用户名: 密码: 验证码:
中低品位磷矿微生物溶解基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国磷矿资源丰富,但其中大部分是中低品位磷矿,这些中低品位磷矿在我国目前对磷矿资源的开发利用方面基本上是处于被废弃的地位,造成了资源的极大浪费。本文以微生物溶解中低品位磷矿为主线,分别从异养菌溶磷和自养菌溶磷两个方面展开研究,以期为解决我国丰富的中低品位磷矿资源利用难题提供理论依据。
     在异养菌溶磷研究部分,本文首先研究了溶磷异养菌的分离筛选及其对中低品位磷矿粉的溶解作用。首次从湖北省境内磷矿生态环境中分离筛选出一株溶磷细菌YC和三株溶磷真菌HB1、HB2和HB3。通过对四株分离菌株进行形态、生理生化及分子鉴定,结果表明,YC为嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia,S.maltophilia),HB1为扩展青霉(Penicillium expansum,P.expansum)、HB2为分枝毛霉(Mucor ramosissimus,M.ramosissimus),HB3为克鲁斯假丝酵母(Candida krissii,C.krissii)。本文是首次报道这些菌株为溶磷微生物。
     探讨了四株分离菌株的溶磷机理。结果表明,它们在代谢过程中分泌的有机酸如葡糖酸、柠檬酸和草酸等对磷酸三钙以及磷矿粉的溶解起到了关键作用。另外,四株分离菌株的溶磷能力与它们在培养液中的数量呈正相关,与培养液pH呈负相关。
     研究了四株分离菌株溶解磷矿粉的最佳工艺条件。S.maltophiliaYC溶解磷矿粉的最佳工艺条件为:培养温度,29~32℃;初始pH,6.5~7.0;磷矿粉浓度,2.0g/L;磷矿粉粒度,0.04mm;振荡速率,140r/min;菌液接种量,25%。三株溶磷真菌(P.expansum HB1、M.ramosissimus HB2和C.krissii HB3)分别在培养温度为32℃、振荡速率为160r/min以及磷矿粉浓度和粒度分别为2.5g/L和0.04mm时,溶磷量达到最大。另外,在溶磷过程中,尽量减少有毒离子如Ag~+的存在,或者加入一些螯合剂如EDTA等,有助于磷矿粉中可溶性磷的释放。
     以盆栽小麦为研究对象,探讨了接种三株溶磷真菌对小麦幼苗生长及磷素代谢的影响。结果表明,三株溶磷真菌能通过溶解土壤中的磷矿粉从而提高土壤有效磷含量,并且有显著促进小麦幼苗茎和根长、增加茎和根的干重,以及促进小麦幼苗对磷、氮等营养元素吸收的作用。
     在自养菌溶磷研究部分,本文首先研究了利用嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,At.f)和嗜酸氧化硫硫杆菌(Acidithiobacillus thiooxidans,At.t)分别在黄铁矿粉和硫磺粉存在下对中低品位磷矿粉的溶解作用。结果表明,At.f和At.t能分别通过氧化黄铁矿粉和硫磺粉产生硫酸,形成有利于它们生长的酸性环境,同时产生的硫酸可以有效溶解磷矿粉,浸出其中的磷。在pH均为2.5的条件下,利用At.f和At.t溶解磷矿粉比稀硫酸直接溶解更为有效,其对磷的浸出率远高于稀硫酸直接溶解时的浸出率。
     探讨了At.f和At.t分别在黄铁矿粉和硫磺粉存在下溶解磷矿粉的最佳工艺条件。结果表明,在黄铁矿粉存在下,At.f溶解磷矿粉浸出其中磷的最佳工艺条件为:培养温度,30℃;初始pH,2.0;振荡速率,140r/min;磷矿粉浓度,5g/L;At.f接种量,25%;黄铁矿粉加入量,25g/L;HPO_4~(2-)浓度,1.0g/L;NH_4~+浓度,1.5g/L;Mg~(2+)浓度,0.5g/L。在硫磺粉存在下,At.t溶解磷矿粉浸出其中磷的最佳工艺条件为:At.t接种量,25%;磷矿粉浓度,5g/L;初始pH,2.0;硫磺粉加入量,10g/L。为了促进At.f和At.t对磷矿粉中磷的浸出,应尽量将磷矿粉和黄铁矿粉磨细,减少培养液中Fe~(3+)的累积,同时尽量使用驯化菌作为接种菌。另外,加入一些表面活性剂如吐温80等也能促进At.f和At.t对磷的浸出。
     研究了At.f的诱变和固定化处理及其对磷矿粉的溶解作用。结果表明,采用诱变和固定化处理能增强At.f的氧化活性,促进其对磷矿粉中磷的浸出。诱变处理对黄铁矿粉存在下At.f浸出磷矿粉中磷的最佳工艺条件是:15W紫外灯下15cm照射At.f5min;800W微波辐射At.f40 sec;浓度为1.0%的硫酸二乙酯诱变处理15min。以海藻酸钠、聚乙烯醇和卡拉胶固定处理At.f,结果发现其中以海藻酸钠固定At.f时的溶磷效果最好,培养第5d,其At.f氧化活性是游离At.f氧化活性的3.5倍,其对磷矿粉中磷的浸出率是游离At.f浸出率的1.28倍。
There are abundant of rock phosphates(RPs) in China,but most of them are middle-low grade and often abandoned today.Heterotrophic and autotrophic microorganisms were used to solubilize middle-low grade RP, respectively,in this study.It is expected that the results of this study will provide a theoretical basis to solve the utilization problems of middle-low grade RPs in China.
     The isolation and screening of heterotrophic phosphate solubilizing microorganisms and phosphate solubilization by these microorganisms were studied in this study.A bacterial strain YC and three fungal strains of HB1,HB2 and HB3 were isolated from phosphate mines in Hubei province(PR China).They are identified as Stenotrophomonas maltophilia(S.maltophilia),Penicillium expansum(P.expansum),Mucor ramosissimus(M ramosissimus) and Candida krissii(C.krissii), respectively.It is the first time to report these strains as phosphate solubilizing microorganisms in this study.
     The mechanisms of phosphate solubilization by the isolates were discussed.Results show that organic acids including gluconic acid,citric acid and oxalic acid,which were released by the isolates,played key roles on the solubilization of tricalcium phosphate and RP.Moreover,there have a positive correlation between concentration of soluble phosphorus and population of the isolates,and a negative correlation between concentration of soluble phosphorus and pH in the culture medium.
     The optimum conditions for the isolates to solubilize middle-low grade RP were studied.The optimum conditions to release soluble phosphorus from RP by S.maltophilia YC are:culture temperature, 29-32℃;initial pH,6.5-7.0;RP concentration,2.0 g/L;RP particle size, 0.04 mm;shaking speed,140 r/min;and inoculation of S.maltophilia YC, 25%.The maximal contents of soluble phosphorus released by three fungal isolates(P.expansum HB1,M.ramosissimus HB2 and C.krissii HB3) are attained when cultured at 32℃,shaked at 160 r/min,and added with RP concentration and particle size at 2.5 g/L and 0.04 mm, respectively.In addition,it will facilitate the solubilization of RP by the isolates to minimize the existence of toxic ions such as silver ion,or add some chelating agents such as EDTA,etc.
     Wheat seedling growth promoting experiments by three fungal isolates under pot culture conditions were investigated in this study. Results show that all the fungal isolates promoted the length and dry weight of the shoot and root,and phosphorus and nitrogen uptake of wheat seedlings in field soil containing RP,thus demonstrating the capability of the isolates to convert insoluble forms of phosphorus into plant available forms from RP,and therefore hold great potential for development as biofertilizers to enhance soil fertility and promote plant growth.
     Autotrophic microorganisms,Acidithiobacillus ferrooxidans(At.f) and Acidithiobacillus thiooxidans(At.t) were used to bioleach soluble phosphorus from middle-low grade RP containing pyrite and sulfur, respectively,in this study.Sulfuric acid was produced by the bio-oxidation of pyrite and sulfur by At.f and At.t,respectively.The production of sulfuric acid not only benefits the growth of At.f and At.t, but also solubilizes RP.Under the same pH condition(pH is 2.5),the bioleaching of soluble phosphorus from RP by At.f and At.t are more effective than sulfuric acid leaching.
     The optimum conditions for At.f and At.t to bioleach soluble phosphorus from RP were studied.The optimal technological parameters of bioleaching soluble phosphorus from RP by At.f are:culture temperature,30℃;initial pH,2.0;shaking speed,140 r/min;RP concentration,5 g/L;inoculation of At.f,25%;pyrite addition,25 g/L; HPO_4~(2-) concentration,1.0 g/L;NH_4~+ concentration,1.5 g/L;Mg~(2+) concentration,0.5 g/L.The optimal technological parameters of bioleaching soluble phosphorus from RP by At.t are:inoculation of At.t, 25%;RP concentration,5 g/L;initial pH,2.0;sulfur addition,25 g/L.In order to promote the bioleaching of soluble phosphorus,RP and pyrite should be ground as fine as possible;the accumulation of Fe~(3+) in the culture medium should be minimized,and used adapted bacteria as inoculants.In addition,the addition of surfactants such as Tween 80 will promote the bioleaching of soluble phosphorus from RP.
     The bioleaching of soluble phosphorus from RP by mutagenic and immobilized At.f were studied.Results show that the treatments of At.f by mutagenesis and immobilization could enhance the oxidative activity of At.f,and increase the leaching rate of soluble phosphorus.The optimal technological parameters of bioleaching soluble phosphorus from RP by mutagenic At.f are:irradiating with 15 W ultraviolet ray lamp for 5 min at a distance of 15 cm;radiating with 800 W microwaves for 40 sec; mixing with 1.0%diethyl sulfate for 15 min.The immobilized At.f by sodium alginate has the biggest leaching rate of soluble phosphorus among the immobilized At.f by sodium alginate,polyvinyl alcohol and carrageenan.The oxidative activity and leaching rate of soluble phosphorus of immobilized At.f by sodium alginate are of 3.5 and 1.28 times than that of bioleaching by free At.f,respectively.
引文
[1]何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响.土壤学报,1990,27(4):377-383
    [2]Goldstein A H.Bacterial solubilization of mineral phosphates:historical perspective and future prospects.Am.J.Altern.Agri.,1986,1:51-57
    [3]Jones D A,Smith B F L,Wilson M J,Goodman B A.Solubilizator fungi of phosphate in rise soil.Mycol.Res.,1991,95:1090-1093
    [4]钟传青.溶磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究:[博士学位论文].南京:南京农业大学,2004
    [5]刘国栋,李继云,李振声.植物高效利用磷营养的化学机理.植物营养与肥料学报,1995,3:72-78
    [6]Beever R E,Bums D J W.Phosphorus uptake,storage and utilization by fungi.Adv.Bot.Res.,1980,8:127-219
    [7]吴佩芝.湿法磷酸.北京:化学工业出版社,1987
    [8]余永富,葛英勇,潘昌林.磷矿选矿进展及存在的问题.矿冶工程,2008,28(1):29-33
    [9]高永峰.我国磷矿资源的特点及加工利用建议.化学工业,2007,25(11):1-6
    [10]骆兆军,钱鑫,王文潜.国内外磷矿选矿的新进展.中国矿业,1999,8(4):50-53
    [11]Halder A K,Mishra A K,Bhattacharyya P,et al.Solubilization of rock phosphate by Rhizobium and Bradyrhizobium.J.Gen.Appl.Microbiol.,1990,36:81-92
    [12]王莉晶,高晓蓉,孙嘉怡,安利佳.土壤溶磷微生物作用机理及溶磷菌肥对作物生长的影响.安徽农业科学,2008,36(14):5948-5950
    [13]王召娜,于雪云,杨合同,等.微生物溶磷机理的研究进展.山东农业科学,2008,2:88-91
    [14]Sackett W G,Pattern A G and Brown C W.The solvent action of soil bacteria upon the insoluble phosphates of raw bone meal and natural rock phosphate.Central Bacterial,1908,20:688-703
    [15]Kelley W P.Effect of nitrifying bacteria on the solubility of tricalcium phosphate. J.Agric.Res.,1918,12(10):671-683
    [16]陈廷伟.溶磷巨大芽孢杆菌分类名称、形态特征及溶磷性能评述.土壤肥料,2005(1):7-11
    [17]Johnston H W.The solubilization of phosphate:I.The action of various organic compounds on dicalcium and tricalcium phosphates,New Zealand J.Sci.Technol.Sect.B,1952,33:436-446
    [18]Sperber J I.Solution of apatite by soil microorganisms producing organic acids.Australian J.Agric.Research,1958,9:782-788
    [19]Rao A V,Venkateswarlu B and Kaul P.Isolation of a phosphate dissolving soil actinomycete.Curr.Sci.,1982,51:1117-1118
    [20]金术超,杜春梅,平文祥,等.溶磷微生物的研究进展.微生物学杂志,2006,26(2):73-78
    [21]陈廷伟.微生物对不溶性无机磷化合物的分解能力及其接种效果.微生物,1995,2(5):210-215
    [22]Nishanth D,Biswas D R.Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat(Triticum aestivum).Bioresource Technology,2008,99:3342-3353
    [23]Hameeda B,Harini G,Rupela S P Wani,et al.Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna.Microbiological Research,2008,163:234-242
    [24]Mittal V,Singh O,Nayyar H,et al.Stimulatory effect of phosphate-solubilizing fungal strains(Aspergillus awamori and Penicillium citrinum) on the yield of chickpea(Cicer arietinum L.cv.GPF2).Soil Biology & Biochemistry,2008,40:718-727
    [25]Bojinova D,Velkova R,Ivanova R.Solubilization of Morocco phosphorite by Aspergillus niger.Bioresource Technology,2008,99:7348-7353
    [26]Hamdali H,Bouizgarne B,Hafidi M,et al.Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines.Applied Soil Ecology,2008,38:12-19
    [27]林启美,赵海英,赵小蓉.溶磷微生物对不同磷矿粉的溶解能力.中国农业科学,2002,35(10):1232-1235
    [28]赵小蓉,林启美,赵紫鹃,等.一株曲霉 Aspergillus 2TCiF2 溶解磷矿粉动态.中国农业大学学报,2003,8(3):43-46
    [29]赵小蓉,林启美,赵紫鹃,等.一株节杆菌溶解磷矿粉的动态.微生物学杂志,2003,23(5):12-17
    [30]孙冬梅,张树权,迟丽,等.两株不同溶磷微生物的分离及其特性.中国农学通报,2008,24(3):239-242
    [31]李鸣晓,席北斗,魏自民,等.耐高温溶磷菌的筛选及溶磷能力研究.环境科学研究,2008,21(3):165-169
    [32]Rodr(?)guez H,Fraga R.Phosphate solubilizing bacteria and their role in plant growth promotion.Biotechnol.Adv.,1999,17:319-359
    [33]王光华,赵英,杨谦.溶磷菌的研究现状与展望.生态环境,2003,12(1):99-100
    [34]赵小蓉,林启美.微生物溶磷的研究进展.土壤肥料,2001,3:7-11
    [35]蔡磊,李文鹏,张克勤.高效溶磷菌株的分离、筛选及其对小麦苗期生长的促进作用研究.土壤通报,2002,33(1):44-46
    [36]郜春花,王岗,董云中,等.溶磷菌剂盆栽及大田施用效果.山西农业科学,2003,31(3):40-43
    [37]Sharma S N and Prasad R.Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria.Microbiol.Research,2004,108:947-954
    [38]Wallander H.Uptake of P from apatite by Pinuc sylvestris seedlings colonized by different Ectomycorrhizal fungi.Plant and Soil,2000,218:249-256
    [39]范丙全,金继运,葛诚.~(32)p 示踪法研究溶磷真菌对磷肥转化固定和有效性的影响.应用生态学报,2004,15(11):2142-2146
    [40]刘微,朱小平,高书国,等.溶磷微生物浸种对大豆生长发育及其根瘤形成的影响研究.中国生态农业学报,2004,12(3):153-155
    [41]冯月红,姚拓,龙瑞军.土壤溶磷菌研究进展.草原与草坪,2003,100(1):3-7
    [42]Datta M,Banik S,Gupta R K.Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland.Plant and Soil,1982,69:365-373
    [43]Kumar V and Narula N.Solubilization of inorganic phosphate and growth emergency of wheat as affected by Azotobacter chroococcum mutants.Biol.Fertl.Soils,1999,28:301-305
    [44]唐勇,陆玲,杨启银,等.溶磷微生物及其应用的研究进展.天津农业科学, 2001,7:1-5
    [45]冯瑞章,姚拓,周万海,等.溶磷菌和固氮菌溶解磷矿粉时的互作效应.生态学报,2006,26(8):2764-2769
    [46]邢礼军,王幼珊,张美庆.VA 真菌与溶磷细菌双接种促进植物对磷素吸收作用.北京农业科学,1998,16(3):33-34
    [47]林启美,赵小蓉,孙焱鑫,等.纤维素分解菌与无机磷细菌的相互作用.生态学杂志,2001,20(3):69-70
    [48]Chabot J K,Heisinger K G.Effect of Penicillium bilaii inoculation and phosphorus fertilization on root and shoot parameters of field growth pea.Canadian Journal of Plant science,2001,81(3):361-366
    [49]鲁如坤.我国的磷矿资源和磷肥生产消费.I 磷矿资源和磷肥生产.土壤,2004,36(1):1-4
    [50]马春浩.溶磷微生物及其应用研究综述.安徽农学通报,2007,13(4):34-36
    [51]尹瑞玲.我国旱地土壤溶磷微生物.土壤,1988,20(5):243-246
    [52]林启美,赵小蓉,孙众鑫,等.四种不同生态环境中溶磷细菌的数量及种群分布.土壤与环境,2000,9(1):34-37
    [53]Sperber J I.Solution of mineral phosphates by soil bacteria.Nature,1957,180:994-995
    [54]赵小蓉,林启美,孙焱鑫,等.小麦根际与非根际溶磷细菌的分布.华北农学报,2001,16(1):111-115
    [55]Elliott J M,Mathre D E and Sand D C.Identification and characterization of rhizosphere-competent bacteria of wheat.Appl.Environ.Microbiol.,1987,53:2793-2799
    [56]赵小蓉,林启美,孙焱鑫.玉米根际与非根际溶磷细菌的分布.生态学杂志,2001,20(6):62-64
    [57]覃丽金,王真辉,陈秋波.根际溶磷微生物研究进展.华南热带农业大学学报,2006,12(2):44-49
    [58]叶国平,梁锦锋.溶磷细菌溶磷机理及应用研究进展.安徽农学通报,2007,13(9):53-56
    [59]Goldstein A H.Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria.Biol.Agric.Hort.,1995,12:185-193
    [60]Chen Y P,Rekha P D,Arun A B,et al.Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities.Appl.Soil Ecol.2006,34:33-41
    [61]林启美,王华,赵小蓉.一些细菌和真菌的溶磷能力及其机理初探.微生物学报,2001,28(2):26-29
    [62]Illmer P and Schinner F.Solubilization of inorganic calcium phosphates solubilization mechanisms.Soil Biology and Biochemistry,1995,27:257-263
    [63]Asea P E A,Kucey R M,Sterart J W B.Inorganic phosphate solubilization by two penicillium species in solution culture and soil.Soil Biol.Biochem.,1988,20(4):459-464
    [64]陆文龙,张福销.低分子量有机酸对石灰性土壤磷吸附动力学的影响.土壤学报,1999,36(2):189-197
    [65]钟传青,黄为一.不同种类溶磷微生物的溶磷效果及其磷酸酶活性的变化.土壤学报,2005,2:286-290
    [66]Tarafdar J C and Gharu A.Mobilization of organic and poorly soluble phosphates by Chaetomium globosum.Applied Soil Ecology,2006,32:273-283
    [67]Illmer P and Schinner F.Solubilization of inorganic phosphates by microorganisms isolated from forest soils.Soil Biology and Biochemistry,1992,24(4):389-395
    [68]吴鹏飞,张冬明,郝丽虹,等.溶磷微生物研究现状及展望.中国农业科技导报,2008,10(3):40-46
    [69]盛学斌.关于土壤磷素研究的现状与趋势.环境科学进展,1995,3(2):11-21
    [70]沈善敏.中国土壤肥力.北京:中国农业出版社,1998
    [71]赵其国.我国现代农业发展中的若干问题.土壤学报,1997,34(1):1-9
    [72]鲁如坤.土壤磷素化学研究进展.土壤学进展,1990,18(6):1-5
    [73]唐勇,陆玲,杨启银,等.溶磷微生物及其应用的研究进展.天津农业科学,2001,7(2):1-4
    [74]刘代俊,蒋绍志,罗洪波,等.我国磷矿资源贫化趋势与对策探讨.磷肥与复肥,2005,20(1):6-9
    [75]肖文丁,肖太阳.中低品位磷矿的生物选矿、化工冶金一体化研究.矿产与地质,2007,21(3):362-365
    [76]Carpenter E J,Lin S and Capone D G.Bacterial activity in South Pole snow.Appl.Environ.Microbiol.,2000,66(10):4514-4517
    [77]Eder W,Jahnke L A,Schmidt M,et al.Microbial diversity of the Brine-seawater interface of the Kebrit deep red sea,studied via 16S rRNA gene sequences and cultivation methods.Appl.Environ.Microbiol.,2001,67:3077-3085
    [78]Thompson J D,Gibson T J,Plewniak F,et al.The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res.,1997,24:4876-4882
    [79]Tamura K,Dudley J,Nei M,et al.Mega 4:Molecular evolutionary genetics analysis(MEGA)software version 4.0.Mol.Biol.Evol.,2007,24:1596-1599
    [80]White T J.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.In:Innis M A,Gelfand D H,Sninsky J J,et al.PCR Protocols:A guide to methods and applications.San Diego:Academic Press,1990.315-322
    [81]李晶,柯崇榕,杨欣伟,等.灰黄霉素高产变株与出发菌株 18S rRNA 基因序列的比较分析.福建师范大学学报(自然科学版),2008,24(3):77-82
    [82]Singh S,Kapoor K K.Solubilization of insoluble phosphates by bacteria isolated from different sources.Environ.Ecol.,1994,12:51-55
    [83]Biswas D R,Narayanasamy G.Rock phosphate enriched compost:An approach to improve low-grade Indian rock phosphate.Bioresour.Technol.,2006,97:2243-2251
    [84]肖文丁,肖太阳.中低品位磷矿的生物选矿、化工冶金一体化研究.矿产与地质,2007,21(3):362-365
    [85]Chung H,Park M,Madhaiyan M et al.Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea.Soil Biol.Biochem.,2005,37:1970-1974
    [86]Chen Y P,Rekha P D,Arun A B et al.Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities.Appl.Soil Ecol.,2006,34:33-41
    [87]Vassilev N,Vassileva M.Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes.Appl.Microbiol.Biotechnol.,2003,61:435-440
    [88]Narsian N V,Patel H H.Aspergillus aculeatus as a rock phosphate solubilizer.Soil Biol.Biochem.,2000,32:559-565
    [89]Ahuja A,Ghosh S B,Dsouza S F.Isolation of a starch utilizing,phosphate solubilizing fungus on buffered medium and its characterization.Bioresour.Technol.,2007,98:3408-3411
    [90]Kim Y H,Bae E B,Choung Y K.Optimization of biological phosphorus removal from contaminated sediments with phosphate solubilizing microorganisms.J.Biosci.Bioeng.,2005,1:23-29
    [91]Hwangbo H,Park R D,Kim Y W,et al.2-Ketogluconic production and phosphate solubilization by Enterobacter intermedium.Curr.Microbiol.,2003,47:87-92
    [92]Matsushita K,Toyama H,Yamada M,et al.Quinoproteins:structure,function,and biotechnological applications.Appl.Microbiol.Biotechnol.,2002,58:13-22
    [93]Lin T F,Huang H I,Shen F T,et al.The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174.Bioresour.Technol.,2006,97:957-960
    [94]耿毅,汪开毓,陈德芳,等.嗜麦芽寡养单胞菌研究进展.动物医学进展,2006,27(5):28-31
    [95]Tributsch H.Direct versus indirect bioleaching.Hydrometallurgy,2001,59:177-185
    [96]Rashid M,Khalil S,Ayub N,et al.Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms(PSM) under in vitro conditions.Pak.J.Biol.Sci.,2004,7:187-196
    [97]王光华,周克琴,周德瑞,等.三种溶磷真菌对不同磷源溶解效果的比较研究.土壤通报,2004,35(4):462-465
    [98]赵小蓉,林启美,赵紫鹃,等.一株曲霉 Aspergillus 2TCiF2 溶解磷矿粉的动态.中国农业大学学报,2003,8(3):43-46
    [99]Illmer P and Schinner F.Solubilization of inorganic calcium phosphates-solubilization mechanisms.Soil Biol.Biochem.,1995,27:257-263
    [100]Jorgensen S E.Removal of heavy metals from compost and soil by ecotechnological methods.Ecol.Eng.,1993,2:89-100
    [101]赵小蓉,林其美,李保国.溶磷菌对 4 种难溶性磷酸盐溶解能力的初步研究.微生物学报,2002,42(2):236-241
    [102]龚文琪,魏鹏,雷绍民.微生物技术及 21 世纪矿产资源开发.中国非金属矿工业导刊,2000,5:25-28
    [103]Taylor J H and Whelan P F.The leaching of cuprous pyrite and the precipitation of copper at Rio Tinto.Spain Trans.Inst.Min.Metal,1943,52:35-71
    [104]Colmer A R and Hinckle M E.The role of microorganisms in acid mine drainage.A preliminary report,Science,1947,106:253-256
    [105]Temple K L and Delchamps E W.Autotrophic bacteria and the formation of acid in Bituminous coal mines.Appl.Microbiol.,1953,1:255-258
    [106]Leathen W W,Kinsel N A and Braley S A.Ferrobacillus ferrooxidans:A chemosynthetic autotrophic bacterium.Bacterial,1956,72:700-704
    [107]Bryner L C.Microorganisms in leaching of sulfide minerals.Industrial and Engineering Chemistry,1954,46:2587-2592
    [108]Shoemaker R S and Darrah R M.The economics of heap leaching.Mining Engineering,1968,20(12):90-92
    [109]罗廉明,王军,徐竞,等.提高细菌浸矿速度的方法研究.矿产保护与利用,1999,4:40-43
    [110]裘荣庆.微生物冶金的研究和应用现状.微生物学通报,1995,3:180-183
    [111]刘汉钊,张永奎.微生物在矿物工程上应用的新进展.国外金属矿选矿,1999,12:9-12
    [112]马玉聪.细菌浸出法在矿物工程中的应用.金属矿山,1994,8:42-44
    [113]彭艳平,余水静.我国生物冶金研究的发展概况.矿业快报,2006,12:8-10
    [114]李宏煦,邱冠周.大宝山废铜矿细菌浸出铜的研究.矿产综合利用,2000,5:31-33
    [115]阮仁满,温建康,车小奎.紫金山铜矿细菌浸出研究.有色金属,2000,4:159-162
    [116]杨玲.利用微生物技术提高矿产资源利用率.化工矿产地质,2005,27(1):5-7
    [117]陈勃伟,温建康.生物冶金中混合菌的作用.金属矿山,2008,4:31-35
    [118]张在海,邱冠周,胡岳华,等.不同富集菌种的浸矿比较研究.有色矿冶,2000,16(4):11-14
    [119]邱冠周,柳建设,王淀佐,等.氧化亚铁硫杆菌生长过程铁的行为.中南工业大学学报,1998,3:226-228
    [120]周吉奎,钮因健.硫化矿生物冶金研究进展.金属矿山,2005,4:24-30
    [121]李宏煦,王淀佐.生物冶金中的微生物及其作用.有色金属,2003,55(2):94-97
    [122]乐长高,姜国芳,刘云海.氧化亚铁硫杆菌生物冶金的新进展.生物技术,2003,13(3):45-47
    [123]张在海.铜硫化矿生物浸出高效菌种选育及浸出机理:[博士学位论文].长 沙:中南大学,2002
    [124]张英杰,杨显万.硫化矿细菌浸出机理.有色金属,1997,49(4):39-44
    [125]姜国芳,刘亚洁,乐长高.氧化硫硫杆菌的研究进展.生物学杂志,2005,22(10):11-13
    [126]Lizama H M,Suzuki I.Bacterial leaching of a sulphide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans:1.Shake flask studies.Biotechnol.Bioeng.,1988,32:110-115
    [127]张广积,方兆珩.生物氧化浸矿机理和动力学.国外金属矿选矿,2000,6:17-20
    [128]Tributsch H.Direct versus indirect bioleaching.Hydrometallurgy,2001,59:177-185
    [129]胡岳华,康自珍.氧化亚铁硫杆菌的细菌学描述.湿法冶金,1996,4:36-40
    [130]Bagheri S A,Hassani H R.Isolation and preliminary identification of some iron and sulfur oxidizing microorganisms from the Sarcheshmed copper mine.Process Metallurgy,2001,11A:393-396
    [131]Elzeky M,Attia Y A.Effect of bacterial adaptation on kinetics and mechanisms bioleaching ferrous sulfides.The Chemical Engineering Journal,1995,56 B:115-124
    [132]柳建设.硫化矿物生物提取及腐蚀电化学研究:[博士学位论文].长沙:中南大学,2002
    [133]陈世倌.生物浸出及其在有色冶金中的应用.上海有色金属,2000,21(3):137-145
    [134]Patnaik L,Kar R N,Sukla L B.Influence of pH on bioleaching of copper and zinc from complex sulfide concentrate using Thiobacillus ferrooxidans.Transactions of the Indian Institute of Metals,2001,54(4):139-144
    [135]姚国成,阮仁满.生物冶金常用浸矿细菌及改良育种的基本方法.金属矿山,2002(11):26-29
    [136]Toma M K,Ruklisha M P,Vanags J J.Inhibition of microbial growth and metabolism by excess turbulence.Biotechnol.Bioeng.,1991,38:552-556
    [137]贺治国,胡岳华,胡维新,等.细菌浸出硫化矿物技术的现状和进展.矿产保护与利用,2002,5:41-45
    [138]杨松荣,邱冠周,谢纪元,等.国外生物氧化提取技术的进展.有色金属,2001,53(3):57-60
    [139]李雄,柴立元,王云燕.生物浸矿技术研究进展.工业安全与环保,2006, 32(3):1-3
    [140]Brierley J A.Expanding role of microbiology in metallurgical processes.Mining Engineering,2000,52(11):49-55
    [141]方兆珩.生物氧化浸矿反应器的研究进展.黄金科学技术,2002,12(6):1-7
    [142]袁源,汪模辉,王建伟.硫化矿微生物冶金及其强化技术的研究进展.湿法冶金,2007,26(4):175-178
    [143]唐云,桂斌旺,刘全军.细菌浸出的试验研究.有色矿冶,2000,16(6):23-28
    [144]蒋金龙,汪模辉,王康林.金属离子对细菌浸出复杂金属硫化矿的影响.成都理工大学学报,2001,28(2):209-213
    [145]张永奎,王安,陈茂春,等.细菌分溶磷矿石探索性研究.矿产综合利用,2000,6:32-34
    [146]龚文琪,边勋,陈伟,等.氧化硫硫杆菌的培养特性及中低品位磷矿浸出.武汉理工大学学报,2007,29(5):53-57
    [147]龚文琪,张晓峥,袁吴,等.中低品位磷矿废石的细菌浸出试验研究.上海第二工业大学学报,2007,24(2):125-130
    [148]龚文琪,陈伟,张晓峥,等.氧化亚铁硫杆菌的分离培养及其溶磷效果.过程工程学报,2007,7(3):584-588
    [149]张在海,王淀佐,邱冠周,等.氧化亚铁硫杆菌亚铁氧化活性诱变育种理论探讨.铜业工程,2001,1:12-15
    [150]温建康.生物冶金的现状与发展.中国有色金属,2008,10:74-76
    [151]Temple K L,Colmer A R.The autotrophic oxidation of iron by a new bacterium:Thiobacillus ferrooxidans.J.Bacteriol.,1951,62:605-611
    [152]Kawatra S K.Depression of pyrites by yeast and bacteria.Minerals and Metallurgical Processing,1999,16(4):1-5
    [153]钟慧芳,蔡文六,李雅芹.黄铁矿的细菌氧化.微生物学报,1987,27(3):264-270
    [154]Silver M.Oxidation of elemental sulphur and sulphur compounds and CO_2fixation by Ferrobacillus ferrooxidans(Thiobacillus ferrooxidans).Can.J.Microbiol.,1970,16:845-849
    [155]徐艺臻.影响细菌浸出率的因素研究.湿法冶金,2000,19(3):32-34
    [156]Jacques V W,Magda M,Blanca E.Mechanism of pyrite catalysis of As(Ⅲ)oxidation in bioleaching solutions at 30℃ and 70℃.Hydrometallurgy,2006, 83(14):35-39
    [157]Kelly D P,Jones C A.In:Metallurgical application of bacterial transformation and related microbiological phenomena.Princeton:Academic Press,1978,19-44
    [158]Bloomfield C.The oxidation of sulphides in soils in relation to the formation of acid sulfate soil,and ochre deposits in field drains.Journal of Soil Science,1972,23:11-16
    [159]Nestor D,Valdivia U,Chaves A P.Mechanisms of bioleaching of a refractory mineral of gold with Thibacillus ferrooxidans.International Journal of Mineral Processing,2001,62:12-15
    [160]Schaufuss A G,Nesbitt H W,Scaini M J,et al.Reactivity of surface sites on fractured arsenopyrite(FeAsS) toward oxygen.Am.Mineral.,2000,85:1754-1766
    [161]Brierly J A,Norris P R,Kelly,F,et al.Characteristics of a moderately thermophillic and acidophillic iron oxidizing Thiobacillus.Eur.Appl.Microbiol.Biotechnol.,1978,5:291-299
    [162]Duncan D W,Trussell P C,Walden C C.Leaching of chalcopyrite with Thiobacillus ferrooxidans:effect of surfactants and shaking.Appl.Microbiol.,1964,12(2):122-126
    [163]郭爱莲,孙先锋,朱宏莉.He-Ne 激光、紫外线诱变氧化亚铁硫杆菌及耐砷菌株的选育.光子学报,1999,28(8):718-721
    [164]王建龙.生物固定化技术与水污染控制.北京:科学出版社,2002.27-28
    [165]虞云龙,盛国英,傅家谟.农药降解酶的固定化及其降解特性.应用与环境生物学报,1999,5:166-169
    [166]吕人豪,区嘉炜.酸煤矿水中氧化硫硫杆菌的分离及其特征.微生物学报,1964,10(4):467-475
    [167]Liu H L,Lan Y W,Cheng Y C.Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology.Process Biochemistry,2004,39:1953-1961
    [168]Schaeffer W I,Umbreit W W.Phosphatidylinositol as a weting agent in sulfur oxidation by Thiobacillus thiooxidans.J.Bacteriol.,1963,85:492-493
    [169]龚文琪,张晓峥,刘艳菊,等.表面活性剂对嗜酸氧化硫硫杆菌溶磷的影响.中南大学学报(自然科学版),2007,38(1):60-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700