用户名: 密码: 验证码:
水溶性3H-吲哚菁型生物荧光标示染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生命科学的发展,迫切需要高灵敏度的分析检测方法。生物分子的荧光标记是继同位素标记后出现的快速方便的生物分子分析手段。二十世纪八十年代中期发展起来的基于荧光标记的DNA自动测序技术,已成为生命科学研究的重要里程碑。但目前仍需在荧光分析灵敏度和可靠性上进一步提高。3H-吲哚菁染料具有摩尔消光系数大(10~5L/mol·cm)、与生物基质结合后荧光增强(如与DNA结合后荧光增强25倍)、最大吸收波长可在400-1700 nm、调谐范围大、易于合成得到近红外荧光染料等优点,已成为新一代高灵敏荧光标示剂。但光稳定性差,影响分析的可靠性,是其不足。
     本文以吲哚菁染料为母体,希望在分子拥有良好的荧光性能的同时,从两个方面改变染料的结构以提高耐光稳定性。首先将已有的N-羧戊基改变为N-对羧苄基,设计了具有下列通式中的1-3类系列线性多甲川3H-吲哚菁染料;在引入对羧苄基后,将方酸环或六元环引入分子的多甲川链中,设计了新型方酸菁染料和含氯六元桥环吲哚菁染料4-5,其结构通式如下:
     这些新型3H-吲哚菁染料化合物的结构特点是分子中吲哚环N原子上的取代基至少有一个为对羧苄基,羧基与5位上的磺酸基团使分子具有良好的水溶性,其中的羧基为染料提供能与含游离氨基化合物共价结合的基团。
     本文从对氨基苯磺酸出发,经重氮化、还原、与3-甲基-2-丁酮环合、进一步转化为钾盐后,以对氯甲基苯甲酸为吲哚环中氮原子上的季铵盐化试剂,首先合成了新染料中间体N-对羧苄基-2,3,3-三甲基-3H-吲哚啉-5-磺酸钾。通过该中间体与不同的缩合剂及其自身或另一种中间体进行缩合反应,合成得到了相应的上述系列目标染料化合物,并研究出适宜的分离与制备方法,经分离提
    
     大连理工大学博士论文
    纯后,通过’H NMR、ESI-MS等对染料进行了结构表征。
     光谱性能测试结果表明:染料的摩尔消光系数在 10’L/mol(m以上,新型
    三甲川蓄染料的最大吸收及荧光发射波长在540.600 urn之间,五甲)]l和六甲
    川染料的波长在近红外区。在溶液状态下,分子中氮原子上的取代基、甲 j!!链
    的长短、链中桥环及所用的溶剂影响着染料的吸收及荧光发射的波长和强度。
    研究表明,氮原子上的取代基改为对装等基后,线性多甲)h3H一吃呢蓄染料的
    最大吸收及荧光发射波长红移:引入方酸环后蓝移:引入含氯六元桥环时红移。
    在DMF和 DMSO溶剂中染料的吸收及荧光发射波长较大,在水中最小。在
    4。pH、10范围内N一对簸等基方酿着染料水溶液的最大吸收及荧光发射波长保
    持不变,吸收及发射强度却随pH值的不同而发生改变;与在水溶液中相比,
    在碳酸盐缓冲溶液中染料的荧光发射强度有所增大,在牛血清白蛋白缓冲溶液
    中吸收及荧光发射波长发生红移,吸收强度最小,荧光则最强。
     无机氧化物是研究染料在固态下光谱性能的良好基质。与在水溶液中相
    比,染料在 SIOZ和 TIOZ固态基质中的最大吸收及荧光发射波长红移;在 SIOZ
    基质中荧光增强;在纳米 n。中,荧光强度减弱或粹灭,N一对装书基方酸美
    染料的最大吸收出现了双重峰,双峰的吸收强度随光照次数增加同时发生相对
    反方向的变化。经实验证明,在光的作用下,N一对枝节基方酸脊染料分于中的
    对接节基、方酸环和TIOZ导电玻璃的纳米孔穴彼此之间的相互作用产生了分
    于的结构或电荷分离态形式的不同,是产生这种光致效应的主要原因。
     在距 40 W灯 125 cm处照射 75 h后的稳定性测试结果表明,与己有 N.按
    成基呗保蓄染料相比,系列新型N一对核等基一3H一吼跺蓄染料具有较好的光稳定
    性,这可能是因为对核书基的空间位阻较大,减少了单线态氧进攻甲川链的几
    率,从而使染料的光稳定性增加。
     将近红外N一对核茉基一3H一哨跺方酸著染料转化为摇滚酸亚胺酯,在常温下
    用于赖氨酸、牛磺酸、个服及牛血清白蛋白的荧光标记。质谱、蛋白电泳及
    HPLC荧光检测分析结果证实,该染料可用于这类样品的荧光标记,对赖氨酸。
    牛磺酸和千胺的标记反应转化率为 100%。牛血清白蛋白的荧光标记结果证实
    产物具有很高的荧光检测响应值,最低平均检测限可达 1.44X 10”‘’mol几。
     设计、合成的新荧光染料具有较好的水溶性、光稳定性和荧光性能,可望
    在生物分子标记、分析和分离等领域中得到重要应用。
With the development of life science, there is a growing requirement for high sensitive detection technologies in analysis. Fluorescence label is a convenient method. Indocyanines with larger extinction coefficients (105 L/mol-cm), good fluorescent properties and fluorescence enhancement combining with biomass have been used as a new generation of fluorescent label compouds in biological analysis. However, photostability of these dyes has been a problem. In this paper the substituents on the nitrogen atoms in the heterocyclic rings of these indocyanines were designed as p-carboxybenzyl groups, and series novel straight chain polymethine indocyanines 1-3 were synthesized. Introduction of rigid rings into the methine chain resulted in novel 3H-indocyanines 4 and 5.
    
    They contained at least.one H-carboxybenzyl group on the nitrogen atoms in the heterocyclic rings. The sulfonate and carboxyl groups made them become water soluble, and the carboxyl group was employed as a linker for covalently linking to biomolecules in their biological applications.
    They have been synthesized by condensation of their intermediates(quaternary salt of indolenine) with corresponding condensating agents, respectively. The intermediates were prepared by the quaternization of 2,3,3-trimethylindoleninium-5-sulfonate with p-(chloromethyl)benzoic acid, 6-bromohexanoic acid or ethyl iodide. The 2,3,3-trimethyl-3H-indoleninium-5-sulfonate was from p-aminobenzoic acid. The dyes were separated, purified, and confirmed by 'HNMR and ESI-MS.
    The absorption and emission maxima of the novel dyes are between 540 nm and 850 nm,
    
    
    molar extinction is above 10~5 L/mol-cm. Compared to those of the corresponding straight pentamethine and heptamethine indocyanines, the absorption and emission maxima of these dyes become blue shift while the squaric ring was introduced into the methine chain, and red shift while the introduction of six-membered ring. The absorption and emission wavelength of these dyes were shifted with the changing of solvents. Within 4    In this paper, the dyes were firstly embedded into a matrix of silica gel. Compared to those in water, the dyes in SiO2 gel slices exhibited longer absorption and fluorescence emission wavelength, stronger absorption and fluorescence intensity, and narrower absorption bands. The absorption spectrum of the N-b-carboxybenzyl-squaraine dye adsorbed on TiO2 film exhibited double peaks, one was blue shift (588 nm), another was red shift (637 nm). The absorption intensity of the blue shift one was stronger than that of the red shift one at the beginning of the testing, then with the increasing of times of irradiation on it the absorption intensity of the red shift peak increased, simultaneously that of the blue one decreased at the same quantity.
    The photostability of these dyes was tested under irradiation (40 W light) about 125 cm away. Compared to the series indocyanines containing N-carboxypentynyl group, the novel N-p-carboxybenzyl-3H-indocyanine dyes were stable.
    The NHS-carboxyl squaraine was prepared from the esterification of N-hydroxysuccinimide with carboxyl squaraine, and the NHS-carboxyl squaraine was used to conjugate with taurine, benzylamine, lysine and BSA in a pH 9.5 bicarbonate buffer, respectively. The conjugates were separated and detected by ESI-MS, SDS-PAGE, CE and HPLC, and the result indicated that the dye could couple covalently to biomass containing free NH2 group, and the detectability of BSA-sqauraine conjugate was 1.44 X 10-17 mol/L.
    These novel indocyanines hav ing good water solubility, fluorescent properties and photostability, can be used in biological analysis as fluorescent labeling reagents.
引文
[1] Lin Y., Ralph W., Tung C.H. Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjugate Chem, 2002,13(3):605-610
    [2] Lee J., Moritz F.K., Umar M., Tang Y., Ralph W. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjugate Chem., 2002,13(3):554-560
    [3] Lloyd M.S., Jane Z.S., Robert J.K., Peter H., Chris D., Charles R.C., Cheryl H., Stephen B.H.K., Leroy E.H. Fluorescence detection in automated DNA sequence analysis. Nature, 1986,321:674-677
    [4] 陈国珍.荧光分析法.第二版.北京:科学出版社,1990
    [5] C.赖卡特[联邦德国].有机化学中的溶剂效应.北京:化学工业出版社,1987
    [6] Achilefu S.I., Dorshow R.B, Bugaj J., Rajagopalan R. Non-covalent bioconfugates useful for diagnosis and therapy. WO 9 951 284,2001.
    [7] Williams R. J. Copparison of covalent and noncovalent labeling with near-infred dyes fo the high-performance liquid chromatographic determination of human serum albumin. Anal. Chem., 1993, 65:601-605
    [8] Waggoner A S. Method for labeling and detecting materials employing arylsulfonate cyanine dyes. US patent 5 486 616, 1996
    [9] Kazushi K., Yoshihito O., Kenji N., Hidehiko N. Synthsis,Binding and Fluorescence Properties of Olignucleotide Derivatives Having A Dansyl Fluorescence Label Attached to the 2'-Position ora Ribonucleside. Tetrahedron, 1997,53:4265-4270
    [10] Thompson M., Woodbury N.W. Methods using properties of peptide/dye conjugates to detect DNA. US patent 6 348 317,2002
    
    
    [11] Mathias K.H., Renate E.K., Joachim W.E. 3'-Amino-modified nucheotides useful as potent chain terminators for current DNA sequencing methods. Helv. Chim. Acta, 1994,77:586-589
    [12] Muthiah M.,Charies J.G., Cook P.D. Novel Functionalization of the Sugar Moiety of Nucleic Acids for Multiple Labeling in the Minor Groove. Tetrahedron Letters, 1991,49:7171-7174
    [13] Kai Licha, Carsten H., Andreas B., Peter H., Michael B., Stefan W., Bertram W., Wolfhard S. Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjugate Chem., 2001,12(1):44-50
    [14] Metzker M. L. Electrophoretically uniform fluorescent dyes for automated DNA sequencing. Science, 1996,271:1420-1422
    [15] Lee L.G., Woo S.L. N-heteroaromatic ion and iminium ion substituted cyanine dyes for use as fluorescence labels. US Patent 5 453 505,1995
    [16] Alexander N.G., Hays S.R. Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature, 1992,359:859-861
    [17] 万群,魏东芝,袁勤生.DNA芯片技术.生命的化学,1999,19(2):83-88
    [18] Shealay D.B., Lipowska M. Synthesis, chromatographic separation, and characterization of near-infraredlabeled DNA oligomers for use in DNA sequencing. Anal. Chem., 1995,67:247-251
    [19] Yu H., Chao J. Cyanine dye dUTP analogs for enzymatic labeling of DNA probes. Nucleic Acids Res., 1994, 22(15):3226-3232
    [20] 马立人,蒋中华.生物芯片.北京:化学工业出版社,2000
    [21] Schobel U., Egelhaaf H. J., Brecht A., Oelkrug D., Gauglitz G. New Donor-Acceptor Pair for Fluorescent Immunoassays By Energy Transfer Bioconjugate Chem., 1999,10:1107-1114.
    [22] Williams R.J., Peralta J.M., Tsang V.C.W., Narayanan N., Casay G.A., Lipowska M., Strekowska L., Strekowski L, Patonay G. Near-Infrared Heptamethine Cyanine Dyes: A New Tracer for Solid-Phase Immunoassays. Applied Spectroscopy, 1997,51(6):836-843
    [23] David J.A., Guo B., Xu Y., Lily M.N. Clinical Chemistry. Anal. Chem., 1997,69((12): 165R-229R
    
    
    [24] 车庆林,彭孝军.荧光免疫分析用染料及其研究进展.现代化工,1998,2:12-14
    [25] 张华山,王红,赵媛媛.分子探针与检测试剂.北京:科学出版社,2002
    [26] Fuchigaami T. Subaattomolw detection of amino acids by capollary electrophoresis based on semiconductor laser fluorescence detection. Analytica Chimica Acta, 1993,282:209-213
    [27] Arjan J.G.M., Ernst J.M., Henk L., Cees G., Udo A.T.B., Nel H.V. Visible diode laser induced fluorescence detection in liquid chromatography aferer precolumn derivation of thiols. Anal .Chem., 1993,65:2197-2203
    [28] 中岛宪一郎.荧光标记试剂.化学工程师,1995,51(6):38-42
    [29] 田禾,苏建华,孟凡顺,陈孔常.功能性色素在高新技术中的应用.北京:化学工业出版社,精细化工出版中心,2000
    [30] Fabian J., Nakazumi H., Matsuoka M. Near-Infrared Absorbing Dyes. Chem. Rev., 1992,92:1197-1226
    [31] Kopaindky B., Qiu P. Lifetime, photostability and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1μm. Appl. Phys., 1982, B29:15-18
    [32] Flanagan J.H., Khan J.S., Menchen S., Soperand S.A., Hammer R.P. Functionalized Tricarbocyanine Dyes as Near-Infrared Fluorescent Probes For Biomolecules. Bioconjugate Chem., 1997,8:751-756
    [33] Higashijima T. Determination of acids by capillary zone electrophoresis based on semiconductor laser fluorescence detection. Anal. Chem., 1992,64:711-714
    [34] Amaresh M. Cyanines during the 1990s: A Review. Chemical Reviews, 2000,100(6): 1998-2011
    [35] Dorshow R.B. Indocyanine dyes. US patent 6 264 919,1997
    [36] Farooqui F., Michael M.A., Reddy M.P. Efficient cyclic-bridged cyanine dyes, their production and their use. US patent 6 335 450,2002
    [37] Williams R.J. Copparison of covalent and noncovalent labeling with near-infred dyes for the high-performance liquid chromatographic determination of human serum albumin. Anal. Chem., 1993,65:601-605
    [38] Fuchigaami T. Subaattomolw detection of acids by capillary electrophoresis based on semiconductor laser fluorescence detection. Analytica Chimica Acta, 1993,282:209-213
    [39] 姚祖光.近红外吸收多甲川染料.感光材料,1999,增刊:45-55
    
    
    [40] 米斯C.E.K.,詹姆斯T.H.照相过程理论.北京:科学出版社,1979
    [41] Thwick P.L. Cyanine dye labeling reagents-Carboxymethylindocyanine succinimidyl esters. Cytometry., 1990,11:418-430
    [42] Terpetschnig E., Szmacinski H., Ozins A., Lakowicz R.J. Synthesis of Squaraine-N-Hydroxysuccinimide Esters and Their Biological Application as Long-Wavelength Fluorescent Labels. Analytical Biochemistry. 1994,217:197-204
    [43] 姚祖光.多甲川染料的功能开发.影像科学与实践,1991,1:1-5
    [44] 格里菲恩 J.[英]著,侯毓汾,吴祖望,胡家振等译.颜色与有机分子结构.北京:化学:工业出版社,1985
    [45] 杨锦宗.染料的分析与剖析.北京:化学工业出版社,1991
    [46] Waggoner A.S. Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods. US patent 5 627 027,1996
    [47] Waggoner A S.,Ernst L.A., Mujumdar R.B. Method for labeling and detecting materials employing arylsulfonate cyanine dyes. US. Patent 5 486 616,1996
    [48] Tong L., Xian P.B., Zhen F.L., Fang L.Y., Lian B.F., Hong P.Z., Geise H. Solution Electrochemistry of indolenium squarylium cyanine dyes. Dyes and Pigments, 1999,42:113-118
    [49] Terpetschnig E., Lakowicz J.R. Synthesis and Characterization of Unsymmetrical Squaraines: A New Class of Cyanine Dyes. Dyes and Pigments, 1993,21:227-234
    [50] 王寅,程侣柏.近红外吸收染料.染料工业,1993,30(1):9-18
    [51] Makin S.M. Synthesis and investigation of tricarbocyanines containing five- and six-membered rings in the chromophore. J. Org. Chem., USSR 1977,13:2269-2271
    [52] 梁岗.具有异佛尔酮核的二碳菁染料的合成.感光材料,1996,1:29-31
    [53] Reynolds G.A., Drexhage K.H. Stable heptamethine pyrylium dyes that absorb in the infrared. J. Org. Chem., 1977,42(5):885-888
    [54] 李新宝,姚烨,石俊英.桥链含苯并砒喃核的二碳菁染料合成研究.感光材料,1998,2:23-25
    [55] Mujumdar S.R., Mujumdar R.B., Grant C.M., Waggoner A.S. Cyanine-Labeling Reagents: Sulfobenzindocyanine Succinimidyl Esters Bioconjugate Chem., 1996,7:356-362
    [56].Southwick P.L., Waggoner A.S. Intermediate for and fluorescent cyanine dyes
    
    containing carboxylic acid groups. US patent 4 981 977,1991
    [57] Dai Z., Peng B. Synthesis and Characterization of Indodicarbocyanines. Dyes and Pigments, 1998,36(2):169-175
    [58] 张红春,姚祖光.含取代吲哚的三碳菁染料的合成及其光性能.华东理工大学学报.1994,20(6):788—793
    [59] Steven A.S., Quincy L.M. Steady-state and picosecond Laser Fluorescence Studies of Nonradiative Pathways in Tricarbocyanine Dyes: Implications to the Design of Near-IR Fluorochromes with High Fluorescence Efficiencies. J. Am. Chem. Soc., 1994,116:3744-3752
    [60] 李楠,王凤翔,周春喜.《荧光探针应用技术》.北京:军事医学科学出版社,1998
    [61] 王学杰.分之轨道法(PPP-MO)计算吲哚双碳菁类染料分之的电子结构和电子光谱.计算机与应用化学,2000,17(4):324-326
    [62] Mark V.R. New glycoconjugated cyanine dyes as fluorescent labeling reagents. J. Chem. Soc. Perkin Trans., 1998,1:143-147
    [63] Caputo G., Grignani A., Cassullo M., Della C.L. Sulfo benz[E]indocyanine fluorescent dyes. US patent 6 136 612,2000
    [64] Wang L., Peng X., Zhang R., Cui J., Xu G., Wang F. Syntheses and spectral properties of fluorescent trimethines sulfo-3H-indocyanine dyes. Dyes and Pigments, 2002,54:107-111
    [65] 姚祖光,顾超,陈欣.用于光存储的菁染料-聚合物薄膜.应用化学,1997,14(6):48-50
    [66] 陈欣,姚祖光.高等学校化学学报,1996,17(10):1613-1616
    [67] 曾万学,陈萍,郑德水.感半导体激光菁染料稳定性的研究.感光科学与光化学,1993,11(4):372
    [68] 曾万学,陈萍,郑德水.多甲川链菁染料光氧化机理研究.感光科学与光化学,1995,13(2):136-143
    [69] Chibisov A.K., Zakharova G.V. Effects of substituents in the polymethine chain on the photoprocesses in indodicarbocyanine dyes. J. Chem. Soc. Faraday Trans., 1996,92(24):4917-4925
    [70] Chibisov A.K., Zakharova G.V. Photorelaxation processes in covalently lined indocarbocyanine and thiacarbocyanine dyes. J. Phys. Chem., 1995,99:886-893
    
    
    [71] 杨松杰,田禾.菁染料光稳定性研究进展.感光科学与光化学,1999,17(3):275-283
    [72] Li J., Chen P. Study on the photofading of near-infrared absorbing indolenine cyanine dyes. Chinese Chemical Letters, 1996,7(12): 1121-1124.
    [73] 李军,陈萍,赵江,郑德水.近红外吸收菁染料分子链结构对其光氧化稳定性能的影响.感光科学与光化学,1997,15(5):343-349
    [74] 陈欣,姚祖光.含镍配合物阴离子的吲哚三碳菁合成及性能.感光科学与光化学,1998:16(4):326-330
    [75] 王伟,姚祖光.含N-烷基吲哚环方酸菁染料的合成及性能.感光科学与光化学,1997,15(4):321-324
    [76] 王丽秋,彭孝军.生物标示用3H-吲哚类菁染料.染料工业,2002,39(4):8-10
    [77] Narayanan N., Patonay G. A new method for the synthesis of heptamethine cyanine dyes: Synthesis of new near-infrared fluorescent labels. J. Org. Chem., 1995,60:2391-2395.
    [78] Mujumdar S.R., Mujumdar R.B., Grant C.M., Waggoner A.S. Cyanine-Labeling Reagents: Sulfobenzindocyanine Succinimidyl Esters. Bioconjugate Chem., 1996,7:356-362
    [79] Bernhard O., Frank L., Lydia S., Ewald T., Otto S.W. Red laser-induced fluorescence energy transfer in an immunosystem. Analytical Biochemistry, 2000,280:272-277
    [80] 李瑶,裘敏燕,吴超群,曹跃琼,唐榕,陈沁,石学银,胡志前,谢毅,毛裕民.用基因表达谱芯片研究人正常肝和肝细胞癌中差异表达的基因.遗传学报,2000,27(12):1042-1048
    [81] 郑洪,李东辉,陈秋影,许金钩.一种近红外花菁染料的合成及其应用于生物大分子的测定.应用化学,1999,16(3):17-20
    [82] 郑洪,李东辉,吴敏,许金钩,陈秋影.合成的近红外花菁染料测定痕量血清蛋白质.高等学校化学学报,1999,20(4):555-557
    [83] 章晓波,徐洵.荧光探针研究进展.生物工程进展,2000,20(2):14-15
    [84] Milan N.S., Donald W.L. Aptamer-based colorimetric probe for cocaine. J.Am. Chem. Soc. 2002,124(33):9678-9679
    [85] Thomas A., Thresia T., Leonard H.S., Akira S., Thomas T.J. A Molecular Becon Strategy for the Thermodynamic Characterization of Triplex DNA:Trplex Formation at the Promoter Region of Cyclin D1. Biochemistry, 2001,40:9387-9395
    [86] Jean L.M., Laurent L., Marie P., Teulade F., Candide H., Lionel G.,Magali H., Paola
    
    B.A., Jean P.V., Jean M.L., Jean F.R., Therese G., Claude H. Telmerase inhibitors based
    on quadruplex ligands selected by a fluorescence assay. Proceedings of Natural Academy of Science(PNAS). 2001,98(6):3062-3067
    [87] 高骏侠.光谱增感染料.感光材料,1977,1(5):21-22
    [88] Bernard A.L., Ronald W.B., Thomas D.G.H. Infra-red sensitizing dyes for silver Halide. US Patent 4 959 294,1990
    [89] Shigeru O., Mihara Y., Keiichi A. Indolenine derivatives as dyes. U.S.Patent 5 106 990,1992
    [90] Ohno S., Mihara Y., Adachi K. Silver halide photosensitive material containing an infrared absorption dye. U.S.Patent 4 839 265,1989
    [91] C.A. 78:65200v; C.A. 74:77419d
    [92] 王娅娟,李斌,魏培海,张延昌.溶胶-凝胶法制备TiO_2/玻璃膜和光催化降解玫瑰红B的研究.应用化学,2001,18(1):1
    [93] He J., Gabor B., Ferenc K., Tomas P., Reiner L., Bjorm A., Sun L., Anders H. Villy S. Modified phthalocyanines for efficient Near-IR Sensitization of nanostructured TiO_2 Electrode. J. AM. CHEM. SOC., 2002,124:4922-4932
    [94] Ozmen B., Akkaya E.U. Infrared fluorescence sensing of submicromolar calcium: pushing the limits of photoinduced electron transfer. Tetrahedron Lett., 2000,41(47):9185-9188
    [95] 张莉,杨迈之,乔学斌,郝彦忠,高恩勤,蔡生民.三甲川菁染料敏化SnO_2纳米结构电极的光电化学.北京大学学报(自然科学版),2000,36(2):160-166
    [96] Wang C., Liu C., Wang W., Shen T. Photochemical events during the photosensitization of colloidal TiO_2 particles by a squaraine dye. J. Photochem. Photobiol. A, 1997,109(2): 159-164
    [97] Zhao W., Hou Y., Zhang B., Cao Y., Xiao X., Yang R. Dopant effects of squarlium cyanine dyes on functional devices. Photographic Science and Photochemistry, 1998,16(2):100-104
    [98] Liu D., Kamat P.V., Thomas K.G., Thomas K.J., Das S., George M.V. Picosecond dynamics of an IR sensitive squaraine dye. Role of singlet and triplet excited states in the photosensitization of TiO_2 nanoclusters. J. chem. Phys., 1997,106(15):6404-6411
    [99] 孙树清,陈萍.可录型光盘与菁染料光存储媒体的研究进展.化学通
    
    报,1999,(6):20-23
    [100] 彭必先,李群.光盘染料研究进展.感光科学与光化学,1994,(2):150-163
    [101] 姚祖光,顾超,陈欣.用于光存储的菁染料-聚合物薄膜.应用化学,1997,14(6):48-50
    [102] 姚祖光.有机染料在光记录介质中的应用.现代化工,1991,(2):13-18
    [103] Otsuki S., Ushida T., Usami M. Rewitable optical recording medium and method of reading the recorded information. Jpn. Kokai Tokkyo Koho JP 2 002 123 974,2002
    [104] Cosa G, Focsaneanu K.S., Mclean J.R.N., McNamee J.P., Scaiano J.C. Photophysical properties of fluorescent DNA-dyes bound to single-and double-stranded DNA in aqueous buffered solution. Photochem. Photobiol., 2001,73(6):585-599
    [105] Lee J., Moritz F,K., Umar M., Tang Y., Ralph W. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjugate Chem., 2002,13 (3):554-560

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700