用户名: 密码: 验证码:
大米产地特征因子及溯源方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品产地溯源技术是保护地理标志产品的重要技术支撑之一。食品产地溯源的有效方法是选择能够表征地域信息的特征因子,并通过化学计量学方法分析其“指纹”特征,从而识别食品的原产地。为探索特征因子的有效选择方法,分析不同指纹图谱技术在大米产地溯源中的可行性,本研究利用电感耦合等离子体质谱(ICP-MS)、近红外光谱、高效液相色谱和离子色谱等技术,检测了不同产地大米中矿物元素、有机组分、阴离子的含量以及产地土壤中矿物元素和阴离子的含量,结合多元统计学方法,系统研究了不同产地大米的特征属性,建立了多种大米产地的溯源方法。
     1.利用ICP-MS和原子吸收分光光度计测定了四产地大米样本中Mg、K、Ca、Na、Be、Mn、Ni、Cu、Cd、Fe、Al、Cr、Zn、Sb和Pb共15种元素含量以及其产地土壤中交换态Mg、K、Ca、Na、Mn,有效态Mn、Co、Ni、Cu、Zn、Cd、Pb、Fe,全态Be、Al、Sb、Pb含量和pH值。结果表明,大米中Mg、K、Ca、Na、Be、Mn、Ni、Cu和Cd9种元素的含量在不同产地之间有显著差异,土壤中17种矿物元素含量及pH在不同产地间均有显著差异,大米中Mg、K、Ca、Na、Be、Mn、Ni、Cu、Cd、Pb含量与土壤元素存在显著相关性。利用大米中Mg、K、Ca、Na、Be、Mn、Ni、Cu和Cd9元素含量建立的产地溯源方法准确度高于全部元素,线性判别方法对大米产地的检验判别正确率为100%,交叉检验判别正确率为93.8%。对大米中15种元素的R型系统聚类分析结果表明:Mg、Cu、K、Ni、Be、Mn和Ca7种元素聚为一类,具有较显著的共同特征,均与土壤中元素分布显著相关,是合适的产地鉴别元素。
     2.利用近红外光谱和模式识别技术建立了大米产地的快速鉴别方法。大米的近红外光谱经过一阶导数和平滑处理后,利用主成分分析法(PCA)对数据进行了降维。通过前三个主成分的载荷图确定了与产地相关性较大的特征波段为7700~6700cm-1与5700~4300cm-1。在全波段内,凝聚层次聚类和线性判别鉴别方法都可以100%正确的鉴别响水大米和非响水大米;对于非响水地区大米的具体产地判别,聚类分析正确率为91.9%,线性判别分析的总体正确率为96.7%。利用特征波段,凝聚层次聚类和线性判别鉴别方法都可以100%正确的鉴别响水大米和非响水大米;对于非响水地区大米的具体产地判别,聚类分析正确率为95.7%,线性判别分析的总体正确率为91.6%。证实了特征波段是大米产地溯源的有效波段。
     3.利用《中药指纹图谱相似度评价系统》分析了大米的乙酸乙酯提取物液相色谱数据,建立了由75个指纹峰和18个共有峰组成的响水大米指纹图谱,其中7、10、11和14号共有峰分别为没食子酸、邻苯二酸、对羟基苯甲酸和阿魏酸。利用该指纹图谱对大米样本进行分析,以相似度为0.9为标准,可以准确判别响水大米和非响水大米。
     大米乙酸乙酯提取物液相色谱数据的主成分分析结果表明,保留时间在40.66min,5.39min,22.06min,39.66min等色谱峰是分析大米产地的重要色谱峰。逐步线性判别分析结果表明,利用所筛选的23个特征峰建立判别方程,对大米产地的判别正确率为100%,交叉验证的正确率为97.7%;保留时间为22.06min,38.00min,40.66min,35.93min,17.87min和5.39min的特征峰对于产地判别起到主要作用,与主成分分析的结果较为一致。利用逐步多元线性回归分析,筛选了22个特征峰建立大米产地的预测方程。产地判别正确率为100%,标准残差为0.699。与逐步判别分析筛选的特征峰结果相比较,除保留时间为44.97min的色谱峰外,其余特征色谱峰的选择一致。利用逐步多元线性回归分析确定的22个特征峰数据进行K最近邻近分析,k=2时对于大米产地的鉴别正确率最高,总体正确率为96.9%。进一步证实,上述方法确定的特征峰在产地溯源分析方面是非常有效的。
     4.利用离子色谱法分析了四个产地大米和土壤中F-、Cl-、NO2-,NO3-和SO42-含量,结果表明,大米中F-、Cl-、NO2-和NO3含量在四产地间存在显著性差异,-大米中F-、Cl-、NO2-,NO3-和SO42-含量与土壤中阴离子含量均存在显著相关性,具有较强的原产地特征。利用大米中F-、Cl-、NO2-,NO3-和SO42-含量建立的Bayls判别分析模型对产地的判别的回代检验正确率为100%,交叉检验正确率为96.9%,Q型系统聚类分析的正确率为81.3%。
     从上述研究结果可以得出,通过大米中矿物元素、有机成分和阴离子的产地特征因子,结合化学计量学分析方法对大米产地的溯源是行之有效的。
Food geographical origin traceability system was a powerful method to protectgeographical indication. The effective method for food geographical origin traceabilitywas to select the characteristic factors which was characterized by geographical origininformation, then to analyze the "fingerprint" characteristics by chemometric methodsto identify the origin of the food. The objective of this paper was to search effectivemethod to select characteristic factors, and investigate the feasibility of tracing ricegeographical origin by fingerprint techniques. In this study, inductively coupled plasmamass spectrometry (ICP-MS), near infrared spectroscopy (NIR), high performanceliquid chromatography (HPLC) and ion chromatography technology were used todetect the contents of mineral elements, organic components and anion content indifferent origin rice. Multivariate statistical methods were used to analysis the ricecharacteristics and to establish the methods of origin traceability.
     1. The contents of Mg, K, Ca, Na, Be, Mn, Ni, Cu, Cd, Fe, Al, Cr, Zn, Sb, and Pb inrice, exchange state Mg, K, Ca, Na, and Mn, and effective state Mn, Co, Ni, Cu, Zn, Cd,Pb, and Fe, as well as full state Be, Al, Sb, and Pb in soil were detected by ICP-MS andthe atomic absorption spectrometry. The results showed that the Mg, K, Ca, Na, Be, Mn,Ni, Cu, and Cd in rice had significant differences between different producing areas.The pH and17kind mineral elements in the soil had significant differences betweendifferent producing areas. The Mg, K, Ca, Na, Be, Mn, Ni, Cu, Cd, and Pb hadsignificant correlation between rice and soil. The discrimination correct rate basised on9elements was higher than that of all elements. In linear discriminant analysis (LDA),the discrimination correct rate and cross discriminant correct rate of rice origin were100%and93.8%, respectively. The result of R-type system clustering analysis basedon15elements showed that: Mg, Cu, K, Ni, Be, Mn, and Ca clustered to a class. Itindicated that they are appropriate origin identify elements with the commoncharacteristics related with soil elements.
     2. A rapid method was developed for discrimination of the geographical origins of ricewith pattern recognition technique by near infrared spectrocopy (NIRS). After first derivativeand smooth processing, principal component analysis (PCA) was used to reduct thedimensionality of the spectral datas. Through the loading graph of the first three principal components, characteristic wave band (7700-6700cm-1,5700-4300cm-1) with max-relativitywas determined. In whole wave, using agglomerative hierarchical cluster analysis andFisher’s linear discriminant, the discrimination of Xiangshui rice and Non-Xiangshui rice wasall100%. The correct rate of specific geographical origins of Non-Xiangshui rice was91.9%by cluster analysis and96.7%by discriminant anlysis. In characteristic wave band, thecorrect rate of specific geographical origins of Non-Xiangshui rice was95.7%by clusteranalysis and91.6%by discriminant anlysis. The results indicate that it is feasible todiscriminate the geographical origins of rice with pattern recognition technique by NIRS, andselecting characteristicwave band is one of the validated methods to improve the precision ofthe discrimination mode.
     3. HPLC fingerprint of the ethyl acetate extracts was established by Similarity EvaluationSystem for Chromatographic Fingerprint of Traditional Chinese Medicine (Version2004A)with18common peaks. The common peaks of7,10,11, and14were gallic acid, oxophenicacid, p-hydroxybenzoic acid and ferulic acid, respectively. It found that this method wasreliable to identify the Xiangshui rice with the criterion of similarity larger than0.9. Thepeaks at40.66min,5.39min,22.06min, and39.66min were deemed as characteristic peakswhich closely related to the origin information by principal component analysis (PCA). Totalof23characteristic peaks which closely related to the origin information were determined bystepwise LDA, and the peaks at22.06min,38.00min,40.66min,35.93min,17.87min, and5.39min were deemed as important peaks as same as PCA. The discrimination accuracies andcross-validation obtained by LDA achieved100.0%and97.7%, respectively. Total of22characteristic peaks which closely related to the origin information were determined bystepwise multiple linear regression (MLR). The discrimination accuracies and standarddeviation are100%and0.699, respectively. Compared with the results of LDA, thecharacteristic peaks were identical except44.97min peaks. The discrimination accuracies ofK-nearest neighbor method (KNN) were96.9%with K=2which based on22characteristicpeaks selected by MLR. The results indicated that the characteristic peaks could be efficientlyused to classification of the geographic origin of rice.
     4. The contents of F-, Cl-, NO2-, NO3-, and SO42-in rice samples and soil samplesfrom four provinces of China were analyzed by ion chromatography. The result ofvariance analysis and correlation analysis demonstrated that there was significantdifference in the contents for F-, Cl-, NO2-, and NO3-in the rice samples from4 provinces, and the anions in rice were closely connected with the anions in soil. Thepredictions of geographic origin made by linear discriminant analysis (LDA) based onanions gave an overall correct classification rate of100%and cross-validation rate of96.9%. The correct rate of Q-type hierarchical cluster analysis (Q-type CA) was81.3%.
     The above results showed that the characteristic factors of mineral element, organiccomponents and anion content which was characterized by geographical origincombined with multivariate statistical methods are effective in rice geographicaltraceability.
引文
[1]《地理标志产品保护规定》,国家质量监督检验检疫总局令第78号,2005,07,15.
    [2]黄汉章.我国地理标志保护的制度完善探讨[J].知识经济,2009,(5):64-65.
    [3]陈思,杨敬华,候丽薇,等.欧盟农产品地理标志登记保护制度分析[J].经济研究参考,2012,2427(11):41-44.
    [4] Noble J. Geographical indications and possible tariff cuts top the Doha agenda. Dairyindustries international,2005,70(12):14-15.
    [5]管育鹰.日本地理标志保护制度研究[J].知识产权,2011,(6):79-85.
    [6]许文温.美国地理标志保护法律制度研究[J].山西煤炭管理干部学院学报,2009,(3):163-164.
    [7]张玉敏.地理标志的性质和保护模式选择[J].法学杂志,2007,28(6):6-11.
    [8] Revision Committee on the Handbook for Introduction of Food Traceability Systems.Handbook for Introduction of Food Traceability System (Guidelines for FoodTraceability)[M]. Tokyo: Food Marketing Research and Information Center,2008.
    [9]郭波莉,魏益民,潘家荣.同位素指纹分析技术在食品产地溯源中的应用进展[J].农业工程学报,2007,23(3):284-289.
    [10] Rossmann A. Determination of stable isotope rations in food analysis [J]. Food ReviewsInternational,2001,17(3):347-381.
    [11] Coetzee PP, Vanhaecke F. Classifying wine according to geographical origin viaquadrupole-based ICP-mass spectrometry measurement of boron isotope rations [J].Analytical and bioanalytical chemistry,2005,383:977-984.
    [12] Gremaud G, Quaile S, Piantini U, et al. Characterization of Swiss vineyards using isotopedata in bornbination with trace element and classical parameters [J]. European foodresources and technology,2004,219:97-104.
    [13] Marisa C, Almeida R, Tiresa M S D, et al. Dose the winemaking process influence thewine86Sr/87Sr? A case study [J]. Food chemistry,2004,85:7-12.
    [14] Rummel S, Hoelzl S, Horn P, et al. The combination of stable isotope abundance ratios ofH, C, N and S with87Sr/86Sr for geographical origin assignment of orange juices [J].Food Chemistry,2010,118(4):890-900.
    [15] Rodrigues C, Maguas C, Prohaska T. Strontium and oxygen isotope fingerprinting ofgreen coffee beans and its potential to proof authenticity of coffee [J]. European FoodResearch and Technology,2011,232(2):361~373.
    [16] Branch S, Burke S, Evans P, et al. A preliminary study in determining the geographicalorigin of wheat using isotope ratio inductively coupled plasma mass spectrometry with13C,15N mass spectrometry [J]. Journal of Analytical Atomic Spectrometry,2003,18(1):17-22.
    [17] Schellenberg A, Chmielus S, Schlicht C, et al. Multielement stable isotope ratios (H, C,N, S) of honey from different European regions [J]. Food Chemistry,2010,121(3):770-777.
    [18] Caba ero AI, Recio JL, Rupérez M. Liquid chromatography coupled to isotope ratiomass spectrometry: a new perspective on honey adulteration detection [J]. J Agric FoodChem.2006,54(26):9719-9727.
    [19] Camin F, Larcher R, Nicolini G, et al. Isotopic and elemental data for tracing the origin ofEuropean olive oils [J]. J Agric Food Chem.2010,58(1):570-577.
    [20] Pilgrim TS, Watling RJ, Grice K. Application of trace element and stable isotopesignatures to determine the provenance of tea (Camellia sinensis) samples [J]. FoodChem,2010,118(4):921-926.
    [21] Longobardi F, Casiello G, Sacco D, et al. Characterisation of the geographical origin ofItalian potatoes, based on stable isotope and volatile compound analyses [J]. FoodChemistry,2011,114(4):1708-1713.
    [22] Kawasaki A, Oda H, Hirata T. Determination of strontium isotope ratio of brown rice forestimating its provenance [J]. Soil Science and Plant Nutrition,2002,48:635-640.
    [23] Oda H, Kawasaki A, Hirata T. Determination of the geographic origin of brown-rice withisotope ratios of11B/10B and87Sr/86Sr [J]. Analytical Sciences,2001,17(1), i1627-i1630.
    [24] Suzuki Y, Chikaraishi Y, Ogawa N O, et al. Geographical origin of polished rice based onmultiple element and stable isotope analyses [J]. Food Chemistry,2008,109(2):470-475.
    [25] Suzuki Y, Akamatsu F, Nakashita R, et al. Characterization of Japanese polished rice bystable hydrogen isotope analysis of total fatty acids for tracing regional origin Yaeko [J].Analytical sciences,2013,29(1):143-146.
    [26] Korenaga T, Musashi M, Nakashita R, et al. Statistical analysis of rice samples forcompositions of multiple light elements (H, C, N, and O) and their stable isotopes [J].Anal. Sci.2010,26,873-878.
    [27]赵海燕,郭波莉,魏益民.谷物原产地溯源技术研究进展[J].核农学报,2011,25(4):0768-0772.
    [28]郭波莉,魏益民,潘家荣.同位素指纹分析技术在食品产地溯源中的应用进展[J].农业工程学报,2007,23(3):284-289.
    [29] Schw gele F. Traceability from a European perspective [J]. Meat Science,2005,71(1):164-173.
    [30] Moreda-Pineiro A, Fisher A, Hill SJ, et al. The classification of tea according to region oforigin using pattern recognition techniques and trace metal data [J]. Journal of FoodComposition and Analysis,2003,16(2):195–211.
    [31] Fernández-Cáceres PL, Martín MJ, Pablos F, et al. Differentiation of tea (Camelliasinensis) varieties and their geographical origin according to their metal content [J]. J.Agric. Food Chem.2001,49(10):4775–4779.
    [32] Coetzee PP, Steffens FE, Eiselen RJ, et al. Multi-element analysis of south African winesby ICP-MS and their classification according to geographical origin [J]. J. Agric. FoodChem.2005,53(13):5060–5066.
    [33] Costas-Rodríguez M, Lavilla I, Bendicho C. Classification of cultivated mussels fromGalicia (Northwest Spain) with European Protected Designation of Origin using traceelement fingerprint and chemometric analysis [J]. Anal. Chim. Acta,2010,664(2):121–128.
    [34] Anderson KA, Smith BW. Chemical profiling to differentiate geographic growing originsof coffee [J]. J. Agric. Food Chem.2002,50(7):2068–2075.
    [35] Yasui A, Shindoh K. Determination of the geographic origin of brown-rice withtrace-element composition [J]. Bunseki Kagaku2000,49(6):405–410.
    [36]曾亚文,汪禄祥,普晓英等. ICP-AES检测云南稻核心种质矿质元素含量的地带性特征[J].光谱学与光谱分析杂志,2009,(6):1691-1695.
    [37]曾亚文,汪禄祥,杜娟等. ICP-AES法检测云南稻精米和糙米与土壤矿质元素间的关联性[J].光谱学与光谱分析杂志,2009,29(5):1413-1417.
    [38]黄淑珍.湖南香稻产地土壤特性与稻米品质的关系[J].湖南农业科学,1990,(4):37-40.
    [39] Sommella A, Deacon C, Norton G, et al. Total arsenic, inorganic arsenic, and otherelements concentrations in Italian rice grain varies with origin and type [J].Environmental Pollution,2013,181:38-43.
    [40] Zhao HY, Guo BL, Wei YM, et al. Efects of wheat origin, genotype, and their interactionon multielement fingerprints for geographical traceability [J]. Journal of Agricultural andFood Chemistry,2012,60(12):10957-10962.
    [41] Zampella R, R. Quétel C, Paredes E. Soil properties, strontium isotopic signatures andmulti-element profiles to authenticate the origin of vegetables from small-scale regions:illustration with early potatoes from southern Italy [J]. Rapid Commun. Mass Spectrom.2011,25:2721–2731.
    [42] Ariyama K, Nishida T, Noda T. Effects of Fertilization, Crop Year, Variety, andProvenance Factors on Mineral Concentrations in Onions [J]. J. Agric. Food Chem.2006,54:3341-3350.
    [43] Ariyama K, Aoyama Y, Mochizuki A. Determination of the geographic origin of onionsbetween three main production areas in Japan and other countries by mineralcomposition, J. Agric. Food Chem.2007,55:347-354.
    [44] Zhao HY, Guo BL, Wei YM, et al. Determining the geographic origin of wheat usingmultielement analysis and multivariate statistics [J]. J. Agric. Food Chem.2011,59(4):4397–4402.
    [45] Gonzálvez A, Armenta S, de la Guardia M. Geographical traceability of “Arròs deValencia” rice grain based on mineral element composition [J]. Food Chemistry,2011,126(3):1254-1260.
    [46] Yasui A, Shindoh K. Determination of the geographic origin of brown-rice withtrace-element composition [J]. Bunseki Kagaku,2000,49:405-410.
    [47] Gang Li G, Nunes L, Wang YJ, et al. Profiling the ionome of rice and its use indiscriminating geographical origins at the regional scale, China [J]. Journal ofEnvironmental Sciences,2012,25(1):144–154.
    [48] Cheajesadagul P, Arnaudguilhem C, Shiowatana J, et al. Discrimination of geographicalorigin of rice based on multi-element fingerprinting by high resolution inductivelycoupled plasma mass spectrometry [J]. Food Chemistry,2013,141:3504–3509.
    [49] Kelly S, Baxter M, Chapman S, et al. The application of isotopic and elemental analysisto determine the geographical origin of premium longgrain rice [J]. European FoodResearch and Technology,2002,214:72-78.
    [50] Ariyama K, Shinozaki M, Kawasaki A. Determination of the geographic origin of rice bychemometrics with strontium and lead isotope ratios and multielement concentrations [J].Journal of Agricultural and Food Chemistry,2012,60(7):1628-1634.
    [51] Branch S, Burke S, Evans P, et al. A preliminary study in determining the geographicalorigin of wheat using isotope ratio inductively coupled plasma mass spectrometry with13C,15N mass spectrometry[J]. Journal of Analytical Atomic Spectrometry,2003,18:17-22.
    [52]陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析[M].北京:中国石化出版社,2000.
    [53] Osborne BG, Fearn T, Hindle P H. Practical NIR Spectroscopy with Applications in Foodand Beverage Analysis [M]. London: Longman Scientific and Technical,1993.
    [54] Galtier O, Dupuy N, Dréau Y Le, et al. Geographic origins and compositions of virginolive oils determinated by chemometric analysis of NIR spectra [J]. Analytica ChimicaActa,2007,595(1-2):136-144.
    [55] Casale M, Casolino C, Oliveri P, et al. The potential of coupling information using threeanalytical techniques for identifying the geographical origin of Liguria extra virgin oliveoil [J]. Food Chemistry,2010,118(1):163-170.
    [56]袁玉峰,陶站华,刘军贤等.红外光谱结合主成分分析鉴别不同产地黄柏[J].光谱学与光谱分析,2011,31(5):1258-1261.
    [57] Woodcock T, Downey G, O’Donnell C P. Near infrared spectral fingerprinting forconfirmation of claimed PDO provenance of honey [J]. Food Chemistry,2009,114(2):742-746.
    [58]李勇,魏益民,潘家荣等.基于FTIR指纹光谱的牛肉产地溯源技术研究[J].光谱学与光谱分析,2009,29(3):647-651.
    [59] Yu HY, Zhou Y, Fu XP, et al. Discrimination between Chinese rice wines of differentgeographical origins by NIRS and AAS [J]. European Food Research and Technology,2007,225(3-4):313-320.
    [60]陈永明,林萍,何勇.基于遗传算法的近红外光谱橄榄油产地鉴别方法研究[J].光谱学与光谱分析,2009,29(3):671-674.
    [61] Cozzolino D, Smyth HE, Gishen M. Feasibility study on the use of visible andnear-infrared spectroscopy together with chemometrics to discriminate betweencommercial white wines of different varietal origins [J]. Journal of Agricultural and FoodChemistry,2003,51(26):7702-7708.
    [62] Liu L, Cozzolino D, Cynkar WU, et al. Geographic classification of spanish andaustralian tempranillo red wines by visible and near-infrared spectroscopy combinedwith multivariate analysis [J]. Journal of Agricultural and Food Chemistry,2006,54(18):6754-6759.
    [63] Liu L, Cozzolino D, Cynkar WU, et al. Preliminary study on the application ofvisible–near infrared spectroscopy and chemometrics to classify Riesling wines fromdifferent countries [J].2008,106(2):781-786.
    [64] Yu HY, Niu XY, Ying YB, et al. Use of visible and short-wavelength near-infraredspectroscopy and least-squares support vector machines for non-destructive rice winequality determination [J]. Transactions of the ASABE,2011,54(1):265-271.
    [65] Shen F, Niu XY, Yang DT, et al. Determination of amino acids in chinese rice wine byfourier transform near-infrared spectroscopy [J]. Journal of Agricultural and FoodChemistry,2010,58(17):9809-9816.
    [66] Niu X, Shen F, Yu Y, et al. Analysis of sugars in Chinese rice wine by Fourier transformnear-infrared spectroscopy with partial least-squares regression [J]. J Agric Food Chem.2008,56(16):7271-7278.
    [67] Niu XY, Yu HY, Ying YB. The Application of Near-Infrared Spectroscopy andChemometrics to Classify Shaoxing Wines from Different Breweries [J]. Transactions ofthe ASABE,2008,51(4):1371-1376.
    [68] Dupuy N, Galtier O, Ollivier D, et al. Comparison between NIR, MIR, concatenated NIRand MIR analysis and hierarchical PLS model application to virgin olive oil analysis [J].Analytica Chimica Acta,2010,666(1-2):23-31.
    [69] O Galtier, Y Le Dréau, D Ollivier, et al. Lipid compositions and french registereddesignations of origins of virgin olive oils predicted by chemometric analysis ofmid-infrared spectra [J]. Virtual Journal for Biomedical Optics,2008,3(6):583-590.
    [70] Galtier O, Dupuy N, Le Dréau Y, et al. Geographic origins and compositions of virginolive oils determinated by chemometric analysis of NIR spectra [J]. Analytica ChimicaActa,2007,595(1-2):136-144.
    [71] Galtier O, Abbas O, Le Dréau Y, et al. Comparison of PLS1-DA, PLS2-DA and SIMCAfor classification by origin of crude petroleum oils by MIR and virgin olive oils by NIRfor different spectral regions [J]. Vibrational Spectroscopy,2011,55(1):132-140.
    [72] Casale M, Casolino C, Ferrari G, et al. Near infrared spectroscopy and class modellingtechniques for the geographical authentication of Ligurian extra virgin olive oil [J].Journal of Near Infrared Spectroscopy,2008,16(1):39-47.
    [73] Iizuka K, Aishima T. Differentiation of soy sauce by pattern recognition analysis of mid-and near-IR spectra [J]. Journal of Food Composition and Analysis,1999,12(3):197-209.
    [74] Iizuka K, Aishima T. Soy sauce classification by geographic region based on NIR spectraand chemometrics pattern recognition [J]. Journal of Food Science,1997,62(1):101-101.
    [75] Arana I, Jaren C, Arazuri S. Maturity, variety and origin determination in white grapes(Vitis Vinifera L.) using near infrared reflectance technology [J]. Journal of Near InfraredSpectroscopy,2005,13(6):349-357.
    [76] Fu X, Ying Y, Zhou Y, et al. Application of probabilistic neural networks in qualitativeanalysis of near infrared spectra: determination of producing area and variety of loquats[J]. Analytica Chimica Acta,2007,598(1):27-33.
    [77] Xiccato G, TrocinoA, Tulli F, et al. Prediction of chemical composition and originidentification of European sea bass (Dicentrarchus labrax L.) by near infrared reflectancespectroscopy(NIRS)[J].Food Chemistry,2004,86(2):275-281.
    [78]蔡先峰,郭波莉,魏益民等.牛肉近红外光谱的地域及饲养期特征分析[J].中国农业科学,2011,44(20):4272-4278.
    [79] Shao Y, He Y. Visible/Near infrared spectroscopy and chemometrics for the prediction oftrace element (Fe and Zn) levels in rice leaf [J]. Sensors (Basel),2013,13(2):1872-1883.
    [80] Kumagai M, Ohisa N, Amano T, et al. Canonical discriminant analysis of cadmiumcontent levels in unpolished rice using a portable near-infrared spectrometer [J].Analytical Sciences,2003,19(11):1553-1555.
    [81] Wu JG, Shi C, Zhang X. Estimating the amino acid composition in milled rice bynear-infrared reflectance spectroscopy [J]. Field Crops Research,2002,75(1):1-7.
    [82] Bao JS, Cai YZ, Corke H. Prediction of rice starch quality parameters by near-infraredreflectance spectroscopy [J]. Journal of Food Science.2001,66(7):936-939.
    [83] Li JX, Min SE, Zhang HL, et al. The PLS calibration model optimization anddetermination of rice protein content by near-infrared reflectance spectroscopy [J].Spectroscopy and Spectral Analysis,2006,26(5):833-837.
    [84] Namaporn A,Sumaporn K,Athapol N. Rapid Variety Identification of Pure Rough Riceby Fourier-Transform Near-Infrared Spectroscopy [J]. Cereal Chemistry,2011,88(5):490-496.
    [85] Kim SS, Rhyu MR, Kim JM, et al. Authentication of rice using near-infrared reflectancespectroscopy [J]. Cereal Chemistry,2003,80(3):346-349.
    [86] Kim HJ, Rhyu MR, Kim JM, et a1. Authentication of rice using near infrared reflectancespectroscopy [J].Cereal chemistry,2003,80:346-349.
    [87]罗国安,梁琼麟,王义明.中药指纹图谱--质量评价、质量控制与新药研发[M].北京:化学工业出版社,2009.
    [88]吴玉田.中医药现代化与中药指纹图谱分析[J].中国中西医结合杂志,2002,22(9):645-646.
    [89]史先敏.中国栽培灵芝三萜成分的高效液相色谱指纹图谱研究[D].南京农业大学理学博士论文,2008:11-12.
    [90]谢培山.中药色谱指纹图谱鉴别的要领、属性、技术与应用[J].中国中药杂志,2001,26(10):653-655.
    [91]张晓焱,苏学素,焦必宁.农产品产地溯源技术研究进展[J].食品科学,2010,31(03):271-278.
    [92] Rodriquez-Delgado MA, Gonzalez-Hernandez G, Conde-Gonzales JE, et al. Principalcomponent analysis of the polyphenol content in young red wines [J]. Food Chemistry,2002,78(4):523-532.
    [93] Stefanoudaki E, Kotsifaki F, Koutsaftakis A. The potential of HPLC triglyceride profilesfor the classification of Cretan olive oils [J]. Food Chemistry,1997,60(3):425-432.
    [94] Cagno RD, Banks J, Sheehan L, et al. Comparison of thmicrobiological, compositional,biochemical, volatile profile and sensory characteristicsof three Italian PDO ewes'milkcheeses [J]. International Dairy Journal,2003,13(12):961-972.
    [95] Alonso-Salces RM, Serraf, Reniero F, et al. Botanical and geographical characterizationof green coffee (coffea arabica and coffea canephora): chemometric evaluation ofphenolic and methylxanthine contents [J]. Journal of Agricultural and Food Chemistry,2009,57(10):4224-4235.
    [96] Latti AK, Riihinen KR, Kainulained PS. Analysis of anthocyanin variation in wildpopulations of Bilberry (Vaccinium myrtillus L.) in Finland [J]. Journal of Agriculturaland Food Chemistry,2008,56(1):190-196.
    [97]张军翔,冯长根,李华.蛇龙珠葡萄酒酒龄花青素高效液相色谱(HPLC)指纹图谱研究[J].中国农业科学,2006,39(7):1451-1456.
    [98] Chen C, Zhang H, Xiao W, et al. High-performance liquid chromatographic fingerprintanalysis for different origins of sea buckthorn berries [J]. Journal of Chromatography A,2007,1154:250–259.
    [99] Ni YN, Mei MH, Kokot S, et al. Resolution of high performance liquid chromatographicfingerprints of rhizome curcumae by application of chemometrics [J]. Journal of LiquidChromatography&Related Technologies,2011,34:1952-1964.
    [100] Kim S, Kim KY, Han CS, et al. Simultaneous analysis of six major compounds inosterici radix and notopterygii rhizoma et radix by HPLC and discrimination of theirorigins from chemical fingerprint analysis [J]. Arch Pharm Res,2012,35(4):691-699.
    [101] Ollivier D, Artaud J, Pinatel C, et al. Triacylglycerol and fatty acid compositions ofFrench virgin olive oils: Characterisation by chemometrics [J]. Journal of Agriculturaland Food Chemistry,2003,51:5723-5731.
    [102] Christine F, Catherine A, Edmond R, et al. Characterization of milk by analysis of itsterpene fractions [J]. International Journal of Food Science and Technology,2003,38(4):445-451.
    [103] Longobardi F, Casiello G, Sacco D, et al. Characterisation of the geographical origin ofItalian potatoes, based on stable isotope and volatile compound analyses [J]. FoodChemistry,2011,124(4):1708-1713.
    [104] Villalba-Rodriguez A, Fernandez-Fernandez JI, Martinez-Cutillas A, et al. Study ofdiffernent biogenic amines in wines from two protected desigantions of origin (PDOS) inMutcia (SPAIN) multivatiate classification [J]. Jouranl international des sciences de lavigne et du vin,2011,45(2):111-119.
    [105] Sass KA, Kiss J, Havadi B, et al. Multivariate statistical analysis of botrytised wines ofdifferent origin [J]. Food Chemistry,2008,110:742-750.
    [106]回瑞华,侯冬岩,李铁纯等.不同产地稻米油脂中脂肪酸的气相色谱-质谱分析[J].质谱学报,2008,29(6):349-352.
    [107]李红,田福林,刘成雁等.气相色谱-串联质谱法测定不同产地大米中的角鲨烯[J].分析测试学报,2011,30(10):1179-1182.
    [108]李红,刘成雁等. GC-MS法对不同产地大米的快速鉴定[J].分析测试学报,2011,9:1059-1062.
    [109] Massart DL, Vandeginste BGM, Buydens LMC, et al. Handbook of Chemometrics andQualimetrics: Part A. Amsterdam: Elservier [M].1997.1.
    [110]许禄.化学计量学一些重要方法的原理及应用[M].北京:科学出版社,2004.2-6.
    [111] Galwey NW. Introduction to Mixed Modelling: Beyond Regression and Analysis ofVariance [M]. Wiley:2006.6-7.
    [112]马斌荣. SPSS(PASW)17.0在医学统计中的应用[M].北京:中国科学出版社,2010.48-49.
    [113]余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.158-159.
    [114]郭波莉.牛肉产地同位素与矿物元素指纹溯源技术研究[D].北京:中国农业科学院,2007.
    [115]孙淑敏.羊肉产地指纹图谱溯源技术研究[D].陕西:西北农林科技大学,2012.
    [116]谢忠雷.茶园土壤环境地球化学因素与茶叶从土壤中吸收铝的关系研究[D].吉林:吉林大学,1998.
    [117]路超,薛晓敏,王翠玲,等.山东省苹果园果实品质指标、叶片营养与土壤营养元素的相关性分析[J].中国农业通报,2011,27(25):168-172.
    [118]倪永年.化学计量学在分析化学中的应用[M].科学出版社,2004,北京:161-162.
    [119] Kallithraka S., Arvanitoyannis I.S, Kefalas P., et al. Instrumental and sensory analysis ofGreek wines; implementation of principal component analysis (PCA) for classificationaccording to geographical origin [J]. Food Chemistry,2001,73(4):501-514.
    [120] Andreas B, Lu Y, Zeland M, et al. Differentiation Between Origins Of Extra VirginOlive Oils by GC-C-IRMS Using Principal Component Analysis, Linear DiscriminantAnalysis, and Hierarchical Cluster Analysis[J]. Spectroscopy,2010,25(2):40-47.
    [121] Singh D, Gupta RK, Singh M, et al. Characterization of pecan (Carya illinoensis)germplasm of seedling origin through regression and principal component analysis[J].Indian Journal of Agricultural sciences,2009,79(4):324-326.
    [122]占茉莉,李勇,魏益民,等.应用FT-IR光谱指纹分析和模式识别技术溯源茶叶产地的研究[J].核农学报,2008,22(6):829-833.
    [123]陈蓉,沈蓓,吴启南.基于主成分分析和聚类判别模式对不同产地芡实HPLC指纹图谱研究[J].中成药,2012,34(5):2322-2329.
    [124] Fisher R. Annals of Eugenics.1936,7:179.
    [125]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004.248-249.
    [126] McLachlan C. Discriminant Analysis and Statistical Pattern Recognition [M]. New York:John Wiley and Sons,1992.
    [127]成浩,王丽鸳,周健,等.基于化学指纹图谱的扁形茶产地判别分析研究[J].茶叶科学,2008,28(2):83-88.
    [128]宋海燕,秦刚,陆辉山,等.基于可见/近红外透射光谱的山西老陈醋产地的判别分析[J].中国食品学报,2010,10(4):267-271.
    [129]陈军辉,谢明勇,傅博强,等.西洋参中无机元素的主成分分析和聚类分析[J].光谱学与光谱分析,2006,26(7):1326-1329.
    [130]王一兵,陈植成,吴卫红,等.基于模糊聚类分析和曲线拟合的FTIR不同产地鸡骨草、毛鸡骨草鉴别分析[J].光谱学与光谱分析,2010,30(4):937-942.
    [131]董顺福,刘洁,董宏博,等.丹参中11种中药金属元素含量测定及聚类分析研究[J].光谱学与光谱分析,2006,26(11):2150-2153.
    [132]周群,孙素琴,梁曦云.枸杞产地的红外指纹图谱与聚类分析法研究[J].光谱学与光谱分析,2003,23(3):509-511.
    [133]王跃飞,文红梅,郭立玮,等.不同产地甘草的聚类分析[J].中草药,2006,37(3):435-439.
    [134]谢青,陈珠灵,洪培山,等.高效液相色谱指纹图谱结合聚类分析法对不同产地穿心莲药材的质量评价[J].光谱实验室,2012,29(4):2392-2397.
    [135]赵杰文,蒋培,陈全胜.雪莲花产地鉴别的近红外光谱分析方法[J].农业机械学报,2010,41(8):111-114.
    [136]魏玉辉.化学计量学在中药复杂体系研究中的应用[M].兰州:兰州大学,2010。
    [137]陈永明,林萍,何勇.基于遗传算法的近红外光谱橄榄油产地鉴别方法研究[J].光谱学与光谱分析,2009,29(3):671-674.
    [138]李水芳;单杨;朱向荣等.近红外光谱结合化学计量学方法检测蜂蜜产地[J],农业工程学报,2011,27(8):350-354.
    [1] Armanino C, Acutis RD, Festa MR. Wheat lipids to discriminate species, varieties,geographic origins and crop years[J]. Anal. Chim. Acta,2002,454:315326.
    [2] Ariyama K, Horita H, Yasui A. Establishment of an inorganic elements measuringmethod for determining the geographic origin of Welsh onion and preliminaryexamination[J]. Bunseki Kagaku,2003,52:969978.
    [3] Sun SM, Guo BL, Wei YM, Fan MT. Multi-element analysis for determining thegeographical origin of mutton from different regions of China[J]. Food Chem.2011,124:1151–1156.
    [4] Ariyama K, Shinozaki M, Kawasaki A. Determination of the geographic origin of rice bychemometrics with strontium and lead isotope ratios and multielement concentrations[J].J. Agric. Food Chem.2012,60:16281634.
    [5] Schw gele F. Traceability from a European perspective [J]. Meat Science,2005,71:164–173.
    [6] Moreda-Pineiro A, Fisher A, Hill SJ. The classification of tea according to region oforigin using pattern recognition techniques and trace metal data [J]. J. Food Compos.Anal.2003,16:195211.
    [7] Li GC, Wu ZJ, Wang YH, et al. Identification of geographical origins of Schisandrafruits in China based on stable carbon isotope ratio analysis [J]. Eur Food ResTechnol,2011,232:797–802.
    [8] Coetzee PP, Steffens FE, Eiselen RJ, et al. Multi-element analysis of south African winesby ICP-MS and their classification according to geographical origin [J]. J. Agric. FoodChem.2005,53:5060–5066.
    [9] Costas-Rodríguez M, Lavilla I, Bendicho C. Classification of cultivated mussels fromGalicia (Northwest Spain) with European Protected Designation of Origin using traceelement fingerprint and chemometric analysis [J]. Anal. Chim. Acta2010,664:121–128.
    [10] Kaoru A, Tanashi N, Tomoaki N. Effects of fertilization, crop year, variety, andprovenance factors on mineral concentrations in onions [J]. J. Agric. Food Chem.2006,54:33413350.
    [11] Ariyama K, Aoyama Y, Mochizuki A, et al. Determination of the geographic origin ofonions between three main production areas in Japan and other countries by mineralcomposition [J]. J. Agric. Food Chem.2007,55:347354.
    [12]Zhao HY, Guo BL, Wei YM, et al. Efects of wheat origin, genotype, and their interactionon multielement fingerprints for geographical traceability journal of agricultural andfood chemistry [J]. J. Agric. Food Chem.2012,60:1095710962.
    [13] Zhao HY, Guo BL, Wei YM, et al. Determining the geographic origin of wheat usingmultielement analysis and multivariate statistics [J]. J. Agric. Food Chem.2011,59:4397–4402.
    [14] Mariavittoria Z, Christophe R. Quétel, Eduardo P, et al. Soil properties, strontiumisotopic signatures and multielement profiles to authenticate the origin of vegetablesfrom small scale regions: illustration with early potatoes from southern Italy [J]. RapidCommun. Mass Spectrom.2011,25:2721–2731.
    [15] Zeng YW, Wang LX, Du J, et al. Correlation of mineral elements between milled andbrown rice and soils in Yunnan studied by ICP-AES [J]. Spectroscopy and SpectralAnalysis,2009,29:14131417.
    [16] Choudhury ATMA, Khnif YM. Magnesium absorption behavior of three Malaysian ricesoil [J]. Pak. J. Biol. Sci.2003,15:13761379.
    [17] K. Chojnacka, A. Chojnacki, H. Górecka, et al.Bioavailability of heavy metals frompolluted soils to plants [J]. Sci. Total Environ.2005,337,175–182.
    [18] M. A. álvarezn and G. Carrillo. Simultaneous determination of arsenic, cadmium, copper,chromium, nickel, lead and thallium in total digested sediment samples and availablefractions by electrothermal atomization atomic absorption spectroscopy (ET AAS)[J].Talanta,2012,97,505–512.
    [19] A. V. S. Carvalho, R. Carvalho, C. M. P. Abreu, et al. Investigations on the Relationshipbetween Extracting (DTPA) Solutions and Plant (Phaseolus vulgaris) in the Uptake ofCadmium and Lead from Latosols [J]. Commun. Soil Sci. Plant Anal.,2011,42,2615–2623.
    [20] A. J. Metson, E. Janice Gibson. Magnesium in New-Zealand siols.5. Disribution ofexchangeable, reserve, and total magnesium in some representative soil profiles [J]. J.Agric. Res.,1977,20,163–184.
    [21] L. Batra, R.P. Dikshit. Effect of exchangeable sodium on geowth and concentration ofexchangeable sodium on growth and concentration of important macronutrients inneedles and stems of4casuarena spp [J]. Plant Soil,1994,167,197–202.
    [22] M. emberyová, J. Barteková, M. Závadská, et al.Determination of bioavailable fractionsof Zn, Cu, Ni, Pb and Cd in soils and sludges by atomic absorption spectrometry [J].Talanta,2007,71,1661–1668.
    [1] Suzuki Y, Chikaraishi Y, Ogawa NO, et al. Geographical origin of polished rice based onmultiple element and stable isotope analyses [J]. Food Chemistry,2008,109(2):470–475.
    [2] Yasui A, Shindoh K. Determination of the geographic origin of brown-rice withtrace-element composition [J]. Bunseki Kagaku,2000,49(6):405-410.
    [3] Kelly S, BaxterM, Chapman S. The Application of Isotopic and Elemental Analysis toDetermine the Geographical Origin of Premium Long Grain Rice [J]. Eur. FoodRes.Technol,2002,214(1):72-78.
    [4] Kawasaki A, Oda H, Hirata T. Determination of strontium isotope ratio of brown rice forestimating its provenance [J]. Jap. Soc. SoilSci Plant Nutri,2002,48(5):635-640.
    [5] Montalvan R, Ando A,Echeverrigaray S.Use of seed protein polymorphism fordiscrimination of improvement level and geographic origin of upland rice cultivars[J].Genetics and Molecular Biology,1998,21:531-535.
    [6] Rhyu MR, Kim EY, Kim SS, et al.Regional differences of four major rice cultivars inKorea by capillary electrophoresis [J].Food Science&Biotechnology,2001,10(3):299-304.
    [7] Osborne BG, Fearn T, Hindle PH. Practical NIR Spectroscopy with Applications in Foodand Beverage Analysis [M]. London: Longman Scientific and Technical,1993.
    [8] Galtier O, Dupuy N, Dréau Y Le, et al. Geographic origins and compositions of virginolive oils determinated by chemometric analysis of NIR spectra [J]. Analytica ChimicaActa,2007,595:136-144.
    [9] Casale M, Casolino C, Oliveri P, et al. The potential of coupling information using threeanalytical techniques for identifying the geographical origin of Liguria extra virgin oliveoil [J]. Food Chemistry,2010,118:163-170.
    [10]袁玉峰,陶站华,刘军贤,等.红外光谱结合主成分分析鉴别不同产地黄柏[J].光谱学与光谱分析,2011,31(5):1258-1261.
    [11] Woodcock T, Downey G, O’Donnell CP. Near infrared spectral fingerprinting forconfirmation of claimed PDO provenance of honey [J]. Food Chemistry,2009,114:742-746.
    [12]李勇,魏益民,潘家荣,等.基于FTIR指纹光谱的牛肉产地溯源技术研究[J].光谱学与光谱分析,2009,29(3):647-651.
    [13] Yu HY, Zhou Y, Fu XP, et al. Discrimination between Chinese rice wines of differentgeographical origins by NIRS and AAS [J]. European Food Research and Technology,2007,225:313-320.
    [14]陈永明,林萍,何勇.基于遗传算法的近红外光谱橄榄油产地鉴别方法研究[J].光谱学与光谱分析,2009,29(3):671-674.
    [15]褚小立,许玉鹏,田高友译.近红外光谱解析实用指南[M],北京:化学工业出版社,2009:220-247.
    [1]曹玉发,臧光楼,曹大庆.产地环境因素对有机大米生长的影响分析[J].江苏食品与发酵,2007,130(3):23-26.
    [2]程方民,刘正辉,张嵩午.稻米品质形成的气候生态条件评价及我国地域分布规律[J].生态学报,2002,22(5):636-642.
    [3]唐玮玮,彭国照,高阳华,等.重庆气候与稻米营养品质的关系研究[J].西南大学学报(自然科学版),2008,30(12):65-69.
    [4] Ni YN, Mei MH, Kokot S. Resolution of HPLC fingerprints of rhizome curcumae byapplication of chemometrics [J]. Journal of Liquid Chromatography&RelatedTechnologies,2011,34:1952–1964.
    [5]程方民,钟连进.不同气候生态条件下稻米品质性状的变异及主要影响因子分析[J].中国水稻科学,2001,15(3):187-191.
    [6]彭国照,王景波.安宁河流域稻米生化品质的气候关系模型[J].应用与环境生物学报,2005,11(2):134-137.
    [7]彭国照,柏建,王景波.安宁河流域稻米蛋白质、氨基酸含量与气象条件的关系[J].中国农业气象,2004,25(3):45-48.
    [8]彭国照,柏建,王景波.安宁河流域稻米生化品质与气候条件的关系[J].应用生态学报,2004,15(12):2277-2281.
    [9]李红,田福林,刘成雁等.气相色谱-串联质谱法测定不同产地大米中的角鲨烯[J].分析测试学报,2011,30(10):1179-1182.
    [10]李红,刘成雁等. GC-MS法对不同产地大米的快速鉴定[J].分析测试学报,2011,30(9):1059-1062.
    [1] Dmam L, van Ruth SM. An overview of analytical methods for determining thegeographical origin of food products [J]. Food Chem,2008,107:897–911.
    [2] Choi JY, Bang KH, Han KY, et al. Discrimination analysis of the geographical origin offoods. Korean J Food Sci Technol [J].2012,44:503525.
    [3] Yasui A, Shindoh K. Determination of the geographic origin of brown-rice withtrace-element composition. Bunseki Kagaku [J].2000,49:405–410.
    [4] Kelly S, Baxter M, Chapman S, et al. The application of isotopic and elemental analysis todetermine the geographical origin of premium long grain rice. Eur Food Res Technol [J].2002,214:72–78.
    [5] Kawasaki A, Oda H, Hirata T. Determination of strontium isotope ratio of brown rice forestimating its provenance. Soil Sci Plant Nutr [J].2002,48:635–640.
    [6] Cho YS, Han KY, Kim JH, et al. Application of electronic nose in discrimination of thehabitat for black rice. Korean J Food SciTechnol [J].2002,34:136–139.
    [7] Ariyama K, Shinozaki M, Kawasaki A. Determination of the geographic origin of rice bychemometrics with strontium and lead isotope ratios and multielement concentrations [J].J Agric Food Chem2012,60:16281634.
    [8] Schw gele F. Traceability from a European perspective [J]. Meat Sci2005,71:164–173.
    [9] Moreda-Pineiro A, Fisher A, Hill S J. The classification of tea according to region oforigin using pattern recognition techniques and trace metal data [J]. J Food Compos Anal,2003,16:195211.
    [10] Costas-Rodríguez M, Lavilla I, Bendicho C. Classification of cultivated mussels fromGalicia (Northwest Spain) with European Protected Designation of Origin using traceelement fingerprint and chemometric analysis [J]. Anal Chim Acta.2010,664:121–128.
    [11] Zeng YW, Wang LX, Du J, et al. Correlation of mineral elements between milled andbrown rice and soils in Yunnan studied by ICP-AES [J]. Spectrosc Spect Anal2009,29:1413417.
    [12] Shen SG, Xia LY, Xiong N, et al. Determination of the geographic origin of rice byelement fingerprints and correlation analyses with the soil of origin. Anal Methods [J].2013,5:6177–6185.
    [13] Di Bella G, Lo Turco V, Potortí A G, et al. Classification of the geographical origin ofItalian donkey’s milk based on differences in inorganic anions [J]. Food Addit ContamPart A2012,29:1021–1029.
    [14]余卫娟,张杰,殷月芬等.离子色谱法测定茶叶中无机阴离子及其用于茶叶的分类[J].理化检验-化学分册,2012,48(3):272–279.
    [15] Khan MSA, Hamid A, Salahuddin ABM, et al. Effect of sodium chloride on growth,photosynthesis and mineral ions accumulation of different types of rice (Oiyza sativa L.).J Agronomy Crop Sci [J].1997,179:149–161.
    [16] Cemek M, Akkaya L, Birdane YO, et al. Nitrate and nitrite levels in fruity and naturalmineral waters marketed in western Turkey [J]. J Food Compos Anal2007,20:236–240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700