用户名: 密码: 验证码:
亲和沉淀技术的机理研究和在蛋白质纯化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的大规模分离纯化一直是一项非常有挑战性的工作,制约很多蛋白质、酶制剂的大规模应用的关键环节就是分离纯化。亲和沉淀技术是目前分离纯化蛋白质的研究热点之一,其有着环境友好,分离效率高等优势,适合大规模分离应用。亲和沉淀研究的重点之一是溶解可逆聚合物的合成,本文分别合成了pH响应溶解可逆聚合物和热响应溶解可逆聚合物。其中使用甲基丙烯酸、甲基丙烯酸二甲氨基乙酯、甲基丙烯酸丁酯和N-羟甲基丙烯酰胺合成了pH响应溶解可逆聚合物PMMDN,通过红外技术分析其结构,通过测量Zeta电位得知该聚合物等电点为4.51,通过凝胶色谱技术测得其分子量为6.78×104,多次回收率均高于96.0%以上。使用N-异丙基丙烯酰胺、丙烯酸丁酯和N-羟甲基丙烯酰胺为反应单体无规聚合制备热响应聚合物PNBN。通过分光光度计法测得该聚合物的最低临界温度为30.8℃,测得其分子量为3.17×104,在添加0.5mol/LNaCl的情况下,其回收率高达99.8%,基本达到完全回收。
     其次分别使用两种聚合物连接不同亲和配基,使用PMMDNn连接Cibacron Blue F3GA配基(PMMDNn-CB)、金属离子配基(PMMDN-IDA-Cu2+)和L-甲状腺素配基(PMMDN-T);使用PNBN连接L-甲状腺素配基(PNBN-T)。对pH响应聚合物及连接配基的亲和聚合物测量了等电点,分别为4.45、4.35和4.65,各自多次回收率均高于96.0%以上。PNBN-T的最低临界温度为32.8℃,在有NaCl存在的情况下,五次回收率约99.0%。
     随后将得到的四种不同亲和沉淀载体分别应用到纤维素酶、内切葡聚糖酶、溶菌酶、人血清白蛋白和谷氨酰胺转氨酶的纯化中。同时使用分子模拟技术、红外光谱、圆二色谱、生物大分子相互作用仪(Octet)、SDS-PAGE电泳等来进行研究。使用PMMDN-CB分离纯化纤维素酶,发现在pH7.2,添加NaCl浓度为1.0mol/L的条件下,在30℃下吸附两个小时达到平衡。通过酶活以及蛋白含量的测量确定了含有20.0%乙
     醇的pH7.1的Tris-HCl缓冲液作为洗脱液可以得到最合适的洗脱效率,总活力洗脱率约84.5%,内切酶活洗脱率高达99.0%,通过SDS-PAGE鉴定也达到电泳纯。首先使用分子模拟手段,使用DOCK软件计算辅助确定了金属螫合剂的种类和金属离子配基的种类,亚氨基二乙酸作为金属蝥合剂在稳定性和活性上都最合适,金属铜离子在结合蛋白质上最稳定,实验也验证了模拟结果。使用PMMDN-IDA-Cu2+亲和沉淀内切葡聚糖酶,在pH5.0,添加NaCl浓度为1.0mol/L的条件下,在30℃下混合吸附两个小时达到平衡;含有0.5mol/L咪唑与1.0mol/L盐酸胍作为洗脱液可以得到最佳的洗脱效率,蛋白检测和内切酶酶活洗脱率分别高达98.5%和99.3%。使用PMMDN-T作为亲和沉淀剂从咸鸭蛋清中提取溶菌酶。在pH5.5,添加NaCl以增加离子强度,配基密度为60.0μmol/g的条件下,在25℃下振荡吸附两个小时,通过吸附等温线得到该聚合物对溶菌酶的最大吸附容量和解离常数分别22.8mg/g和0.085mg/g,使用的Octet进行分析也印证了这一结果的正确性,圆二色谱证明了L-甲状腺素对溶菌酶有亲和作用力,影响了其二级结构的变化,得出pH7.0磷酸盐缓冲液复合0.5mol/LUrea可以作为洗脱液得到较高效率的溶菌酶,蛋白和酶活洗脱率分别高达85.0%和95.4%。对于热响应聚合物,使用PNBN-T从人血清中亲和沉淀提取人血清白蛋白,在pH7.0,不添加NaCl以增加离子强度,配基密度为60.0μmol/g的条件下,在25℃下振荡吸附两个小时,吸附达到平衡,最大吸附容量和解离常数分别14.87mg/g和0.11lmg/g,与Octet的实验结果吻合。圆二色谱证明了人血清白蛋白因L-甲状腺素的影响而二级结构发生了变化;1.0mol/L的NaSCN可以作为洗脱液,洗脱率高达93.8%,对亲和沉淀的结果使用SDS-PAGE分析,证明PNBN-T可以分离出电泳纯的HSA。使用PNBN-T通过亲和沉淀技术从TG发酵液中提取谷氨酰胺转氨酶(TG),最佳吸附条件为pH5.0,配基密度为59.50μmol/g,在15℃下振荡吸附两个小时达到最大吸附效率。通过吸附等温线得到该聚合物对TG的最大吸附容量和解离常数分别169.4mg/g和1.35mg/g,Octet实验基本验证了这一结果的正确性。使用圆二色谱证明L-甲状腺素使TG二级结构中螺旋和折叠发生变化,证明了其对TG的亲和作用。实验得到的最佳洗脱条件为pH10.0Gly-NaOH,蛋白洗脱率和酶活洗脱率分别高达99.01%和95.85%,使用SDS-PAGE分析最终结果,得到电泳纯的TG。
Protein purification on a large scale is still a challenge nowadays.Affinity precipitation was reported as a potential technique for the purification of proteins at early stage of downstream processing. The technique could be achieved by using reversibly soluble-insoluble polymers coupled with ligand as an affinity carrier to purify proteins from large volume of dilute solution material. The key of affinity precipitation is the syntheisi of the response polymers. In this study, pH-response and thermo-response polymers were synthesized. Methyl acrylate, methacrylate, dimethylaminoethyl methacrylate, butyl methacrylate and N-methylol acrylamide were used to synthesize the pH-response polymer PMMDN, IR was used to analyze its structure. The pI of PMMDN was4.51obtained by measuring the Zeta potential. The molecular weight was6.78×104, whick was tested by gel chromatography technique. The multiple recoveries were higher than96.0%. N-isopropyl acrylamide, butyl acrylate and N-methylol acrylamide were used as monomers to synthize the thermo-response polymer PNBN by random polymerization. The lowest critical temperature of the polymer was30.8℃measured by the spectrophotometer. Its molecular weight was3.17×104, and the recovery of PNBN was99.8%with adding0.5mol/LNaCl.
     There are four different ligands were connect to two polymers. PMMDN was connected Cibacron Blue F3GA(PMMDN-CB), metal ions(PMMDN-IDA-Cu2+) and L-thyroxine ligand (PMMDN-T); PNBN was connected to the L-thyroxine(PNBN-T).The pI of these different ligand to the pH-response polymer were4.45,4.35and4.65, respectively. The recoveries of these polymers were all higher than96.0%. The LCST of PNBN-T was32.8℃,five times recoveries of PNBN-T were99.0%in the presence of NaCl.
     Subsequently, the obtained four different affinity precipitation polymers were applied to purify cellulase, endoglucanase. lysozyme, human serum albumin and glutamine transaminase. Molecular simulation technology, infrared spectroscopy, circular dichroism, biological macromolecules interaction instrument (Octet), SDS-PAGE electrophoresis were all used in this study. Cellulase was purified by PMMDN-CB. Optimal adsorptions could be achieved at pH7.2and1.0mol/1NaCl. FTIR confirmed that ligand CB was immobilized on the polymer and cellulase was adsorbed on PMMDN-CB. The optimal eluant was0.1mol/1pH7.1Tris-HCl with20.0%glycol. The elution recovery of total cellulase activity and endo-glucanase activity was almost84.4%and99.8%, respectively. The SDS-PAGE showed the main bands with a molecular weight corresponding to that of the native cellulase. Molecular docking by DOCK software was used to calculate and help to determine the species of the metal chelating agent and a metal ion ligand. Iminodiacetic acid was chose as metal chelating agent for its stability and activity, copper ions was decided because it could be combined with protein stably.All experiments datas tesefy the simulation results. Use PMMDN-IDA-Cu2+to separation endoglucanase in the conditon of pH5.0,1.0mol/L NaCl concentration and30℃in two hours to reach equilibrium; the eluant was0.5mol/L imidazole with l.Omol/L guanidine hydrochloride, and the elution ratio of protein and endonuclease activity were up to98.5%and99.3%, respectively. Use PMMDN-T as affinity polymer to get lysozyme from salted duck eggs. The optimal adsorption condition was pH5.5with some NaCl to increase ionic strength, ligand density was60.0μmol/g. The maximum adsorption capacity of lysozyme and the dissociation constant of the polymer obtained by adsorption isotherm22.8mg/g and0.085mg/g, the Octet analysis also confirms the correctness of the results. Circular dichroism proved that L-thyroxine had affinity force to lysozyme. pH7.0PB with0.5mol/LUrea was used as the eluent to obtain higher efficiency, the elution ratio of protein and enzyme activity up to85.0%and95.4%, respectively. L-thyroxin which was first used as affinity ligand was immobilized on the PNBN for affinity precipitation of HSA. The optimal adsorption condition was0.02M Tris-HCl buffer (pH7.0) and the adsorption capacity of HSA on the polymer was14.9mg/g polymer in affinity precipitation process. Circular Dichroism spectra and ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The elution recovery of total HSA was93.6%by1.0mol/L NaSCN. When the affinity polymer was applied in the purification of HSA from human serum, the SDS-PAGE showed that a purified HSA single band was obtained.
     PNBN-T was used to extract pure glutamine transaminase (TG) from the fermentation broth, the optimum adsorption conditions was pH5.0, ligand density for59.5.0μmol/g, shaken at15°C for two hours to achieve maximum efficiency. The maximum adsorption capacity and dissociation constant were169.4mg/g and1.35mg/g, respectively. The Octet experimental verified the correctness of the results. Circular dichroism proved that L-thyroxine make the secondary structure of TG change by the affinity force between. The optimum elution condition was pH10.0Gly-NaOH, and the elution ratio of protein amount and activity were up to99.01%and95.85%, respectively. The SDS-PAGE was used to analyze the final results, and the electrophoretically pure TG was obtaind.
引文
[1]R. Freitag, I. Schumacher, F. Hilbrig. Affinity Precipitation an Option for Early Capture in Bioprocessing. Biotechnology Journal.2007,2 (6):685-690
    [2]E. Klein.Affinity Membranes:A 10-Year Review. Journal of Membrane Science.2000, 179(1-2):1-27
    [3]P. Cuatrecasas, C.B. Anfinsen. Affinity Chromatography. Annual Review of Biochemistry. 1971,40(1):259-278
    [4]K. Mondal, M.N. Gupta. The Affinity Concept in Bioseparation:Evolving Paradigms and Expanding Range of Applications. Biomolecular Engineering.2006,23 (2-3):59-76
    [5]M.N. Gupta, R. Kaul, D. Guoqiang, U. Dissing, B. Mattiasson, W.H. Scouten. Affinity Precipitation of Proteins. Journal of Molecular Recognition.1996,9 (5-6):356-359
    [6]S. Flygare, M.-O. Mannsson, P.-O. Larsson, K. Mosbach. Affinity Precipitation of Enzymes. Applied Biochemistry and Biotechnology.1982,7 (1-2):59-61
    [7]J. Irwin, K. Tipton. Affinity Precipitation Methods. In:Protein Purification Protocols--P. Cutler, ed.:Humana Press,2004:205-223
    [8]B. Mattiasson, A. Kumar, A.E. Ivanov, I.Y. Galaev. Metal-Chelate Affinity Precipitation of Proteins Using Responsive Polymers. Nat. Protocols.2007,2(1):213-220
    [9]I.Y. Galaev, B. Mattiasson.'Smart'Polymers and What They Could Do in Biotechnology and Medicine. Trends in Biotechnology.1999,17 (8):335-340
    [10]A.S. Hoffman. Bioconjugates of Intelligent Polymers and Recognition Proteins for Use in Diagnostics and Affinity Separations. Clinical Chemistry.2000,46 (9):1478-1486
    [11]C. Senstad, B. Mattiasson. Affinity-Precipitation Using Chitosan as Ligand Carrier. Biotechnology and bioengineering.1989,33 (2):216-220
    [12]W. Wen, J. Wan, X. Cao, J. Xia. Preparation of a Light-Sensitive and Reversible Dissolution Copolymer and Its Application in Lysozyme Purification. Biotechnology Progress. 2007,23(5):1124-1129
    [13]L. Zhou, J. Wan, X. Cao. Synthesis of Thermo-Sensitive Copolymer with Affinity Butyl Ligand and Its Application in Lipase Purification. Journal of Chromatography B.2010,878 (15-16):1025-1030
    [14]B. Yan, X. Cao. Preparation of Aqueous Two-Phase Systems Composed of Two Ph-Response Polymers and Liquid-Liquid Extraction of Demeclocycline. Journal of Chromatography A.2012.1245 (0):39-45
    [15]P.O. Wahlund, I.Y. Galaev, S.A. Kazakov, V.I. Lozinsky, B. Mattiasson. "Protein-Like" Copolymers:Effect of Polymer Architecture on the Performance in Bioseparation Process. Macromolecular Bioscience.2002,2(1):33-42
    [16]C.S. Chern, C.K. Lee, C.Y. Chen, M.J. Yeh. Characterization of Ph-Sensitive Polymeric Supports for Selective Precipitation of Proteins. Colloids and Surfaces B:Biointerfaces.1996, 6(1):37-49
    [17]J. Mudassir, N. Ranjha. Dynamic and Equilibrium Swelling Studies:Crosslinked Ph Sensitive Methyl Methacrylate-Co-Itaconic Acid (Mma-Co-Ia) Hydrogels. Journal of Polymer Research.2008,15 (3):195-203
    [18]W. Qin, X.-J. Cao. Synthesis of a Novel Ph-Sensitive Methacrylate Amphiphilic Polymer and Its Primary Application in Aqueous Two-Phase Systems. Applied Biochemistry and Biotechnology.2008,150 (2):171-183
    [19]S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, H. Misawa. Reversible Phase Transitions in Polymer Gels Induced by Radiation Forces. Nature.2000,408 (6809): 178-181
    [20]L. Yan, Q. Zhu, P.U. Kenkare. Lower Critical Solution Temperature of Linear Pnipa Obtained from a Yukawa Potential of Polymer Chains. Journal of Applied Polymer Science. 2000,78(11):1971-1976
    [21]A. Kumar, A. Srivastava, I.Y. Galaev, B. Mattiasson. Smart Polymers:Physical Forms and Bioengineering Applications. Progress in Polymer Science.2007,32 (10):1205-1237
    [22]O. Chiantore, M. Guaita, L. Trossarelli.Solution Properties of Poly(N-Isopropylacrylamide). Die Makromolekulare Chemie.1979,180 (4):969-973
    [23]K. Suwa, K. Morishita, A. Kishida, M. Akashi. Synthesis and Functionalities of Poly(N-Vinylalkylamide). V. Control of a Lower Critical Solution Temperature of Poly(N-Vinylalkylamide). Journal of Polymer Science Part A:Polymer Chemistry.1997,35 (15): 3087-3094
    [24]G. Wanka, H. Hoffmann, W. Ulbricht. Phase Diagrams and Aggregation Behavior of Poly(Oxyethylene)-Poly(Oxypropylene)-Poly(Oxyethylene) Triblock Copolymers in Aqueous Solutions. Macromolecules.1994,27 (15):4145-4159
    [25]赵睿,刘国诠.亲和色谱中配基的筛选与应用.色谱.2007(02)
    [26]S.R. Narayanan. Preparative Affinity Chromatography of Proteins. Journal of Chromatography A.1994,658 (2):237-258
    [27]J. Shentu, J. Wu, W. Song, Z. Jia. Chitosan Microspheres as Immobilized Dye Affinity Support for Catalase Adsorption. International Journal of Biological Macromolecules.2005, 37 (1-2):42-46
    [28]A. Denizli,E. Piskin. Dye-Ligand Affinity Systems. Journal of Biochemical and Biophysical Methods.2001,49 (1-3):391-416
    [29]F. Wu, Y. Zhu, Z. Jia. Preparation of Dye-Ligand Affinity Chromatographic Packings Based on Monodisperse Poly(Glycidylmethacrylate-Co-Ethylenedimethacrylate) Beads and Their Chromatographic Properties. Journal of Chromatography A.2006,1134 (1-2):45-50
    [30]S. Subramanian, P.D. Ross. Dye-Ligand Affinity Chromatography:The Interaction of Cibacron Blue F3ga(?) with Proteins and Enzyme. Critical Reviews in Biochemistry and Molecular Biology.1984,16(2):169-205
    [31]W.K. Alderton, C.R. Lowe, D.R. Thatcher. Purification of Recombinant Ricin a Chain with Immobilised Triazine Dyes. Journal of Chromatography A.1994,677 (2):289-299
    [32]王静云,杨冬,包永明,安利佳,郑学仿.新型染料配基对碱性磷酸酶的亲和纯化.高校化学工程学报.2001(06)
    [33]Y. Bai, S.-T. Yang. Production and Separation of Formate Dehydrogenase from Candida Boidinii. Enzyme and Microbial Technology.2007,40 (4):940-946
    [34]S.S. Suh, M.E. Van Dam, G.E. Wuenschell, S. Plunkett, F.H. Arnold. Novel Metal-Affinity Protein Separations. In:Protein Purification:American Chemical Society,1990:139-149
    [35]J. Porath, J.A.N. Carlsson, I. Olsson, G. Belfrage. Metal Chelate Affinity Chromatography, a New Approach to Protein Fractionation. Nature.1975,258 (5536):598-599
    [36]苏流利.固定化金属亲和载体的制备及应用[硕士]:中国科学院研究生院(上海生命科学研究院).2005
    [37]A. Kumar, I.Y. Galaev, B. Mattiasson. Metal Chelate Affinity Precipitation:A New Approach to Protein Purification. Bioseparation.1998,7 (4-5):185-194
    [38]A. Kumar, I.Y. Galaev, B. Mattiasson. Isolation and Separation of A-Amylase Inhibitors 1-1 and 1-2 from Seeds of Ragi (Indian Finger Millet, Eleusine Coracana) by Metal Chelate Affinity Precipitation. Bioseparation.1998,7 (3):129-136
    [39]A. Kumar, A.A.M. Khalil, I.Y. Galaev, B. Mattiasson. Metal Chelate Affinity Precipitation:Purification of (His)6-Tagged Lactate Dehydrogenase Using Poly(Vinylimidazole-Co-N-Isopropylacrylamide) Copolymers. Enzyme and Microbial Technology.2003,33 (1):113-117
    [40]A. Kumar, P.O. Wahlund, C. Kepka, I.Y. Galaev, B. Mattiasson. Purification of Histidine-Tagged Single-Chain Fv-Antibody Fragments by Metal Chelate Affinity Precipitation Using Thermoresponsive Copolymers. Biotechnology and bioengineering.2003, 84 (4):494-503
    [41]Y.-Q. Ling, H.-L. Nie, C. Brandford-White, G.R. Williams, L.-M. Zhu. Metal Chelate Affinity Precipitation:Purification of Bsa Using Poly(N-Vinylcaprolactam-Co-Methacrylic Acid) Copolymers. Colloids and Surfaces B:Biointerfaces.2012,94 (0):281-287
    [42]S. Balan, J. Murphy, I. Galaev, A. Kumar, G. Fox, B. Mattiasson, R. Willson. Metal Chelate Affinity Precipitation of Rna and Purification of Plasmid DNA. Biotechnology Letters.2003,25 (13):1111-1116
    [43]A. Kumar, I. Galaev, B. Mattiasson. Affinity Precipitation of Proteins Using Metal Chelates. In:Affinity Chromatography--M. Zachariou, ed.:Humana Press,2008:37-52
    [44]K.D. Miller, S. Weitzel, V.G.J. Rodgers. Reduction of Membrane Fouling in the Presence of High Polarization Resistance. Journal of Membrane Science.1993,76 (1):77-83
    [45]J.R. Tata. Rosalind Pitt-Rivers and the Discovery of T3. Trends in Biochemical Sciences. 1990,15 (7):282-284
    [46]I. Petitpas, C.E. Petersen, C.-E. Ha, A.A. Bhattacharya, P.A. Zunszain, J. Ghuman, N.V. Bhagavan, S. Curry. Structural Basis of Albumin-Thyroxine Interactions and Familial Dysalbuminemic Hyperthyroxinemia. Proceedings of the National Academy of Sciences. 2003,100(11):6440-6445
    [47]R.H. Kahn, E. Starkenstein. Die Storungen Der Herztatigkeit Durch Glyoxylsaure (Pulsus Alternans) Im Elektrokardiogramme. Pfluger's Archiv fur die gesamte Physiologie des Menschen und der Tiere.1910,133 (11-12):579-596
    [48]P.O. Larsson, K. Mosbach. Affinity Precipitation of Enzymes. FEBS letters.1979,98 (2): 333-338
    [49]F. Hilbrig, R. Freitag. Protein Purification by Affinity Precipitation. Journal of Chromatography B.2003,790 (1-2):79-90
    [50]L.-C. Pan, C.-C. Chien. A Novel Application of Thermo-Responsive Polymer to Affinity Precipitation of Polysaccharide. Journal of Biochemical and Biophysical Methods.2003,55 (1):87-94
    [51]A.S. Hoffman, P.S. Stayton. Bioconjugates of Smart Polymers and Proteins:Synthesis and Applications. Macromolecular Symposia.2004,207 (1):139-152
    [52]H.L. Liu, A.H. Osmani, L. Ukil, S. Son, S. Markossian, K.F. Shen, M. Govindaraghavan, A. Varadaraj, S.B. Hashmi, C.P. De Souza, S.A. Osmani. Single-Step Affinity Purification for Fungal Proteomics. Eukaryotic cell.2010,9 (5):831-833
    [53]A. Goyal, B. Ghosh, D. Eveleigh. Characteristics of Fungal Cellulases. Bioresource Technology.1991,36 (1):37-50
    [54]D.B. Wilson. Cellulases and Biofuels. Current Opinion in Biotechnology.2009,20 (3): 295-299
    [55]C. Paech. Approaches to Cellulase Purification. In:Enzymatic Conversion of Biomass for Fuels Production:American Chemical Society,1994:130-178
    [56]M.K. Bhat. Cellulases and Related Enzymes in Biotechnology. Biotechnology Advances. 2000,18 (5):355-383
    [57]梁靖,蒋文莉,陈利燕.纤维素酶在速溶茶中的应用研究.茶叶.2002(01)
    [58]林英,李颖,商桑,李贺民,吕淑霞.纤维素酶在畜禽饲料中的应用.辽宁农业科学.2004(02)
    [59]鲍晓华,董维多.纤维素酶在食品发酵和加工中的应用.思茅师范高等专科学校学报.2010(03)
    [60]S. Hari Krishna, T. Janardhan Reddy, G.V. Chowdary. Simultaneous Saccharification and Fermentation of Lignocellulosic Wastes to Ethanol Using a Thermotolerant Yeast. Bioresource Technology.2001,77 (2):193-196
    [61]A. Fleming. On a Remarkable Bacteriolytic Element Found in Tissues and Secretions. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character.1922,93 (653):306-317
    [62]A. Fleming, V.D. Allison. Observations on a Bacteriolytic Substance (?Lysozyme?) Found in Secretions and Tissues. British journal of experimental pathology.1922,3 (5):252-260
    [63]R.E. Canfield, S. McMurry. Purification and Characterization of a Lysozyme from Goose Egg White. Biochemical and Biophysical Research Communications.1967,26 (1):38-42
    [64]P. Jolles, J. Jolles. What's New in Lysozyme Research? Molecular and Cellular Biochemistry.1984,63 (2):165-189
    [65]T.D. Lockey, D.D. Ourth. Purification and Characterization of Lysozyme from Hemolymph of Heliothis Virescens Larvae. Biochemical and Biophysical Research Communications.1996,220 (3):502-508
    [66]E. Li-Chan, S. Nakai, J. Sim, D.B. Bragg, K.V. Lo. Lysozyme Separation from Egg White by Cation Exchange Column Chromatography. Journal of Food Science.1986,51 (4): 1032-1036
    [67]T.D. Durance, S. Nakai. Simultaneous Isolation of Avidin and Lysozyme from Egg Albumen. Journal of Food Science.1988,53 (4):1096-1101
    [68]张文会,马润宇.离子交换法提取鸡蛋清溶菌酶.食品工业科技.2003(06)
    [69]姜馗.蛋清溶菌酶的工业化提取技术.食品工业科技.2005(10)
    [70]T. Beslikas, I. Gigis, V. Goulios, J. Christoforides, G.Z. Papageorgiou, D.N. Bikiaris. Crystallization Study and Comparative in Vitro-in Vivo Hydrolysis of Pla Reinforcement Ligament. International Journal of Molecular Sciences.2011,12(10):6597-6618
    [71]R. van Reis, A. Zydney. Membrane Separations in Biotechnology. Current Opinion in Biotechnology.2001,12 (2):208-211
    [72]陶凤云,张新妙,马润宇.溶菌酶结晶的研究进展.北京联合大学学报(自然科学版).2006(03)
    [73]魏可贵,张新妙,马润宇.蛋白质溶液的膜结晶:膜结晶法结晶溶菌酶的研究.膜科学与技术.2008(03)
    [74]A.E. Ivanov, I.Y. Galaev, S.V. Kazakov, B. Mattiasson. Thermosensitive Copolymers of N-Vinylimidazole as Displacers of Proteins in Immobilised Metal Affinity Chromatography. Journal of Chromatography A.2001,907 (1-2):115-130
    [75]H. Ishii, A. Iwata, H. Oka, N. Sakamoto, Y. Ishimatsu, J.-i. Kadota. Elevated Serum Levels of Lysozyme in Desquamative Interstitial Pneumonia. Internal Medicine.2010.49 (9): 847-851
    [76]E.A. Maga, C.F. Shoemaker, J.D. Rowe, R.H. BonDurant, G.B. Anderson, J.D. Murray. Production and Processing of Milk from Transgenic Goats Expressing Human Lysozyme in the Mammary Gland. Journal of Dairy Science.2006,89 (2):518-524
    [77]许红,刁新平.绿色添加剂溶菌酶及其应用.饲料工业.2005(02)
    [78]谷绒,车振明,万国福.溶菌酶在食品工业中的应用.乳业科学与技术.2006(06)
    [79]赵电波,白艳红,张小燕,毋尤君.天然生物防腐剂溶菌酶的改性研究进展.中国食品添加剂.2010(05)
    [80]K. Hettinga, H. van Valenberg, S. de Vries, S. Boeren, T. van Hooijdonk, J. van Arendonk, J. Vervoort. The Host Defense Proteome of Human and Bovine Milk. PLoS ONE. 2011,6 (4):e19433
    [81]邹仕庚,朱光道.溶菌酶及其在畜禽饲料中的应用.畜禽业.2007(07)
    [82]邢思华,华雪铭,朱站英,沈彦萍,王军,于宁,沈文婧.饲料中添加溶菌酶对草鱼生长性能和抗感染能力的影响.华中农业大学学报.2012(06)
    [83]U. Kragh-Hansen. Molecular Aspects of Ligand Binding to Serum Albumin. Pharmacological reviews.1981,33 (1):17-53
    [84]T. Peters. All About Albumin:Biochemistry, Genetics, and Medical Applications. San Diego, CA [etc.]:Elsevier Academic Press,1996
    [85]X.M. He, D.C. Carter. Atomic Structure and Chemistry of Human Serum Albumin. Nature.1992,358 (6383):209-215
    [86]S. Curry, H. Mandelkow, P. Brick, N. Franks. Crystal Structure of Human Serum Albumin Complexed with Fatty Acid Reveals an Asymmetric Distribution of Binding Sites. Nat Struct Mol Biol.1998,5 (9):827-835
    [87]M. Dockal, D.C. Carter, F. Ruker. The Three Recombinant Domains of Human Serum Albumin. Structural Characterization and Ligand Binding Properties. The Journal of biological chemistry.1999,274 (41):29303-29310
    [88]U. Kragh-Hansen. Structure and Ligand Binding Properties of Human Serum Albumin. Danish medical bulletin.1990,37 (1):57-84
    [89]S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi. Crystal Structure of Human Serum Albumin at 2.5 Resolution. Protein Engineering.1999,12 (6):439-446
    [90]M.D. Danese, P.W. Ladenson, C.L. Meinert, N.R. Powe. Effect of Thyroxine Therapy on Serum Lipoproteins in Patients with Mild Thyroid Failure:A Quantitative Review of the Literature. Journal of Clinical Endocrinology & Metabolism.2000,85 (9):2993-3001
    [91]P.B. Kandagal, S. Ashoka, J. Seetharamappa, S.M.T. Shaikh, Y. Jadegoud, O.B. Ijare. Study of the Interaction of an Anticancer Drug with Human and Bovine Serum Albumin: Spectroscopic Approach. Journal of Pharmaceutical and Biomedical Analysis.2006,41 (2): 393-399
    [92]J. Liu, J.-n. Tian, J. Zhang, Z. Hu, X. Chen. Interaction of Magnolol with Bovine Serum Albumin:A Fluorescence-Quenching Study. Analytical and Bioanalytical Chemistry.2003, 376 (6):864-867
    [93]J. Turnidge. Pharmacokinetics and Pharmacodynamics of Fluoroquinolones. Drugs.1999, 58 (2):29-36
    [94]P. Kistler, H. Nitschmann. Large Scale Production of Human Plasma Fractions. Vox Sanguinis.1962,7 (4):414-424
    [95]I.S. Kim, H.G. Eo, C.E. Chang, S. Lee. Partitioning and Inactivation of Viruses by Cold Ethanol Fractionation and Pasteurization During Manufacture of Albumin from Human Plasma. Journal of microbiology and biotechnology.2000,10 (6):858-864
    [96]J.J. Morgenthaler, A. Omar. Partitioning and Inactivation of Viruses During Isolation of Albumin and Immunoglobulins by Cold Ethanol Fractionation. Developments in biological standardization.1993,81:185-190
    [97]K. Langer, S. Balthasar, V. Vogel, N. Dinauer, H. von Briesen, D. Schubert. Optimization of the Preparation Process for Human Serum Albumin (Hsa) Nanoparticles. International Journal of Pharmaceutics.2003,257 (1-2):169-180
    [98]R. Mallik, T. Jiang, D.S. Hage. High-Performance Affinity Monolith Chromatography: Development and Evaluation of Human Serum Albumin Columns. Analytical Chemistry. 2004,76 (23):7013-7022
    [99]G. Jin, Q.-z. Yao, L. Zhang. Adsorption of Human Serum Albumin onto Pva-Coated Affinity Microporous Ptfe Capillary. Chemical Research in Chinese Universities.2008,24 (2): 154-161
    [100]N. Grossowicz, E. Wainfan, E. Borek, H. Waelsch. The Enzymatic Formation of Hydroxamic Acids from Glutamine and Asparagine. J Biol Chem.1950,187 (1):111-125
    [101]J.E. Folk. Transglutaminases. Annual Review of Biochemistry.1980,49 (1):517-531
    [102]H. Ando, M. Adachi, K. Umeda, A. Matsuura, M. Nonaka, R. Uchio, H. Tanaka, M. Motoki. Purification and Characteristics of a Novel Transglutaminase Derived from Microorganisms. Agricultural and Biological Chemistry.1989,53 (10):2613-2617
    [103]P. Falcone, D. Serafini-Fracassini, S. Del Duca. Comparative Studies of Transglutaminase Activity and Substrates in Different Organs of Helianthus Tuberosus. Journal of plant physiology.1993.142 (3):265-273
    [104]K.E. Achyuthan. Enzymatic and Kinetic Properties of Blood Coagulation Factor Xiiia and Guinea Pig Liver Transglutaminase Utilizing (6-[N-(4-Aminobutyl)-N-Ethylamino]-2,3-Dihydrophthalazine-1,4-Dione, as a Novel, Specific and Sensitive Chemiluminescent Substrate. Journal of Bioluminescence and Chemiluminescence.1998,13(1):1-11
    [105]T. Kanaji, H. Ozaki, T. Takao, H. Kawajiri, H. Ide, M. Motoki, Y. Shimonishi. Primary Structure of Microbial Transglutaminase from Streptoverticillium Sp. Strain S-8112. Journal of Biological Chemistry.1993,268 (16):11565-11572
    [106]K. Seguro, N. Nio, M. Motoki. Some Characteristics of a Microbial Protein Cross-Linking Enzyme:Transglutaminase in Macromolecular Interaction in Food Technology (Acs Symposium Series 650):Washington:American Chemical Society,1996
    [107]N. Day, J.W. Keillor. A Continuous Spectrophotometric Linked Enzyme Assay for Transglutaminase Activity. Analytical Biochemistry.1999,274(1):141-144
    [108]G. Matheis, J.R. Whitaker. A Review:Enzymatic Cross-Linking of Proteins Applicable to Foods. Journal of Food Biochemistry.1987,11 (4):309-327
    [109]K. Ikura. Studies on Use of Transglutaminase. Journal of the Agricultural Chemical Society of Japan.1988,62
    [110]M. Nonaka, H. Tanaka, A. Okiyama, M. Motoki, H. Ando, K. Umeda, A. Matsuura. Polymerization of Several Proteins by Ca2+-Independent Transglutaminase Derived from Microorganisms. Agricultural and Biological Chemistry.1989,53 (10):2619-2623
    [111]N. Kitabatake, E. Doi. Improvement of Protein Gel by Physical and Enzymatic Treatment. Food Reviews International.1993,9 (4):445-471
    [112]M. Motoki, K. Seguro. Trends in Japanese Soy Protein Research. Inform.1994,5:308-313
    [113]M. Motoki, K. Seguro. Transglutaminase and Its Use for Food Processing. Trends in Food Science & Technology.1998,9 (5):204-210
    [114]G. Morris, M. Lim-Wilby. Molecular Docking. In:Molecular Modeling of Proteins--A. Kukol, ed.:Humana Press,2008:365-382
    [115]D. Moustakas, P.T. Lang, S. Pegg, E. Pettersen, I. Kuntz, N. Brooijmans, R. Rizzo. Development and Validation of a Modular, Extensible Docking Program:Dock 5. Journal of Computer-Aided Molecular Design.2006,20 (10-11):601-619
    [116]S. Brozell, S. Mukherjee, T. Balius, D. Roe, D. Case, R. Rizzo. Evaluation of Dock 6 as a Pose Generation and Database Enrichment Tool. Journal of Computer-Aided Molecular Design.2012,26 (6):749-773
    [117]P.T. Lang, S.R. Brozell, S. Mukherjee, E.F. Pettersen, E.C. Meng, V. Thomas, R.C. Rizzo, D.A. Case, T.L. James, I.D. Kuntz. Dock 6:Combining Techniques to Model Rna-Small Molecule Complexes. RNA (New York, N.Y.).2009,15 (6):1219-1230
    [118]D. Reid, B. Sadjad, Z. Zsoldos, A. Simon. Lasso—Ligand Activity by Surface Similarity Order:A New Tool for Ligand Based Virtual Screening. Journal of Computer-Aided Molecular Design.2008,22 (6-7):479-487
    [119]N. Sauton, D. Lagorce, B. Villoutreix, M. Miteva. Ms-Dock:Accurate Multiple Conformation Generator and Rigid Docking Protocol for Multi-Step Virtual Ligand Screening. BMC Bioinformatics.2008,9(1):184
    [120]Z.-R. Lu, S. Oh, S.-S. Zhou, H.-C. Zou, D. Park, S. Park, H.-W. Zhou, J. Bhak, Y.-D. Park, F. Zou. Structural Analysis and Inhibitory Kinetics of Brain Type Creatine Kinase by Sodium Dodecyl Sulfate. Applied Biochemistry and Biotechnology.2010,160 (3):831-842
    [121]T. Pencheva, O.S. Soumana, I. Pajeva, M.A. Miteva. Post-Docking Virtual Screening of Diverse Binding Pockets:Comparative Study Using Dock, Ammos, X-Score and Fred Scoring Functions. European Journal of Medicinal Chemistry.2010,45 (6):2622-2628
    [122]Y.-H. Chen, J.T. Yang, H.M. Martinez. Determination of the Secondary Structures of Proteins by Circular Dichroism and Optical Rotatory Dispersion. Biochemistry.1972,11 (22): 4120-4131
    [123]N.J. Greenfield, G.D. Fasman. Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation. Biochemistry.1969,8 (10):4108-4116
    [124]Y.-H. Chen, J.T. Yang, K.H. Chau. Determination of the Helix and B Form of Proteins in Aqueous Solution by Circular Dichroism. Biochemistry.1974,13 (16):3350-3359
    [125]L.A. Compton, W.C. Johnson Jr. Analysis of Protein Circular Dichroism Spectra for Secondary Structure Using a Simple Matrix Multiplication. Analytical Biochemistry.1986, 155(1):155-167
    [126]S.M. Kelly, T.J. Jess, N.C. Price. How to Study Proteins by Circular Dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics.2005,1751 (2):119-139
    [127]P.B. Kandagal, S.S. Kalanur, D.H. Manjunatha, J. Seetharamappa. Mechanism of Interaction between Human Serum Albumin and N-Alkyl Phenothiazines Studied Using Spectroscopic Methods. Journal of Pharmaceutical and Biomedical Analysis.2008,47 (2): 260-267
    [128]Y. Abdiche, D. Malashock, A. Pinkerton, J. Pons. Determining Kinetics and Affinities of Protein Interactions Using a Parallel Real-Time Label-Free Biosensor, the Octet. Analytical Biochemistry.2008,377 (2):209-217
    [129]Y.N. Abdiche, D.S. Malashock, A. Pinkerton, J. Pons. Exploring Blocking Assays Using Octet, Proteon, and Biacore Biosensors. Analytical Biochemistry.2009,386 (2):172-180
    [130]H. Wang, J. Wan, X. Cao. Preparation of a Ph-Sensitive Affinity Precipitation Polymer and Its Application in Purification of Trypsin. Separation and Purification Technology.2009, 68(2):172-177
    [131]L.-L. Shen, X.-J. Cao. Synthesis of Thermo-Sensitive Polyacrylamide Derivatives for Affinity Precipitation and Its Application in Purification of Lysozyme. Biochemical Engineering Journal.2007,33 (1):66-71
    [132]H. Fraenkel-Conrat. The Chemistry and Reactivity of Collagen. Journal of the American Chemical Society.1956,78 (22):5960-5960
    [133]程海明,王磊,王睿,陈敏,李志强. Zeta电位法测定胶原及其降解物的等电点.皮革科学与工程.2006(06)
    [134]孙传良.应用反相高效液相法检测左旋甲状腺素钠片含量及溶出度的研究.黑龙江医药.2007(03)
    [135]T.K. Ghose. Measurement of Cellulase Activities. Pure Appl Chem.1987,59 (2):257-268
    [136]U.K. Laemmli. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature.1970,227 (5259):680-685
    [137]E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C.Meng, T.E. Ferrin. Ucsf Chimera—a Visualization System for Exploratory Research and Analysis. Journal of Computational Chemistry.2004,25 (13):1605-1612
    [138]D. Shugar. The Measurement of Lysozyme Activity and the Ultra-Violet Inactivation of Lysozyme. Biochimica et Biophysica Acta.1952,8 (0):302-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700