用户名: 密码: 验证码:
二氧化硅基质复合材料及荧光共轭聚合物制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于独特的物理、化学性能受到了广泛的关注。纳米材料形貌对其性能有重要影响,因此发展新的材料制备方法已经成为近年的研究热点之一。本论文针对目前银纳米材料、量子点复合材料制备过程复杂、条件要求苛刻等问题以及目前所制备共轭有机聚合物溶解性、荧光性能差、制备过程复杂等问题,开展了以下三方面的研究工作,具体内容如下:
     1.通过原位还原结合溶胶-凝胶法制备了纳米银掺杂二氧化硅材料;本部分研究内容中包括了:(a)通过溶胶-凝胶法首次制备了修饰银纳米颗粒的二氧化硅微管并对其形成机理进行了初步探索、考察了制备过程中主要因素对所制备材料形貌影响,并通过扫描电子显微镜、高分辨场致发射透射电子显微镜以及红外光谱、紫外-可见光谱对材料的形貌以及基本性质进行了研究;(b)首次通过非水相溶胶-凝胶法制备了圆柱形的纳米银掺杂二氧化硅微棒、纳米银掺杂的二氧化硅纳米带以及六棱柱形的纳米银掺杂二氧化硅微棒。详细研究了硝酸银与(3-巯丙基)三乙氧基硅烷之间的反应,考察了两者之间的配比、溶剂、温度等主要因素对所制备材料形貌的影响。通过扫描电子显微镜、高分辨场致发射透射电子显微镜以及紫外-可见光谱以及红外光谱等对所制备材料的形貌以及基本性质进行了研究。
     2.通过溶胶-凝胶结合原位生长量子点技术在室温条件下制备了硫化镉、硫化铅量子点掺杂二氧化硅材料,并考察了醋酸镉、醋酸铅、(3-巯丙基)三乙氧基硅烷等试剂用量以及之间的比例对材料形貌以及性能的影响。通过扫描电子显微镜、高分辨场致发射电子显微镜以及紫外-可见、荧光光谱对材料的形貌以及发光性能进行了研究。结果表明:制备方法、试剂用量以及比例都对材料的发光性能产生影响,通过控制制备过程主要因素可以制备出理想发光性能量子点掺杂二氧化硅复合材料。
     3.利用化学氧化聚合反应在室温条件下通过简单的一步法,在没有加入任何辅助模板的条件下,制备了“菊花状”、以及“树枝状”共轭聚合物材料;在模板辅助下制备了“方形管状”共轭聚合物材料。并详细研究了以间氨基苯甲酸为功能单体制备荧光共轭聚合物过程中,引发剂的种类与用量,功能单体的浓度,甲基橙,蛋白质等对聚合物形貌的影响。并通过扫描电子显微镜、红外光谱等技术对材料的形貌与组成进行了表征。通过荧光光谱研究了所制备材料的荧光性能。研究表明:所制备的荧光共轭聚合物不仅能够溶解于常见有机溶剂而且显示了优异的荧光性能。
Nanomaterials have attracted widely interest due to unique physical andchemical properties. The morphology of nanomaterials plays an important role tomaterials properties. Thus the development of the novel preparation approach tomaterials has become an important field. Most of the present preparation approachinvolved in complex preparation process, high temperature and high pressure and soon. In the present research, we have developed series of simple preparation approachto inorganic and organic optical materials. The whole work can be divided into threeparts. More details are shown as following:
     1. In the first research work, silver nanoparticles doped silica compositematerials are prepared by the combination of in situ reduction and sol-gel techniques.First, we prepared silicon dioxide nanotubes with silver nanoparticle in inner wall bytwo steps sol-gel approach at room temperature. The possible formation mechanismwas suggested. The influence of the preparation condition on the materialsmorphology was investigated. The obtained materials were characterized by SEM andFETEM. The properties and composition of the synthesized materials were alsoinvestigated by Uv-Vis and FTIR, respectively. Secondly, silver nanoparticles dopedsilica hybrid materials were fabricated by “one-pot” sol-gel technique in nonaqueoussolutions at room temperature. The columniform shaped micro-rods, nanobelt andhexagon shaped micro-rods were obtained by controlling the preparation conditions.The main factors that affect the morphology of hybrid materials were investigated indetail. The materials were further characterized by SEM and FETEM and theproperties were checked by Uv-Vis. The results indicated that different morphologysilver nanoparticles doped hybrid materials could be obtained by adjusting thereaction conditions.
     2. In the second research work, CdS and pbS quantum dots doped silica hybridmaterials were obtained by sol-gel technique at room temperature. The morphologychange was studied by adjusting the preparation conditions. The morphologies of synthesized materials were further characterized by SEM and TEM, respectively. Thefluorescence properties were also checked by fluorescence spectrometry. The resultsindicated that the obtained materials showed excellent fluorescence properties.
     3. Chrysanthemum, square tube and dendritic conjugated polymers wereprepared by a simple one-pot approach in the absence of any template. The effect ofmain factors such as initiator type and amount, the concentration of functionalmonomer, methyl orange and protein on morphology was investigated in detail.. Themorphology of the materials was checked by SEM and TEM, respectively.Fluorescence properties of prepared materials were also investigated in differentorganic solvents by fluorescence spectrometry. All results indicated the synthesizedmaterials show a potential in fluorescence sensor.
引文
[1] Imahori H, Fukuzumi S. Porphyrin monolayer-modified gold clusters as photoactive materials.Adv Mater,2001,13:1197-1199.
    [2] Riethdorf L, Lisboa B, Henkel U, et al. Differential expression of CD66a (BGP), a celladhesion molecule of the carcinoembryonic antigen family, in benign, premalignant, andmalignant lesions of the human mammary gland. J Histochem Cytochem,1997,45:957-963
    [3] Lakowicz J R, Radiative decay engineering: biophysical and biomedical applications. AnalBiochem.2001,298:1-24.
    [4] Tsujino K, Matsumura M. Boring deep cylindrical nanoholes in silicon using silvernanoparticles as catalyst. Adv Mater,2005,17:1045-1047.
    [5] Wiss S. Fluorescence spectroscopy of single biomolecules Science,1999,283:1676-1683.
    [6] Dubertret B,Calame M, Libchaber A J. Single-mismatch detection using gold-quenchedfluorescent oligonucleotides. Nature Biotech,2001,19:365-370.
    [7] Hu X, Chan C T. Photonic crystals with silver nanowires as a near-infrared superlens. ApplPhys Lett,2004,85:1520-1522.
    [8] Imahori F S. Porphyrin monolayer-modified gold clusters as photoactive materials. Adv Mater,2001,13:1197-1199.
    [9] Mi C H,Cao Y X,Zhang X G,et al. Synthesis and characterization of LiFePO4/(Ag+C)Composite cathodes with nano-carbon webs. Powder Tech,2008,181(3):301-306.
    [10] Nie S, Eniory S R. Probing single molecules and single nanoparticles by surface-enhancedraman scattering. Science,1997,275:1102-1106.
    [11] Xu H, Suslick K S. Sonochemical Synthesis of Highly Fluorescent Ag nanoclusters. ACSNano,2010,4:3209-3214.
    [12] Xu H X, Kenneth S S. Water-Soluble Fluorescent Silver Nanoclusters. Adv Mater,2010,22:1078-1082.
    [13] Sun Y G. Silver nanowires-unique templates for functional nanostructures. Nanoscale,2010,2:1626–1642.
    [14] Braun E, Eichen Y, Sivan U,et al.DNA-templated assembly and electrode attachment of aconducting silver wire. Nature,1998,391:775-778.
    [15] Muniz-Miranda M. Silver-doped silica colloidal nanoparticles Characterization and opticalmeasurements. Colloids Surfaces A: Physicochem. Eng. Aspects,2003,217:185-189.
    [16] Muniz-Miranda M. SERS effect from silver photoreduced on to silica colloidal nanoparticles.J Raman Spectrosc.2002,33:295-297.
    [17] Kobayashi Y, Salgueirin-Maceira V, Liz-Marzán L M. Deposition of Silver Nanoparticleson Silica Spheres by Pretreatment Steps in Electroless Plating. Chem Mater,2001,13:1630-1633.
    [18] Litorja M, Haynes C L, Haes A J. Surface-Enhanced Raman Scattering Detected TemperatureProgrammed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film overSiO2Nanosphere Surfaces. J Phys Chem B,2001,105:6907-6915.
    [19] Huang C K, Chen C Y, Han J L. Immobilization of silver nanoparticles on silicamicrospheres. J Nanopart Res,2010,12:199-207.
    [20] Ryu J H, Chang D S, Choi B G. Fabrication of Ag nanoparticles-coated macroporous SiO2structure by using polystyrene spheres. Mater Chem Phys,2007,101:486-491.
    [21] Sioss J A, Stoermer R L, Sha M Y, et al.Silica-coated Au/Ag striped nanowires forbioanalysis. Langmuir,2007,23:11334-11341.
    [22] Shen R, Camargo P H, Xia Y N,et al. Silane-Based Poly(ethylene glycol) as a Primer forSurface Modification of Nonhydrolytically Synthesized Nanoparticles Using the St berMethod. Langmuir,2008,24:11189-11195.
    [23] Racles C, Airinei A, Stoica I, et al. Silver nanoparticles obtained with a glucose modifiedsiloxane surfactant. J Nanopart Res,2010,12:2163-2177.
    [24] Yin Y, Lu Y, Sun Y, et al. Silver Nanowires Can Be Directly Coated with Amorphous SilicaTo Generate Well-Controlled Coaxial Nanocables of Silver/Silica. Nano Lett,2002,2:427-430.
    [25] Han Y, Jiang J, Lee S S, et al. Reverse microemulsion-mediated synthesis of silica-coatedgold and silver nanoparticles. Langmuir,2008,24:5842-5848.
    [26] Das P C, Puri A. Energy flow and fluorescence near a small metal particle. Phys Rev B,2002,65:155-416.
    [27] Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence Quenching of DyeMolecules near Gold Nanoparticles:Radiative and Nonradiative Effects. Phys Rev Lett,2002,89:203002-4.
    [28] Tovmachenko OG, Graf C, Van den Heuvel D J, et al. Fluorescence Enhancement byMetal-Core/Silica-Shell Nanoparticles. Adv Mater,2006,18:91-95.
    [29] Aslan K, Wu M, Lakowicz J R, et al. Fluorescent Core-Shell Ag@SiO2Nanocomposites forMetal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms J. Am. Chem. Soc,2007,129:1524-1525.
    [30] Fleischmann M, Hendra P J, McQuillan A J. Raman Spectra of Pyridine Adsorbed at a SilverElectrode. Chem Phys Lett,1974,26:163-166.
    [31] Jeanmaire D L,Van Duyne R P. Surface Raman Electrochemistry Part I. Heterocyclic,Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J ElectroanalChem,1977,84:1-20.
    [32] Albrecht M G, Creighton J A. Anomalously Intense Raman Spectra of Pyridine at a SilverElectrode, J Am Chem Soc,1977,99:5215-5219.
    [33] Muniz-Miranda M.Silver clusters onto nanosized colloidal silica as novel surface-enhancedRaman scattering active substrates. Appl Spectro,2003,57:655-660.
    [34] Han Y, Sukhishvili S, Du H, et al. Layer-by-layer self-assembly of oppositely charged Agnanoparticles on silica microspheres for trace analysis of aqueous solutions usingsurface-enhanced Raman scattering. J Nanosci Nanotech,2008,8:5791-5800.
    [35] Feng F, Zhi G, Jia H S, et al. SERS detection of low-concentration adenine by a patternedsilver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology,2009,20:295501.
    [36] Bao L L, Mahurin S M, Cheng D L, et al. Study of silver films over silica beads as asurface-enhanced Raman scattering (SERS) substrate for detection of benzoic acid. J RamanSpectr,2003,34:394-398.
    [37] Lee Y H, Dai S, Jack P Y. Silver-doped sol–gel films as the substrate for surface-enhancedRaman scattering. J Raman Spectro,1997,28:635-639.
    [38] Bao L, Mahurin S M, Haire R G, et al. Silver-doped sol-gel film as a surface-enhancedRaman scattering substrate for detection of uranyl and neptunyl ions. Anal Chem,2003,75:6614-6620.
    [39] Sun X Z,Lin L H, Li Z C,et al.Fabrication of silver-coated silicon nanowire arrays forsurface-enhanced Raman scattering by galvanic displacement processes. Appl Surf Sci,2009;256:916-920.
    [40] Wu Y, Liu K, Li X, et al. Integrate silver colloids with silicon nanowire arrays forsurface-enhanced Raman scattering. Nanotechnology,2011,22:215701.
    [41] Wang W, Li Z, Gu B, et al. Ag@SiO2core-shell nanoparticles for probing spatial distributionof electromagnetic field enhancement via surface-enhanced Raman scattering. ACS Nano,2009,3:3493-3496.
    [42] Liu Y C, Yang K H, Hsu T C. Improved Surface-Enhanced Raman Scattering Performanceson Silver-Silica Nanocomposites. J phys chem C,2009,113:8162-8168.
    [43] Rocks L, Faulds K, Graham D. Rationally designed SERS active silica coated silvernanoparticles. Chem Commun,2011,47:4415-4417.
    [44] Song C Y, Chen J, Abell J L,et al. Ag–SiO2Core–Shell Nanorod Arrays: Morphological,Optical, SERS, and Wetting Properties. Langmuir,2012,28:1488-1495.
    [45] Cubillo A, Pecharroman C, Aguilar E, et al. Antibacterial activity of copper monodispersednanoparticles into sepiolite. J Mater Sci,2006,41:5208-5212.
    [46] Desai V, Kowshik M. Antimicrobial activity of titanium dioxide nanoparticles synthesized bysol-gel technique. Res J Microbiol,2009,4:97-103.
    [47] Wang J X, Wen L X, Wang Z H, et al. Immobilization of silver on hollow silica nanosphereand nanotube and their antibacterial activity. Mater chem phys,2006,96:90-97.
    [48]迟广俊,姚素薇,张卫国等.沉淀二氧化硅载银抗菌剂的制备及其抗菌性能.天津大学学报[J],2002,35(2):247-249.
    [49] Chen G S, Chen C N, Tseng T T, et al. Synthesis, characterization, and antibacterial activityof silver-doped silica nanocomposite particles. J Nanosci Nanotechnol,2011,11:90-97.
    [50] Akhavan O, Ghaderi E.Bactericidal effects of Ag nanoparticles immobilized on surface ofSiO2thin film with high concentration. Curr Appl Phys,2009,9:1381-1385.
    [51] Ma Z, Ji H, Tan D.Large-scale preparation of strawberry-like AgNP-doped SiO2microspheres using the electrospraying method. Nanotechnology,2011,22:305-307.
    [52] Rastogi S K, Rutledge V J, Gibson C, et al.Ag colloids and Ag clusters overEDAPTMS-coated silica nanoparticles: synthesis, characterization, and antibacterial activityagainst Escherichia coli. Nanomed,2011,7:305-314.
    [53] Jia H, Hou W, Wei L, et al. The structures and antibacterial properties of nano-SiO2supported silver/zinc-silver materials. Dent Mater,2008,24:244-249.
    [54] Kim H J, Park H J, Choi S H. Antimicrobial action effect and stability of nanosized silicahybrid Ag complex. J Nanosci Nanotech,2011,11:5781-5787.
    [55] Kawashita M, Toda S, Kim H M, et al. Preparation of antibacterial silver-doped silica glassmicrospheres. J Biomed Mater Res A,2003,66:266-74.
    [56] Nischala K, Rao TN, Hebalkar N. Silica-silver core-shell particles for antibacterial textileapplication. Colloids Surf B Biointerfaces,2011,82:203-208.
    [57] Liu C, Martin C R. Composite membranes from photochemical-synthesis of ultrathinpolymerfilms. Nature,1991,352:50-52
    [58] Martin C R. Nanomaterials-a membrane-based synthetic approach. Science,1994,266:1961-1966.
    [59] Martin, C R. Template synthesis of electronically conductive polymer nanostructures. AccChem Res,1995,28:61-68.
    [60] Joo J, Kim B H, Park D H, et al. Fabrication and applications of conducting polymernanotube, nanowire, nanohole, and double wall nanotube. Synth Met,2005,153:313-316.
    [61] Martin C R,Parthasarathy R V. Polymeric microcapsule arrays. Adv Mater,1995,7:487-488.
    [62] Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host. Science,1994,264:1757-1759.
    [63] Mao H, Lu X, Chao D, et al. Preparation and characterization of PEDOT/-Fe3+O(OH,Cl)nanospindles with controllable sizes in aqueous solution. J Phys Chem C,2008,112:20469-20480.
    [64] Sui J, Zhang L, Travas-Sejdic J, et al. Synthesis of Poly (3,4-ethylenedioxythiophene)Hollow Spheres in CTAB/DBS-Mixed Surfactant Solutions. J Macromolecular Symposia,2010,290:107-114.
    [65] Luo S C, Yu H,Wan ACA, et al. A general synthesis for PEDOT-coated nonconductivematerials and PEDOT hollow particles by aqueous chemical polymerization. Small,2008,4,2051-2058.
    [66] Zhang Z M, Sui J, Zhang L J, et al. Synthesis of polyaniline with a hollow, octahedralmorphology by using a cuprous oxide template. Adv Mater.2005,17,2854-2857.
    [67] Jang J, Oh J H, Stucky G D. Fabrication of ultrafine conducting polymer and graphitenanoparticles. Angew Chem,2002,41:4016-4019.
    [68] Zhou C Q, Han J,Guo R. Polyaniline Fan-Like Architectures of Rectangular Sub-MicrotubesSynthesized in Dilute Inorganic Acid Solution. Macromol Rapid Commun,2009,30:182-187.
    [69] Wan M X. Some Issues Related to Polyaniline Micro-/Nanostructures. Macromol RapidCommun,2009,30:963-975.
    [70] Han J, Song G P, Guo R. Synthesis of polymer hollow spheres with holes in their surfaces.Chem Mater,2007,19:973-975.
    [71] Chen Q, Cui Y, Cao J, et al. Water-soluble conjugated polyelectrolyte with pendantglycocluster: Synthesis and its interaction with heparin. Polymer,2011,52:383-390.
    [72] Gupta G, Bhaskar A S B, Tripathi B K, et al. Supersensitive detection of T-2toxin by the insitu synthesized-conjugated molecularly imprinted nanopatterns. An in situ investigation bysurface plasmon resonance combined with electrochemistry. Biosen Bioelect,2011,26:2534-2540.
    [73] Yang B, Li G Z, Zhang X, et al. Hg2+detection by aniline-based conjugated copolymers withhigh selectivity. Polymer,2011,52:2537-2541.
    [74] Alvarez A, Salinas-Castillo A, Costa-Fernández J M, et al. Fluorescent conjugated polymersfor chemical and biochemical sensing. Trends Anal Chem,2011,30:1513-1525.
    [75] Aminur Rahman M, Kumar P, Park D S, et al. Electrochemical Sensors Based on OrganicConjugated Polymers, Sensors,2008,8:118-141.
    [76] Ulrich L, Roznyatovskaya1N V, Mirsky V M. Conducting polymers in chemical sensors andarrays, Anal Chim Acta,2008,614:1-26.
    [77] Thomas III S W, Joly G D, Swager T M. Chemical Sensors Based on Amplifying FluorescentConjugated Polymers. Chem. Rev,2007,107:1339-1386.
    [78] Zhou H X, Yang L Q, You W. Rational Design of High Performance Conjugated Polymersfor Organic Solar Cells. Macromolecules,2012,45:607-632.
    [79] Guo D F, Li G L, Neoh K G, et al. Hollow polymeric nanostructures-Synthesis, morphologyand Function. Progress Poly Sci,2011,36:127-167.
    [80] Zhao G, He Y, Li Y.6.5%Efficiency of polymer solar cells based on poly(3-hexylthiophene)and indene-C(60) bisadduct by device optimization. Adv Mater,2010,22:4355-4358.
    [81] Wang H S, Chen S Y, Wang Y L, et al. Nanostructured nanorod arrays presenting TiO2nanorods/poly(3-hexylthiophene) for solar cells application. J Nanosci Nanotech,201111:3229-3234.
    [82] Huo L, Zhou Y, Li Y. Alkylthio-substituted polythiophene: absorption and photovoltaicproperties. Macromol Rapid Commun,2009,30:925-931.
    [83] Mor G K, Kim S, Paulose M, et al. Visible to near-infrared light harvesting in TiO2nanotubearray-P3HT based heterojunction solar cells. Nano Lett,2009,9:4250-4257.
    [84] Greenham N C, Friend R H. Physics of conjugated polymers. Solid State Phys,1995,49:1-149.
    [85] Jacob J, Oldridge L, Zhang J, et al.Progress towards stable blue light emitting polymers. CurrAppl Phys,2004,4:339-342.
    [86] AlSalhi M S, Alam J, Dass L A, et al. Recent Advances in Conjugated Polymers for LightEmitting Devices. Int J Mol Sci,2011,12:2036-2054.
    [87] Burroughes J M, Bradley D D C, Brown A R,et al. Light-emitting-diodes based onconjugated polymers. Nature,1990,347:539-541.
    [88] Grem G, Leditzky G, Bruno Ullrich D, et al. Realization of a blue-light-emitting device usingpoly(p-phenylene), Adv Mater,1992,4:36-37.
    [89] Braun D, Heeger A J. Visible-light emission from semiconducting polymer diodes. App PhysLett,1991,58:1982-1984.
    [90] Li C H, Bo Z S. Three-dimensional conjugated macromolecules as light-emitting materials.Polymer,2010,51:4273-4294
    [91] Ebinazar B N, Ifor D W S, Deepak S, et al. Organic light emitting complementary inverters.Appl Phys Lett,2010,96:1-3.
    [92] Schumacher S, Galbraith I, Ruseckas A, et al. Dynamics of photoexcitation and stimulatedoptical emission in conjugated polymers: A multiscale quantum-chemistry andMaxwell-Bloch-equations approach. Phys Rev B,2010,81:245407-245411.
    [93] Antonio F. π-Conjugated polymers for organic electronics and photovoltaic cell applications.Chem Mater,2011,23:733-758.
    [94] Pei J, Wang L Y, Huang W A. Novel Series of Efficient Thiophene-Based Light-EmittingConjugated Polymers and Application in Polymer Light-Emitting Diodes. Macromolecules,2000,33:2462-2471.
    [95] Tasch S, List E J W, Ekstr m O. Efficient white light-emitting diodes realized with newprocessable blends of conjugated polymers. Appl Phys Lett,1997,71:2883-2885.
    [96] Marcilla R, Mecerreyes D, Winroth G. Light-emitting electrochemical cells using polymericionic liquid/polyfluorene blends as luminescent material. Appl Phys Lett,2010,96:043308-043310.
    [97] Lin Y, Chen Z K, Ye T L. Conjugated Copolymers Comprised Cyanophenyl-SubstitutedSpirobifluorene and ricarbazole-Triphenylamine Repeat Units for Blue-Light-EmittingDiodes. J Poly Sci. Part A. Poly Chem,2010,48:292-301.
    [98] Marambio J, Catalina H, Eric M V. A review of the antibacterial effects of silvernanomaterials and potential implications for human health and the environment,J NanopartRes,2010,12:1531-1551.
    [99] Singh A K, Senapati D, Neely A, et al. Nonlinear optical properties of triangular silvernanomaterials, Chem phys lett,2009,481:94-98.
    [100] Hu B, Wang S B, Wang K, et al. Microwave-Assisted Rapid Facile “Green” Synthesis ofUniform Silver Nanoparticles: Self-Assembly into Multilayered Films and Their OpticalProperties. J Phys Chem C,2008:11169-11174.
    [101] Schrand A M, Braydich-Stolle LK, Schlager J J, et al. Can silver nanoparticles be useful aspotential biological labels? Nanotechnology,2008,19:235104-235117.
    [102] Tolaymat TM, Badawy AM El, Genaidy A, An evidence-based environmental perspective ofmanufactured silver nanoparticle in syntheses and applications: A systematic review andcritical appraisal of peer-reviewed scientific papers, Sci Total Environ,2010,408:999-1006.
    [103] Medina-Ramirez I., Bashir S, Luo Z, et al. Green synthesis and characterization ofpolymer-stabilized silver nanoparticles, Colloids Surfaces B: Biointerfaces,2009,73:185-191.
    [104] Porel S, Singh S, Harsha S S, et al. Nanoparticle-Embedded Polymer: In Situ Synthesis,Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting,Chem Mater,2005,17:9-12.
    [105] Chang G, Zhang J D, Oyama M, et al. Silver-Nanoparticle-Attached Indium Tin OxideSurfaces Fabricated by a Seed-Mediated Growth Approach, J Phys Chem B,2005,109:1204-1209.
    [106] Malinsky M D, Kelly K. L, Schatz G C, et al. Chain Length Dependence and SensingCapabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles ChemicallyModified with Alkanethiol Self-Assembled Monolayers. J Am Chem Soc,2001,123:1471-1482.
    [107] Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L M. Recent Progress on Silica Coating ofNanoparticles and Related Nanomaterials. Adv Mater,2010,22:1182-1195.
    [108] Bai X, Wang Y, Xu L, et al. Silver nanotorus and nanoparticles on silica wafer: opticalproperties and investigation of PVA in the formation process. J Mater Sci: Mater Electr,2011,2:64-71.
    [109] Liong M, France B, Bradley K A, et al. Antimicrobial Activity of Silver NanocrystalsEncapsulated in Mesoporous Silica Nanoparticles. Adv Mater,2009,21:1684-1689.
    [110] Cao Z, He Y H, Sun L X, et al. Reducing Microbiological Adhesion on Aluminum by UsingSilver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Adv Mater Res,2011,236-238:1775-1778.
    [111] Vinci J C, Bils P.Controlling the Formation of Silver Nanoparticles on Silica byPhotochemical Deposition and Other Means. Photochem Photobio,2010,86:806-812.
    [112] Nischala K, Rao T N, Hebalkar N. Silica-silver core-shell particles for antibacterial textileapplication. Colloids Surfaces B: Biointerfaces,2011,82:203-208.
    [113] Stober W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range,J Colloid Interface Sci1968,26:62-69.
    [114] Wang W, Asher S A. Photochemical Incorporation of Silver Quantum Dots in MonodisperseSilica Colloids for Photonic Crystal Applications. J Am Chem Soc2001,123,12528-12535.
    [115] Di Corato R, Bigall NC, Ragusa A, et al. Multifunctional nanobeads based on quantum dotsand magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano,2011,5:1109-21.
    [116] Song E Q, Hu J, Wen C Y, et al.Fluorescent-Magnetic-Biotargeting MultifunctionalNanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells. ACS Nano,2011,5:761-770.
    [117] Nizamoglu S, Erdem T, Sun XW, et al. Warm-white light-emitting diodes integrated withcolloidal quantum dots for high luminous efficacy and color rendering. Opt Lett,2010,35:3372-3374.
    [118] David A B Miller, Energy consumption in optical modulators for interconnects, OpticsExpress,2012,20:293-308
    [119] K opotowski, Goryca M, Kazimierczuk T, et al. Dynamics of charge leakage fromself-assembled CdTe quantum dots. Appl Phys Lett,2010,96:201905-201907.
    [120] Nomura M, Kumagai N, Iwamoto S, et al. Laser oscillation in a strongly coupledsingle-quantum-dot–nanocavity system. Nature Physics,2010,6:279-283.
    [121] Nozik A J, Beard M C, Luther J M, et al. Semiconductor Quantum Dots and Quantum DotArrays and Applications of Multiple Exciton Generation to Third-Generation PhotovoltaicSolar Cells. Chem Rev,2010,110:6873-6890.
    [122] Beard Matthew C, Midgett Aaron G, Hanna Mark C, et al. Comparing Multiple ExcitonGeneration in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications forEnhancement of Solar Energy Conversion. Nano letters,2010,10:3019-3027.
    [123] Hu X G, Gao X H. Silica Polymer Dual Layer-Encapsulated Quantum Dots withRemarkable Stability. ACS Nano,2010,4:6080-6086.
    [124] Dimos K, L'ubo J, Koutselas I B, et al.Low-Temperature Synthesis and Characterization ofGallium Nitride Quantum Dots in Ordered Mesoporous Silica. J Phys Chem C,2012,116:1185-1194.
    [125] Ivan G, Amanda L M, Minseok SEO, et al. Silica-Coated Quantum Dots for OpticalEvaluation of Perfluorocarbon Droplet Interactions with Cells, Langmuir,2011,27:15024-15033.
    [126] Vogt C, Toprak M S, Muhammed M, et al. High quality and tuneable silica shell–magneticcore nanoparticles. J Nanopart Res,2010,12:1137-1147.
    [127] David R, Nhi M, Jennie A, et al. Biphasic Route to Silica-Encapsulation of Quantum Dots.Nanosci Nanotech Lett,2011,3:655-658.
    [128] Saran A D, Bellare J R. Green engineering for large-scale synthesis of water-soluble andbio-taggable CdSe and CdSe-CdS quantum dots from microemulsion by double-capping.Colloids surfaces A,2010,369:165-175.
    [129] Diaz I, Marquez-Alvarez C, Mohino F, et al. Combined alkyl and sulfonic acidfunctionalization of MCM-41-type silica. Part I. Synthesis and characterization. J Catal,2000,193,283-294.
    [130] Park J K, Jo J, Seo J H, et al. End-Capping Effect of a Narrow Bandgap ConjugatedPolymer on Bulk Heterojunction Solar Cells. Adv Mater,2011,23:2430-2435.
    [131] Aguirre A, Meskers S C J,Janssen R A J, et al. Formation of metastable charges as a firststep in photoinduced degradation in π-conjugatedpolymer:fullerene blends for photovoltaicapplications. Org Electron,2011,12:1657-1662.
    [132] Sirringhaus H, Bird M, Zhao N. Charge Transport Physics of Conjugated PolymerField-Effect Transistors. Adv Mater,2010,22:3893-3898.
    [133] Carsten D, Daniel M, Julien G, et al. Energetics of excited states in the conjugated polymerpoly(3-hexylthiophene). Phys Rev B,2010,81:085202.
    [134] Esser B, Swager T M. Detection of Ethylene Gas by Fluorescence Turn-On of a ConjugatedPolymer. Angew Chem,2010,122:9056-9059.
    [135] Antohe V A, Radu A, Matefi-Tempfli M, et al. Nanowiretemplated microelectrodes forhigh-sensitivity pH detection. Appl Phys Lett,2009,94,073118/1-3.
    [136] Shirsat M D, Bangar M A, Deshusses M A, et al. Polyaniline nanowires-gold nanoparticleshybrid network based chemiresistive hydrogen sulfide sensor. Appl Phys Lett,2009,94:083502/1-3.
    [137] Liu R, Cho S I, Lee S B. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materialsfor high-powered supercapacitor. Nanotechnology,2008,19:215710/1-8.
    [138] Lee S Y, Choi G R, Lim H, et al. Electronic transport characteristics of electrolyte-gatedconducting polyaniline nanowire field-effect transistors. Appl Phys Lett,2009,95:013113/1-3.
    [139] Pinto NJ, Gonzalez R, Johnson Jr AT, et al. Electrospun hybrid organic/inorganicsemiconductor Shottky nanodiode. Appl Phys Lett,2006,89:033505/1-3.
    [140] Lee S Y, Choi G R, Lim H, et al. Electronic transport characteristics of electrolyte-gatedconducting polyaniline nanowire field-effect transistors. Appl Phys Lett,2009,95:013113/1-3.
    [141] Mativetsky J M, Datars W R. Morphology and electrical properties of template-synthesizedpolypyrrole nanocylinders. Physica B,2002,324:191-204.
    [142] Massuyeau F, Duvail J L, Athalin H, et al. Elaboration of conjugated polymer nanowiresand nanotubes for tunable photoluminescence properties. Nanotechnology,2009,20:155701/1-8.
    [143] Gence L, Faniel S, Gustin C, et al. Structural and electrical characterization of hybridmetal-polypyrrole nanowires. Phys Rev B,2007,76:115415/1-8.
    [144] Lu X F, Zhang W J, Wang C, et al. One-dimensional conducting polymer nanocomposites:synthesis, properties and applications. Prog Polym Sci,2010,36:671-712.
    [145] Long Y Z, Li M M, Gu C Z, et al. Recent advances in synthesis, physical properties andapplications of conducting polymer nanotubes and nanofibers. Prog Polym Sci,2011,36:1415-1442.
    [146] Douglas T, Strable E, Willits D, et al. Protein Engineering of a Viral Cage for ConstrainedNanomaterials Synthesis. Adv Mater,2002,14:415-418.
    [147] Yang X M, Zhu Z X, Dai T Y, et al. Facile Fabrication of Functional Polypyrrole Nanotubesvia a Reactive Self-Degraded Template. Macromol Rapid Commun,2005,26,1736-1740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700