用户名: 密码: 验证码:
络合物的形成对对苯醌的费米共振的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费米共振是一种广泛存在于分子内和分子间的分子振动耦合和能量转移现象。费米共振研究不仅在物理学中的分子振动电子态相互耦合,分子结构与性能等研究中有重要理论意义,而且在材料、生物、化学中的谱线认证、归属、酶分子构型的确定,抗癌药物疗效的考证,地质学中包裹分析,晶体中杂质检测,声学、光学器件研制等都有重要应用。随着光学仪器和量子力学的进步和发展,费米共振研究不断深入,研究结果表明,费米共振蕴藏着丰富的理论和应用潜力。费米共振还有很多规律有待认知,还有很多实际应用问题有待解决。
     我们用改变二元溶液浓度的方法研究了CS2在C6H6中费米共振的变化;通过改变联苯分子的压强,分析了压强对联苯分子费米共振的影响;使用液芯光纤技术获得了对苯醌与脯氨酸形成络合物的拉曼光谱并探讨了对苯醌与脯氨酸相互作用生成络合物对对苯醌分子费米共振的影响,取得了以下创新性成果:
     (1)二元溶液(CS2在C6H6中)不同浓度对费米共振的影响
     发生费米共振的因素除分子内部因素外,还与分子所处的物质形态,环境等有很大的关系。对气态、液态、固态的费米共振等已有很多人员进行了研究。在溶液中,溶质和溶剂分子间发生各种相互作用,会引起分子某些基团的振动频率、散射系数(相对强度)发生变化,这些变化都会引起分子的费米共振现象的改变。频率变化对费米共振影响研究较多,而相对强度变化对费米共振影响的研究还未见过报导。
     因此,我们测量了CS:在C6H6中不同浓度的拉曼光谱。并观察到溶液中的ν1-2ν2费米共振明显与纯CS2中不同。用J. F. Berttern方程,计算了费米共振特性参数。结果表明,随着浓度降低,两光谱强度比R减小,耦合系数W增加,其它参数△、△0、K122等也发生相应变化。实验中还观察到ν1和2ν2线并非对称移动,利用G. Fini, D. G. Rea等人的溶剂效应研究结果给予了解释,即此现象是由溶剂效应和CS2在C6H6中的ν1谱线散射系数(相对强度)发生较大变化引起的。研究结果表明,当两振动光谱频率差、光谱强度差都较大时,J.F. Berttern公式应该加以修正。此研究对溶液中谱线认证及理解费米共振微观机理有参考意义。
     (2)压力对联苯分子的费米共振的影响
     随着有机光电二极管和激光器的迅猛发展,聚苯化合物在光电器件方面的应用备受关注,振动光谱可以给出丰富的分子空间构象信息,对于此类聚合物的费米共振的研究也成为讨论的热点。
     因此,我们测量了0-15GPa压强下联苯分子的拉曼光谱。实验结果表明,随压强增加,分子内和分子间π-π共轭和离域效应增强,谱线的绝对强度变大、蓝移。联苯分子的两费米共振谱线强度比R。减少,频率差△增加,当压强为8GPa时,费米共振现象消失,利用J. F. Betran理论得出了固有频率差△0和耦合系数W随压强的变化关系,通过高压下相变进行了解释,并探讨了高压下费米共振耦合变弱的机理。
     (3)络合物的产生对对苯醌费米共振的影响
     费米共振是简单分子中普遍存在的现象如:CO2、CS2中的费米共振已有大量研究文章。那么在复杂的大分子、络合物、聚合物中更是存在着很多费米共振现象。我们在研究过程中发现在络合物、聚合物研究中一些谱线难以归属的原因之一就是往往没有考虑到费米共振现象。在络合物中由于分子间的相互作用,使某些基团振动频率、偶极矩、极化率发生变化,或者由于配位等作用使基团对称性发生变化。这些因素会使参与络合的分子原有的费米共振发生变化,也可能产生新的费米共振。
     本文对对苯醌与氨基酸相互作用生成n-π*电荷转移络合物的费米共振进行了研究。对苯醌与氨基酸相互作用研究一直是备受关注的热门课题。关于两种分子相互作用生成什么产物也是多年一直争论的话题。本文的研究证明了:不同的pH值产生不同的产物,在强碱性(pH=11)的条件下生成电荷转移络合物。在已进行的光谱法研究中所获得的络合物拉曼光谱强度都比较弱小。本研究使用Teflon液芯光纤共振拉曼技术,大幅度的提高了拉曼光谱强度,获得了高质量的10-4 M浓度的对苯醌与脯氨酸生成的络合物的拉曼光谱,将其与对苯醌的拉曼光谱相比较发现有很大的变化,其变化的机理是络合物形成过程中脯氨酸的N原子上的自由电子转移到对苯醌的π反键轨道上,处于激发态脱离刀轨道的电子云使对苯醌的C=O、C=C、C-C苯环等基团振动频率、极化率等发生不同程度的变化,与其相关的费米共振也发生了变化。本文对形成络合物后的对苯醌的C=O、C-C键的费米共振进行了分析,并与文献中的结果进行了比较。结果是C=0键的费米共振发生很大变化而C-C键的费米共振变化很小。这一定性分析结果对络合物的光谱研究中的谱线的归属、认证给出了一种思路和线索。
Fermi resonance is a widely present in the intramolecular and inter-molecular vibration coupling and energy transfer phenomena. The research of Fermi resonance, has theoretical significance in the coupling between electronic states of molecular vibration and molecular structure research of Physics. And it also has been widely used in subjects such as Material science, Biology, Chemistry. Medical, Geology, Acoustics and Optics. By the development of optical instruments and Quantum Mechanics, Fermi resonance studies have advanced by scientists, and the results have proved this research has great potential. There are still many questions waiting about Fermi resonance to be confirmed.
     We had studied the Fermi resonance in the solution of two constituents with the method of change the concentration of the solution, and the solution contain CS2 and C6H6; by changing the pressure of biphenyl molecule, we analyzed the effect of pressure on the biphenyl molecule's Fermi resonance; we also used liquid-core optical fiber to get the Raman spectra of proline-benzoquinone complex, studied the effect of the complex on the p-Benzoquinone's Fermi resonance, and achieved the following results of innovative:
     (1) Effect of different concentration binary solution (CS2 inside of C6H6) to Fermi resonance
     Except for molecular internal factors of Fermi resonance, its also has a great relationship to physical form, the environment of molecular. Gaseous, liquid, solid-state Fermi resonance has been studied by a lot of staff. In solution, various interactions in solute and solvent molecules will cause certain groups molecular vibration frequencies and scattering coefficient (relative intensity) changes, all this changes will cause changes of molecular Fermi resonance. The study for impact of frequency change to Fermi resonance has been done by lots of people, but the study for effect of relative intensity to the Fermi resonance have not yet seen the report.
     Therefore, we measured the Raman spectra of C6H6 and CS2 in different concentrations and observed the Fermi resonance which is obviously different with pure CS2.We calculated the characteristic parameters with the equation of J.F.Berttern. The results state clearly that the ratio of the two spectral intensity decreases, the coupling coefficient increases and other parameters also change by the reduction of concentration. We also observed that the line v1and 2v2are not moving symmetrically which is explained by G.F ini and D.G.R effects. That is. this phenomenon is caused by solvent effects and great changes have taken place in the spectrum line scattering coefficient (relative strength). The results of the study show that the J.F.Berttern formula should be revised when two vibration spectral frequencies and spectral intensity have big difference. The study has significant reference meaning on solution spectral lines and understanding the Fermi resonance authentication microscopic mechanism.
     (2) Effects of pressure on biphenyl's Fermi resonance
     As organic photodiode and laser device developing rapidly, the use of polyphenylene compound in photoelectric devices has caused great attention. Since vibration spectrum contains conformational information of molecular space. research on Polymer's Fermi resonance has become hot issue.
     In this experiment. Raman spectrum of biphenyl molecule has been measured under the pressure of 0-15GPa. Result shows that as pressure increase, the intramolecular and intermolecularπ-πconjugation and delocalization effect enhanced and the absolute intensity of spectral line increased and blue shifted. The ratio (R(?)) of intensity of biphenyl molecule's Fermi resonance line decreased and the frequency difference increased. When pressure reached 8GPa. Fermi resonance disappeared. The relationship between natural frequency differenceΔ0 and coupling constant w under different pressure can be calculated with J. F. Betran's Theory and interpreted by high pressure phase transition approach. In the paper also discussed Fermi resonance coupling's weakening mechanism under high pressure.
     (3) The effects of formation of complexOn the Fermi resonance of p-benzoquinone
     Fermi Resonance is the phenomenon commonly found in simple molecules, and it has so many papers for the fermi Resonance researching of CO2, CS2. So accordingly there is more Fermi Resonances in complex molecules, complexes, polymers. In the course of the study, we find that some Spectrums in the complex, polymer are difficult to confirm the source, which is largely due to losing sight of the Fermi Resonance phenomenon. In the complex, the interaction between molecules would change some groups vibration frequency, dipole moment and polarization ratios. Simultaneously the Groups symmetry-may be transformed by the role of coordination too. All these factors would make a difference of the previous Fermi Resonance in the involved complex molecules.or produce new Fermi resonance.
     This paper studied the complex's Fermi resonance, the n-πcharge transfer complex is produced by the interaction between p-benzoquinone and amino acids. The interaction between p-Benzoquinone and amino acid has been hot topics of concerning in the physics. Similarly, the topic for the products of Interaction between the two molecules has been arguing for years. In the work, the present result confirm:different pH values produce different products, and it would creat new complex with electric charge transferring in the condition of Alkaline (pH=11). In the spectrometry research, we obtained complex Raman intensities are relatively weaker. Our research used Teflon resonance Raman spectra in liquid-core optical fiber technology, enhanced the Laman spectral intensity greatly, and gained high quality Raman spectra of the 10-4M proline-benzoquinone complex. There are great changes when comparing this spectra with the Raman spectra of p-benzoquinone. The reason is. during the complex formation proline's free electron which was belong to the N atom transfered to theπanti-bonding orbital of p-benzoquinone, the electron cloud in excited state that had left the orbit changed vibration frequency and polarization of p-benzoquinone's C=O,C=C,C-C bond, the related Fermi resonance is also changed.
     This article has analyze the Fermi resonance of benzoquinone C=O. C-C bond after forming complex, and also compare to the result of document. The result is that C=O bond Fermi resonance change enormous but C-C bond Fermi resonance changes little. idea and clue have been given by this result about spectral line attribution and certification in complex spectroscopy.
引文
[1]FERMI E. Uber den Raman effekt des Kohlendioxyds. [J]. Z. Phys.1931,71:250-256.
    [2]吴国桢.分子振动光谱学——原理与研究[M].北京:清华大学出版社,2001.
    [3]AMAT G. PIMBERT M. On Fermi Resonance in Carbon Dioxide. [J]. Molecular Spectroscopy.1964,16:278-290.
    [4]BERERAN J F. BALLESTER L and DOBRIHAOVAN L. Study of Fermi Resonance by The Method of Solvent Variation. [J]. Spectrochim. Acta part A.1968,24: 1765-1776.
    [5]ZIFFER H. CHARNEY E and BECKER D W. Molecular Vibrations of Quinones. Ⅲ. Preparation and Infrared Spectra (Solution and Vapor) of p-Benzoquinone-d1, p-Benzoquinone-2,5-d2, p-Benzoquinone-2,6-d2, p-Benzoquinone-18O2, and p-Benzoquinone-d4-18O2, [J]. Chem. Phys.1965,42:914-926.
    [6]WOHAR M M. SEEHRA K J. and JAGODZINSKI W P. Correlation Between Solvent-Induced Vibrational Frequency Shifts of The C=O Moiety and Solvent Electron Acceptor Number:Tetramethylurea. [J]. Spectrochim. Acta 1988,44A:999-1006
    [7]NYQUIT A R. KIRCHNER M T. and FOUCHEA A H. Vibrational Frequency Shifts of the Carbonyl Stretching Mode Induced by Solvents:Actone. [J]. Appl. Spectrosc.1989, 43:1053-1059
    [8]FAWEETT R W. and KlossKLOSS A A. Solvent-Induced Frequecny Shifts in The Infrared Spectrum of Dimethyl Sulfoxide in Organic Solvents. [J]. Phys. Chem,1996, 100:2019-2024.
    [9]MONECKE J. Theory of Fermi Resonances in Raman and Infrared Spectra. [J]. Raman. Spectroscopy.1987,18:477-479.
    [10]曾谨言.量子力学导论[M].北京:北京大学出版社,2004
    [11]BERTRAN F. J. and SERNA L. B. Study of The Fermi Doublet v1-2v2 in The Raman Spectrum of Liquid Carbon Disulphide by The Solvent Variation Method and The Modified Winther Method. [J]. Raman. Spectroscopy.1989,20:419-421.
    [12]BIER D. K. and JODL J. H. Tuning of The Fermi Resonance of CO, and CS2 by Temperature, Pressure and Matrix material. [J]. Chem. Phys.1987,86(8):4406-4410.
    [13]JAN A. SANDERS. Second Quantization and Averaging:Fermi Resonance. [J]. Chem. Phys.1987,74(10):5733-5736.
    [14]VAZQUEZ J. and STANTON F J. Treatment of Fermi Resonance Effects on Transition Moments in Vibrational Perturbation Theory. [J]. Molecular Physics.2007, 105:101-109.
    [15]HALONEN L. Theoretical Study of Vibrational Overtone Spectroscopy and Dynamics of Methanol. [J]. Chem. Phys.1997,106:7931-7945.
    [16]MONTRO S. Raman Intensities of Fermi Diads. I. Overtones in Resonance with Nondegenerate Fundamentals. [J]. Chem. Phys.1983,79:4091-4100.
    [17]杜传梅,季学韩,崔执凤,分子振动光谱中费米共振效应的理论研究, [J].原子与分子物理学报,2007,24:178-182.
    [18]OSTROVSKII D. and EDVARDSSON M. Weak Polymer-Electrolyte Interaction Revealed by Fermi Resonance Perturbed Raman Bands. [J]. Raman Spectrosopy. 2002,34:40-49.
    [19]王锡绂。新编量子力学[M].长春:东北师范大学出版社,2004
    [20]ROBERT M. SILVERSTEIN and FRANCI S X. WEBSTER. Spectrometric Identification of Organic Compounds. [M]. New Jersey:John Wiley & Sons,2005
    [21]REA G D. Study of Experimental Factors Affecting Raman Band Intensities in Liquids. [J]. The Optical Society of America.1959; 49:90-101.
    [22]FINI G. and MIRONE P. Solvent Effects on Raman Band Intensities. [J]. Molecular Spectroscopy.1968,28:144-160.
    [23]TSE S W. and LIN J S. Laser Raman Studies of Solid Tetrachloride. [J]. Chinese Journal of Phpysics.1987.25:581-589.
    [24]ABE N. WAKAYAMA M. Absolute Raman Intensities of Liquids. [J]. Raman. Spectroscopy. 1977,6:38-41.
    [25]KONDRATYUR P. Analytical Formulas for Fermi Resonance Interaction in continuous Distributions of States. [J]. Spectrochim. Acta part A.2005,61:589-593.
    [1]MCHALE J L. Molecular Spectroscopy [M]. Beijing:Science Press,2003.
    [2]薛奇.高分子结构研究中的光谱方法[M].北京:高等教育出版社
    [3]程昱川.几类层状超薄膜结构的分子光谱研究[D].长春:吉林大学,2006.
    [4]LEVIS R. Handbook of Raman Spectroscopy:From the Research Laboratory to the Process Line [M]. New York:Marcel Dekker,2001.
    [5]SMITH E, DENT G. Morden Raman Spectroscopy:A Practical Approach [M]. Chichester:John Wiley & Sons,2005.
    [6]RAGHAVACHARI R. Near-Infrared Applications in Biotechnology [M]. New York: Marcel Dekker,2001.
    [7]AROCA R. Surface-enhanced Vibrational Spectroscopy [M]. Chichester:John Wiley & Sons,2006.
    [8]JENSEN P, BUNKER P R. Computational Molecular Spectroscopy [M]. Chichester: John Wiley & Sons,2000.
    [9]HAMMES G G. Spectroscopy for the Biological Sciences [M]. New Jersey:John Wiley & Sons,2005.
    [10]FAYER M D. Ultrafast Infrared and Raman Spectroscopy [M]. New York:Marcel Dekker,2001.
    [11]吴征铠.唐敖庆主编.分子光谱学专论.[M].济南:山东科学技术出版社,1999.
    [12]吴国桢.分子振动光谱学[M].北京:清华大学出版社,2001.
    [13]钱伯初.量子力学[M].北京:高等教育出版社,2006.
    [14]柯以侃.董慧茹.分析化学分册:第三册光谱分析[M]。北京:化学工业出端版社,1998.
    [15]MEISTER A G, CLEVELAND F F. Interpretation of the spectra of polyatomic molecules by use of group theory [J]. American Journal of Physics.1943,11: 239-247.
    [16]王兆民.吴宗凡.王奎雄.红外光谱学[M].北京:人民教育出版社,1995
    [17]陆婉珍.当代中国近红外光谱技术[M].北京:中国石化出版社,2007.
    [18]AGOSTINI F. VUILLEUMIER R. CICCOTTI G. Infrared Spectroscopy and Effective Modes Analysis of The Protonated Water Dimmer H+(H2O)2 at Room Temperature under H/D Substitution [J]. J. Chem. Phys.2011.1.34:084303-084313.
    [19]PETER F. Spectra of Atoms and Molecules [M]. OXFORD UNIVERSITY PRESS.1995.
    [20]LONG D A. The Raman Effect:A Unified Treatment of the Theory of Raman Scattering by Molecules [M]. Chichester:John Wiley & Sons,2002.
    [21]吴国桢.分子振动光谱学——原理与研究[M].北京:清华大学出版社,2001
    [22]郑顺旋.激光拉曼光谱学[M].上海:上海科学技术出版社,1985
    [23]曾谨言.量子力学导论[M].北京:北京大学出版社,2004
    [24]MAHER S. AMER. Raman Spectroscopy for Soft Matter Applications [M]. New Jersey:John Wiley & Sons,2009.
    [25]Menzies A C. The Raman Effect [J]. Nature.1930,125:205-207
    [26]STUART B. Infrared Spectroscopy:Fundamentals and Applications. [M]. New Jersey:John Wiley & Sons,2004
    [27]PETER R. Fourier Transform Infrared Spectrometry. [M]. New Jersey:ohn Wiley & Sons,2007
    [28]AVIEMORE. SCOTLAND U K. Laser Spectroscopy. [M]. World Scientific,2005
    [29]乔惠君,李雪飞,黄洪亮,傅立叶变换近红外拉曼光谱技术研究介绍,[J].河北建筑工程学院学报,2007,25:45-47.
    [30]WALRAFEN E G. and STONE J. Intensification of Spontaneous Raman Spectra by Use of Liquid Core Optical Fiber. [J]. Applied Sprctroscopy.1972,26:585-589.
    [31]QI D. BERGER A J. Quantitative Concentration Measurements Creatinine Dissolved in Water and Urine Using Raman Spectroscopy and a Liquid Core Optical Fiber. [J]. Biomed Opt.2005,10:031115(1-9)
    [32]DALLAS T. DASGUPTA P K. Light at the End of the Tunnel:Recent Analytical Applications of Liquid — Core Waveguides. [J]. Trend in Analytical of Chemistry.2004,23:385-392.
    [33]DIJKSTRA R J. BADER A N.et al On-Line Coupling of Column Liquid Chromatography and Raman Spectroscopy Using a Liquid Core Waveguide. [J]. Anal. Chem.1999,71:4575-4579.
    [34]PELLETIER J M. ROBERT A. Raman Sensitivity Enhancement for Aqueous Protein Samles Using a Liquid-Core Optical-Fiber Cell. [J]. Anal. Chem.2001, 73:1393-1397.
    [35]HOLTZ M. DASGUPTA K P. Small-Volume Raman Spectroscopy with a Core Waveguide. Anal. Chem.1999,71:2934-2938.
    [36]高压物理讲义(参考资料), 吉林大学超硬材料国家重点实验室
    [37]BUNDY F P. HALL H T.STRONG H M. Man-made Diamonds [J]. NATURE 1955, 176:51-58.
    [38]王超,具有特殊结构的硅酸盐的高温高压合成与表征,吉林大学博士学位论文,2006,6
    [39]SUNG C M. A Century of Progress in the Development of Very High Pressure Apparatus for Scientific Research and Diamond Synthesis [J]. High Temperature High Pressure 1997,29:253-259.
    [1]MENG Q T, ZHENG Y J, DING S L. Algebraic Approach to Fermi Resonance Levels of CS2 and CO2. [J]. Int. J. Quantum Chem.2000,81:154-161.
    [2]GARDINI G. Anharmonic Interactions and Fermi Resonance in Crystals CS2. [J]. Chem Phys.1987,117:341-353.
    [3]高小玲、巴特勒LS,克莱默R,范贤俊,DNA浓度与其Raman光谱强度间的线性相关的分析,[J].激光生物学报.1998,7:142-145.
    [4]曹彪、左剑、里佐威、欧阳顺利、高淑琴、陆国会、姜永恒CS2在C6H6中的弱费米共振特性及对Bertran公式修正,[J].物理学报.2009,58:3538-3542.
    [5]陈勇、周瑶琪、倪培一种获取包裹体内压的新方法——二氧化碳拉曼光谱法,[J].岩矿测试2006.25:211-214.
    [6]GROSS M. MULLER D C. NOTHOFER H G. et al. Improving the Performance of Doped π-conjugated Polymers for Use in Organic Light-Emitting Diodes. [J]. Nature. 2000.405:661-665
    [7]SCHON J H. KLOC C. DODABALAPUR A. BATLOGG B. An Organic Solid State Injection Laser. [J]. Science.2000,289:599-601.
    [8]HEIMEL G. SOMITSCH D. KNOLL P, ZOJER E. "Ab Initio Study of Vibrational Anharmonic Coupling Effects in Oligo(para-phenylenes)". [J]. Chem. Phys.2002.116: 10921-10931.
    [9]周密,张鹏.刘铁成,许大鹏,姜永恒.高淑琴,里佐威 压强对苯分子费米共振的影响.[J]物理学报.2010,59:210-214.
    [10]ALMENNINGEN A. BASTIANSEN O. et al. Structure and Barrier of Internal Rotation of Biphenyl Derivatives in the Gaseous State:Part 1. The Molecular Structure and Normal Coordinate Analysis of Normal Biphenyl and Pedeuterated Biphenyl. [J]. Mol Struct.1985,128:59-76.
    [11]ROBERTS R M G Conformational Analysis of Biphenyls Using 13C NMR Spectroscopy [J]. Magn. Reson. Chem.1985.23:52-54.
    [12]EATON V J. STEELE D. Dihedral Angle of Biphenyl in Solution and the Molecular Force Field. [J]. Chem. Soc., Faraday Trans.1973,69:1601-1608.
    [13]WILSON E B. A Partial Interpretation of the Raman and Infrared Spectra of Benzene. [J]. Phys. Rev.1934.46:146-147.
    [14]SANDRONI S. GEISS F. Infra-red and Raman Spectra of Symmetrically Deuterated Biphenyls. [J]. Spectrochim. Acta Part A 1966,22:235-249.
    [15]BREE A. PANG C Y. RABENECK L. The Raman Spectrum of Biphenyl and Biphenyl-d10 [J]. Spectrochim. Acta Part A.1966,22:235
    [16]TAKAHASHI C. MAEDA S. Raman Spectra of Biphenyl Negative Ion in Tetrahydrofuran Solution. [J]. Chem. Phys. Lett.1974,24:584-588.
    [17]BREE A. ZWARICH R. TALIANI C. Raman Excitation Profiles for Some Ag Modes of Biphenyl in the Pre-Resonance Region. [J]. Chem. Phys.1982.70:257-267.
    [18]RUMI M. ZERBI G. Conformational Dependence of Linear and Nonlinear Molecular Optical Properties by AB Initio Methods:the Case of Oligo-p-phenylenes. [J]. Chem. Phys.1999.242:123-140.
    [19]CHARBONNEAU G P. DELUGARD Y. Biphenyl:Three-Dimensional Data and New Refinement at 293 K. [J]. Acta Cryst.1977.33:1586-1588.
    [20]MURUGAN N A. JHA P C. YASHONATH S. RAMASESHA S. High Pressure Phase of Biphenyl at Room Temperature:A Monte Carlo Study. [J]. Phys. Chem. B. 2004,108:4178-4184.
    [21]BERTRAN J F. BALLESTER L. Study of Fermi Resonance by the Method of Solvent Variation. [J]. Spectrochim. Acta.1968,24A:1765-1776.
    [1]GARCIA V R. HIATA S. Fermi Resonance in CO2:A Combined Electronic Coupled-Cluster and Vibrational Configuration-Interaction Prediction. [J]. Chem. Phys.2007,126:124303-124308
    [2]BARNES G L. EDWUN L S. An Equilibrium Focused Approach To Calculating The Raman Spectrum of The Symmetric OH Stretch in Formic Acid Dimmer. [J]. Molecular Spectroscopy.2008,249:78-85.
    [3]MERAJVER D S. LAPIDUS C. Intermolecular Interactions and Fermi Resonance in Methylene Groups. [J]. Chem. Phys.1982,76:3344-3345.
    [4]ISHIBASHI Y. MISHINA T. NAKAHARA J. High Pressure and Effective Negative Solvation Pressure. [J]. Phys. Stat. Sol.(b).2006,243:1159-1164.
    [5]CHAKRABORTY T. RAI S N. Comparative Study of Infrared and Raman Spectra of CC14 in Vapour and Condensed Phases:Effect of LO-TO Splitting Resulting From Hetero-Isotopic TD-TD Interactions. [J]. Spectrochimica Acta Part A.2006.65: 406-413.
    [6]KONDRATYUK P. Analytical Formulas for Fermi Resonance Interactions in Continuous Distributions of States. [J]. Spectrochimica Acta Part A.2005.61:589-593.
    [7]MICHAEL E K. LIN X. New Assignment of Fermi Resonance Spectra. [J]. Chem. Phys.1990,93:5821-5825.
    [8]GAO S Q, HE J N, LI R F, ZUO J, LI Z K, CAO B, LI Z W. Study of the Raman Spectrum of CCl_4 Fermi Resonance. [J]. Spectroscopy and Spectral Analysis.2007. 27:2042-2044 (in chinese)[高淑琴、贺家宁、李荣福、左剑、李兆凯、曹彪、 里佐威,四氯化碳费米共振的拉曼光谱研究,光谱学与光谱分析.2007,272042-2044.
    [9]TINI G. Solvent Effects on Raman Band Intensities. [J]. Mol.Spec.1968.28:144-160.
    [10]ASUNDI R K. and PADHYE E M. Fermi Resonance in Benzene. [J]. Nature.1949, 163:638.
    [11]RANSON P. and OUILON R. Fermi Resonance States in Nature Isotopically Mixed CS2 Crystal. [J]. Chem. Phys.1992.96(9):6348-6357.
    [12]MCGEE C K. CAPITANO T A. and GRASSION H V. Effect of Adsorption on a Fermi Resonance. [J]. American Chemical Society.1994,10:632-634.
    [13]MAKI G A. and SAMS L R. Infrared Spectrum of CS2:"Hot" Band Associated with The 2185cm-1 Band and Evidence for The CS2 Laser Assignment. [J]. Molecular Spectroscopy.1974.52:233-243.
    [14]MENDELSOHN R. and MONSE E. Vibrational Spectroscopy of CS2:A Physical Chemistry Experiment. [J]. Chem. Educ.1981,58(7):582-588.
    [15]STRETHLE F. and DORFMULLER T. Raman Spectroscopic Study of Single Particle Dynamics of CS2 in Liquid Binary Mixtures with CCL4. [J]. Molecular Physics. 1993.80:449-460.
    [16]BERTRAN J F. BALLESTER L. DOBRINHALOVA L. Study of Fermi Resonance by The Method of Solvent [J]. Spectrochimica Acta,1968,24A: 1765-1776.
    [17]BHAGAVANTOM S. The Infrared and Raman Spectra of CS2. [J]. Phys. Rev.1932. 39:1020.
    [18]KONINGSTEIN A J. Intensities in Raman Effect and Complex Formation of CS2. [J]. Recueil des Travaux Chimiques des Pays-Bas.1964.83:315-321.
    [19]NEUEFEIND J. FISCHER E H. and IDRISSI A. The Structure of Liquid Carbon Dioxide and Carbon Disulfide. [J]. Chemical Physics.2009,130:174503-174511.
    [20]MANIADIS P. and AUBRY S. Targeted Energy Transfer by Fermi Resonance. [J]. Physica D.2005,20:200-217.
    [21]STRIDE A J. and DALLIN H P. Intermolecular Fermi Resonance. [J]. Chemical Physics.2003,119:2747-2752.
    [1]ISHIBASHI Y. MISHINA T and NAKAHARA. Intermolecular Interaction of Carbon Disulfide Under Pressure(high pressure and effective negative solvation pressure). [J]. Phys. Stat. Sol. (b).2006.243:1159-1164.
    [2]BARNES G L and EDWIN L S. An Equilibrium Focused Approach to Calculating the Raman Spectrum of The Symmetric OH Stretch in FormicAcid Dimmer. [J]. Molecular Spectroscopy.2008,249:78-85
    [3]STRIDE J A. DALLIN P H and JAYASOORIYA U A. Intermolecular Fermi Resonance. [J]. Chem. Phys.2003,169(5):2747-2752.
    [4]CHAKRABORTY T and RAI S N. Comparative Study of Infrared and Raman Spectra of CC14 in Vapour and Condensed Phases:Effect of LO—TO Splitting Resulting From Hetero-Isotopic TD-TD Interactions. [J]. Spectrochimica Acta part A.2006,65: 406-413.
    [5]KONDRATYUK P. Analytical Formulas for Fermi Resonance Interactions in Continuous Distributions of States. [J]. Spectrochimica Acta part A.2005,61: 589-593.
    [6]MICHAEL E K. LIN X. New Assignment of Fermi Resonance Spectra. [J]. Chem. Phys. 1990,93:5821-5825.
    [7]ANNA S. and ZBGNIEW K. Inter-and Intra-molecular Coupling and Fermi Resonance in the Raman Spectra of Liquid Water. [J]. Raman Spectroscopy.1986, 17(1):29-33.
    [8]GARCIA V R and HIRATA S. Fermi Resonance in CO2:A Combined Electronic Coupled-Cluster and Vibrational Configuration-Interaction Prediction. [J] Chem. Phys. 2007.126:124303-124308.
    [9]BERTRAN J F. and SERNA B L. Study of The Fermi Doublet vl-2v2 in The Raman Spectrum of Liquid Carbon Disulphide by The Solvent Variation Method and The Modified Winther Method. [J]. Raman Spectroscopy.1989.20:419-421.
    [10]张祥麟.络合物化学[M].北京:冶金工业出版社,1979.
    [11]慈云祥.分析化学中的多元络合物[M]。北京:科学出版社,1999
    [12]SANTOS P S and GONCALVES N S. Resonance Raman Investigation of the Interaction of Benzoquinone with Amino Acids. [J]. Raman Spectroscopy.1989,20: 547-550
    [13]TIAN Y J. ZHANG L Y. ZUO J and Li Z W. Raman Sensitivity Enhancement for Aqueous Absorbing Sample Using Teflon-AF 2400 Liquid Core Optical Fibre Cell. [J]. Analytica Chimica Acta.2007.581:154-158.
    [14]Li Z W, GAO S Q. SUN X and SUN C L. Study on Raman Spectrum Intensity Depending on Temperature with Optical-Fiber Method. [J]. Chemical Physics Letters. 2000,325:627-630.
    [15]Li Z W, Li J and GAO S Q. Resonance Raman Spectrum of β-Carotene in Liquid-Core Optical Fiber. [J]. Jpn. J. Appl. Phys.1998,37:1889-1891.
    [16]Li Z W. GAO S Q. SUN X. et al. Effect of Optical Fiber Loss on Resonance Raman Spectra of Sample with Low Concentration. [J]. Spectrosc. Lett.2001,34(5): 569-578.
    [17]STAMMREICH H and SANS T T. Molecular Vibrations of Quinones. Ⅳ. Raman Spectra of p-Benzoquinone and Its Centrosymmetrically Substituted Isotopic Derivatives and Assignment of Observed Frequencies. [J]. Chem. Phys.1965.42(3): 920-932.
    [18]DUNN T M and FRANCIS A H. The Ground State Fundamentals of p-Benzoquinone and p-Benzoquinone-d4. [J]. Molecular Spectroscopy.1974.50:1-13.
    [19]ZIFFER H. CHARNEY E and BECKER D W. Molecular Vibrations of Quinones. Ⅲ. Preparation and Infrared Spectra (Solution and Vapor) of p-Benzoquinone-d1, p-Benzoquinone-2.5-d2,p-Benzoquinone-2.6-d2. p-Benzoquinone-18O2. and p-Benzoquinone-d4-18O2, [J]. Chem. Phys.1965,42:914-926.
    [20]OKAMOTO H. and KODA T. Pressure-Induced Neutral-to-Ionic Phase Transition in Organic Charge-Transfer Crystals of Tetrathiafulvalene-p-Benzoquinone Derivat [J]. physical Review. B.1989,39:10693-10701.
    [21]GOODMAN J and BRUS L E. Distant Intramolecular Interaction Between Identical Chromophores:The n-π* Excited States of p-Benzoquinone. [J]. Chem. Phys. 1965.42(3):1604-1612.
    [22]1ROSSETTL R and BECK S M. Resonance Raman Inuestigation of the π* Antibonding Distribution in Excited Triplet Aqueous p-Benzoquinone. [J]. Phys. Chen.1983,87:3058-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700