversion [J]. Materials Research Bulletin,2009,44(1):15-20
    [176]Nachbaur V, Tauvel G, Verdier T, et al. Mecanosynthesis of partially inverted zinc ferrite [J]. Journal of Alloys and Compounds,2009,473(1-2):303-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700