用户名: 密码: 验证码:
水体中微囊藻的超声控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缓流水体富营养化引起的水华是当前突出的环境问题之一,藻类的出现不仅会破坏水体的生态平衡,而且会严重影响周边城市的饮用水水质。因此,研究引起水华藻类的控制技术具有重要的学术意义和工程价值。针对超声控藻技术与作用机理存在的问题,本文以水华中常见的藻种——微囊藻为研究对象,通过对超声声场声压分布及有效作用距离、超声控制参数影响、最优控制参数、控藻动力学规律、作用机制以及超声对微囊藻生理特征影响、藻毒素释放等方面深入研究,并在此基础上探讨了超声控藻的作用机理。
     水中超声声场中的声压随着距离的增加而急剧下降;同时输入的电功率越高,产生的声压越大;超声频率越高,超声能量越易被吸收,在水中衰减越快,传播距离越小,主声束越窄,但其近场与远场的分界线越大,指向性越好。论文提出了超声有效作用距离并得出:低频率超声作用有效范围比较大,在不影响其他水生动植物的情况下,适用于大水域控藻;而高频率超声近场与远场的分界线相对比较远,适用于水处理设备中应急除藻。
     “超声辐射声功率容积密度”综合考虑了超声设备与作用对象这两部分的因素,能够更准确的表征超声作用的强度,可通过导纳圆图法检测计算得出。“控藻率”表征超声控藻作用的效果,考虑了藻密度生长造成的影响,可直观的表征超声控藻的效果。
     超声作用强度评估实验的结果表明:低频超声产生的主要是机械作用,随着超声频率增加,空化作用越来越显著,将产生更多的自由基,化学作用也将越显著,频率增大到一定值后,产生的空化作用将趋于饱和。低强度超声(低于空化阈)主要是通过机械作用达到控藻目的,控藻效果较为一般,且对藻类造成的损伤是可修复的;而高强度超声(高于空化阈)主要是通过空化作用与机械作用共同作用达到控藻目的,且空化作用为主导作用,对藻类作用造成的损伤是永久性的;高强度超声作用时间太长,既不经济也不利于对水质;从低频到高频过程中,超声对藻类的主导作用也将由机械作用转变为空化作用。
     对超声辐射声功率容积密度、超声作用时间、超声频率等超声控藻控制参数进行响应面实验优化并建立二阶回归模型,得到超声控制微囊藻最优的控制参数为频率580kHz、辐射声功率容积密度0.089W/mL、辐照时间24s,该条件下控藻率的为99.58%。超声控藻满足准一级动力学规律,反应速率常数k随着超声辐射声功率容积密度、超声频率的增大而增大,增大到一定值后,速率常数k增幅减小,并逐步趋于饱和;同时反应速率常数k随着初始浓度的增大而减小。
     低于空化阈的超声作用对微囊藻细胞外表面、内囊体与气泡均会造成损伤,使得细胞活性降低,藻胆体受到破坏,光合作用系统和浮力自动调节能力受损,净光合放氧速率降低,大部分细胞受到的损伤在其耐受极限内,藻细胞产生SOD、CAT等抗氧化性酶,清除超声产生的自由基对自身产生的伤害,使藻细胞内MDA的含量保持在较低的水平,其受到的损伤得以修复,仅部分细胞出现死亡;大于空化阈的超声作用,使微囊藻内气泡与类囊体出现断裂、破碎溶解与消失,大部分细胞失去光合作用和自动调节浮力的能力,藻胆体与叶绿体受到不可修复的损伤,抗氧化酶系统作用机制失效,细胞并将最终死亡。尽管高强度超声会引起藻细胞的破坏,但是在一定的作用时间(30min)内引起的藻毒素释放在可控范围内,超声处理后藻毒素的量在《生活饮用水卫生标准》(GB5749-2006)限值1μg/L范围以内。
Algae bloom occurs in ground water due to eutrophication becomes one of theserious environmental problems. Research on algae control technology has importantacademic significance and practical value. According to the problems betweenultrasonic algae control technology and its mechanism, this paper took Microcystis sp.as research object. Acoustic pressure distribution and effective distance in ultrasonicfield, ultrasonic control parameters effects, and the optimal control parameters, kineticslaw of algae control, mechanism, effects of ultrasonic on Microcystis sp., Phycotoxinrelease were deeply studied to discuss the mechanisms of ultrasonic algae control.
     Acoustic pressure in the ultrasonic field decreased sharply with increasing distance.The higher the input electric power, the greater the acoustic pressure was. The higherthe ultrasonic frequency, ultrasonic energy was absorbed more easily and attenuation inwater was quicker, also with smaller propagation distance and narrower main beam. Butthe near and far field boundary was greater and the directivity was better. This papergave the effective distance and came to such results as follows: low-frequencyultrasound with a wide effective range was suitable for large water. Whilehigh-frequency ultrasound was suitable for emergency alage remove in water treatmentas for the near and far field boundary was relatively far.
     “Volume density of ultrasonic power radiation” took the two factors of ultrasoundequipment and effective object into account, which could characterize the ultrasoundintensity more accurately and could be calculated through the admittance circle diagrammethod. Considering the influence of ultrasound intensity, algae control rate intuitivelycharacterized the effect of ultrasonic sound on algae control.
     From Calorimetry and Iodometric method analysis, low-frequency ultrasoundmainly generated the mechanical action. With the ultrasonic frequency increased, thecavitation and chemical reaction increased significantly, producing more free radicals.Cavitation tended to be saturated as frequency increasing to a certain value.Low-intensity ultrasound (below the cavitation threshold) had a common effect on algaecontrol by mechanical action, while the damage to algae was repairable. High-intensityultrasound (above the cavitation threshold) achieved algae control by the combinedeffects of cavitation and mechanical action. As cavitation for the leading role, thedamage to algae was permanent. High-intensity ultrasonic was neither conducive toeconomy nor to water quality with long time’s treatment. From low frequency to high frequency process, the dominant role of ultrasound on algae would also be transformedfrom mechanical action into cavitation.
     Response surface experimental optimization and two-stage regression model weremade on such algae control parameters as volume density of ultrasonic power radiation,ultrasonic time, ultrasonic frequency and so on, obtaining the optimal controlparameters for frequency of580kHz, volume density of ultrasonic power radiation0.089W/mL, irradiation time24s and the best algae removal rate of99.58%. Algaeremoval met the pseudo-first order kinetics law, reaction rate constant k increasedwith volume density of ultrasonic power radiation and ultrasonic frequency increasing.When reaction rate constant k increased to a certain value, its increase amplitudedecreased and reached a saturation value. The reaction rate constant decreased with theincrease of initial concentration.
     Ultrasound below the cavitation threshold caused damage to the surface, thylakoidand bubble of Microcystis sp., and cell activity, phycobilisome, photosynthetic systems,buoyancy auto regulating ability were damaged, the net photosynthetic oxygenevolution rate decreased. But the damages were within the limits of its tolerance. Algaecells produced SOD, CAT and other antioxidant enzyme to clear free radicals’ damageto itself generated by ultrasound, so that the MDA content maintained at a lower level,the damage could be repaired, only part of the cell died. Ultrasound above the cavitationthreshold made the thylakoid and bubble of Microcystis sp. fracturing, breaking todissolve and disappearing. Most cells lost the photosynthesis and buoyancy autoregulating ability. Damages to phycobilisome and Chloroplast were unreparable, and themechanism of antioxidant enzyme lost, the cell died finally. High-intensity ultrasoundacted on Microcystis sp. for certain time (<30min), Phycotoxin release was under controland its concentration was under1μg/L of Standards for Drinking Water Quality.
引文
[1] Development O F E C. Eutrophication of waters: monitoring, assessment and control[R]. Paris:1982.
    [2] Conley D J, Paerl H W, Howarth R W, et al. Ecology controlling eutrophication: Nitrogen andPhosphorus[J]. Science,2009,323(5917):1014-1015.
    [3] Schelske C L. Eutrophication: Focus on Phosphorus[J]. Science,2009,324(5928):722-723.
    [4] OECD. Eutrophication of Waters, Monitoring, Assessment and Control[R].Organization forEconomic Co-Operation and Development,2008.
    [5] H. Kenneth H. The state of U.S. freshwater harmful algal blooms assessments, policy andlegislation[J]. Toxicon,2010,55(5):1024-1034.
    [6] Heisler J, Glibert P M, Burkholder J M, et al. Eutrophication and harmful algal blooms: Ascientific consensus[J]. Harmful Algae,2008,8(1):3-13.
    [7] Chorus I, Bartram J. Toxic cyanobacteria in water: A guide to their public healthconsequences, monitoring and management[M]. Geneva: Water Health Organization,1999.
    [8] Smith V H. Eutrophication of freshwater and coastal marine ecosystems-A global problem[J].Environmental Science and Pollution Research,2003,10(2):126-139.
    [9]中华人民共和国环境保护部.《2009年中国环境状况公报》[R].北京:中华人民共和国环境保护部,2009.
    [10]国家海洋局.《2009年中国海洋环境质量公报》[R].北京:国家海洋局,2009.
    [11]中华人民共和国环境保护部.《2009年长江三峡工程生态与环境监测公报》[R].中华人民共和国环境保护部,2009.
    [12] Diego-McGlone S, Maria L, Azanza R V, et al. Eutrophic waters, algal bloom and fish kill infish farming areas in Bolinao, Pangasinan, Philippines.[J]. Marine Pollution Bulletin,2008,57(6-12):295-301.
    [13] Diego-McGlone, San M L, Azanza R V, et al. Eutrophic waters, algal bloom and fish kill infish farming areas in Bolinao, Pangasinan, Philippines [J]. Marine Pollution Bulletin,2008,57(12):295-301.
    [14] Bury N. The toxicity of cyanobacteria (blue-green algae) to freshwater fish[J]. ComparativeBiochemistry and Physiology A-molecular&Integrative Physiology,2007,146S(4):10-1016.
    [15] Bartram J, Rees G E. Guidelines for safe recreational water environments:Coastal and freshwaters[M]. WHO:Geneva: World Health Organization,2003.
    [16] TURNER P C, GAMMIE A J, HOLLINRAKE K, et al. Pneumonia associated with contactwith cyanobacteria[J]. British Medical Journal,1990,300(6737):1440-1441.
    [17] Stewart I, Schluter P J, Shaw G R. Cyanobacterial lipopolysaccharides and human health-areview.[J]. Environ Health,2006,5(7):1-23.
    [18] Fleming L E, Rivero C, Burns J, et al. Blue green algal (cyanobacterial) toxins, surfacedrinking water, and liver cancer in Florida[J]. Harmful Algae,2002,2(1):157-168.
    [19] Yang M, Yu J W, Li Z L, et al. Taihu Lake not to blame for Wuxi's woes[J]. Science,2008,319(5860):158.
    [20]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J].地球科学进展,2007(09).
    [21]徐小兰,张冰心.某水厂滤池堵塞原因调查、分析与采取的措施[J].城镇供水,2010(6):53-55.
    [22] Joh G, Choi Y S, Shin J K, et al. Problematic algae in the sedimentation and filtration processof water treatment plants[J]. Journal of Water Supply Research and Technology-aqua,2011,60(4):219-230.
    [23] Choi S K, Lee J Y, Kwon D Y, et al. Settling characteristics of problem algae in the watertreatment process[J]. Water Science and Technology,2006,53(7):113-119.
    [24] Ma J, Liu W. Effectiveness and mechanism of potassium ferrate(VI) preoxidation for algaeremoval by coagulation[J]. Water Research,2002,36(4):871-878.
    [25] Chen J J, Yeh H H. The mechanisms of potassium permanganate on algae removal[J]. WaterResearch,2005,39(18):4420-4428.
    [26] Hong Y, Hu H Y. Effects of the aquatic extracts of Arundo donax L. on the growth offreshwater algae[J]. Allelopathy Journal,2007,20:315-325.
    [27] Shao J H, Wu Z X, Yu G L, et al. Allelopathic mechanism of pyrogallol to Microcystisaeruginosa PCC7806(Cyanobacteria): From views of gene expression and antioxidantsystem[J]. Chemosphere,2009,75(7):924-928.
    [28]张光明,常爱敏,张盼月.超声水处理技术[M].北京:中国建筑工业出版社,2006.
    [29] Chen X C, He S B, Huang Y Y, et al. Laboratory investigation of reducing two algae fromeutrophic water treated with light-shading plus aeration[J]. Chemosphere,2009,76(9):1303-1307.
    [30] Chen X C, Kong H N, He S B, et al. Reducing harmful algae in raw water by light-shading[J].Process Biochemistry,2009,44(3):357-360.
    [31] Ma J, Lei G Y, Fang J Y. Effect of algae species population structure on their removal bycoagulation and filtration processes-a case study[J]. Journal of Water Supply Research andTechnology-aqua,2007,56(1):41-54.
    [32]董军,施永生.除藻技术的现状分析及瞻望[J].水科学与工程技术,2007,4(2007):34-36.
    [33]张艳.浸没式超滤膜处理含藻水及膜污染控制研究[D].哈尔滨工业大学,2011.
    [34] Phoochinda W, White D A. Removal of algae using froth flotation[J]. EnvironmentalTechnology,2003,24(1):87-96.
    [35] SATO S, HIRAYAMA K, Anon. Algicidal method for water, involves irradiatingelectromagnetic wave or heating raw water containing algae:2003-9-8.
    [36] Tao Y, Zhang X H, Au D, et al. The effects of sub-lethal UV-C irradiation on growth and cellintegrity of cyanobacteria and green algae[J]. Chemosphere,2010,78(5):541-547.
    [37] Thomas V K, Kuehn K A, Francoeur S N. Effects of UV Radiation on Wetland Periphyton:Algae, Bacteria, and Extracellular Polysaccharides[J]. Journal of Freshwater Ecology,2009,24(2):315-326.
    [38] Zhang G, Zhang P, Wang B, et al. Ultrasonic frequency effects on the removal of Microcystisaeruginosa[J]. Ultrasonics Sonochemistry,2006,13(5):446-450.
    [39] Zhang G M, Zhang P Y, Liu H, et al. Ultrasonic damages on cyanobacterial photosynthesis[J].Ultrasonics Sonochemistry,2006,13(6):501-505.
    [40] CLARKE P R, HILL C R. Physical and chemical aspects of ultrasonic disruption of cells[J].Journal of the Acoustical Society of America,1970,47(2):649-654.
    [41] Dehghani M H, Changani F. The effect of acoustic cavitation on chlorophyceae from effluentof wastewater treatment plant[J]. Environmental Technology,2006,27(9):963-968.
    [42] Zhang G M, Wang B, Zhang P Y, et al. Removal of algae by sonication-coagulation[J].Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances&Environmental Engineering,2006,41(7):1379-1390.
    [43] Yu Z M, Sengco M R, Anderson D M. Flocculation and removal of the brown tide organism,Aureococcus anophagefferens (Chrysophyceae), using clays[J]. Journal of Applied Phycology,2004,16(2):101-110.
    [44] Lamer J T, Dolan C R, Petersen J L, et al. Introgressive Hybridization between Bighead Carpand Silver Carp in the Mississippi and Illinois Rivers[J]. North American Journal of Fisheries,2010,30:1452-1461.
    [45]张彬,郭劲松,方芳,等.植物化感抑藻的作用机理[J].生态学杂志,2010,29(9):1846-1851.
    [46] Nakano K, Lee T F, Matsumura M. In situ algal bloom control by the integration of ultrasonicradiation and jet circulation to flushing[J]. Environmental Science&Technology,2001,35(24):4941-4946.
    [47] Ahn C Y, Park M H, Joung S H, et al. Growth inhibition of cyanobacteria by ultrasonicradiation: Laboratory and enclosure studies[J]. Environmental Science&Technology,2003,37(13):3031-3037.
    [48]袁易全.近代超声原理与应用[M].南京:南京大学出版社,1996.
    [49]魏刚,周庆,熊蓉春,等.水处理中的绿色化学与绿色技术[J].现代化工,2002,22(12):43-46.
    [50] Adewuyi Y G. Sonochemistry: Environmental science and engineering applications[J].Industrial and Engineering Chemistry Research,2001,40(22):4681-4715.
    [51]唐玉霖,高乃云,庞维海.超声波技术在饮用水中应用的研究进展[J].给水排水,2007,33(12):113-118.
    [52] T. J. Mason J P L. Applied sonochemistry: the uses of power ultrasound in chemistry andprocessing[M]. WILEY-VCH,2002.
    [53] Kim I, Hong S, Hwang I, et al. TOC and THMFP reduction by ultrasonic irradiation inwastewater effluent[J]. Desalination,2007,202(1–3):9-15.
    [54] Song W, de la Cruz A A, Rein K, et al. Ultrasonically Induced Degradation ofMicrocystin-LR and-RR: Identification of Products, Effect of pH, Formation and Destructionof Peroxides[J]. Environmental Science&Technology,2006,40(12):3941-3946.
    [55] Song W, Teshiba T, Rein K, et al. Ultrasonically Induced Degradation and Detoxification ofMicrocystin-LR (Cyanobacterial Toxin)[J]. Environmental Science&Technology,2005,39(16):6300-6305.
    [56] Hudder A, Song W, O'Shea K E, et al. Toxicogenomic evaluation of microcystin-LR treatedwith ultrasonic irradiation[J]. Toxicology and Applied Pharmacology,2007,220(3):357-364.
    [57] Hao H, Chen Y, Wu M, et al. Sonochemistry of degrading p-chlorophenol in water by highfrequency ultrasound[J]. Ultrasonics sonochemistry,2004,33(3):151-156.
    [58] Zhao L, Ma J, Zhai X. Synergetic Effect of Ultrasound with Dual Fields for the Degradationof Nitrobenzene in Aqueous Solution[J]. Environmental Science&Technology,2009,43(13):5094-5099.
    [59] Wang Z, Wang H, Guo Q. Effect of Ultrasonic Treatment on the Properties of PetroleumCoke Oil Slurry[J]. Energy&Fuels,2006,20(5):1959-1964.
    [60] ELGAL G M, RUPPENICKER G F, KNOEPFLER N B. Sizing and Desizing Textiles withDegraded Starch and Ultrasonic Techniques to Conserve Energy[M]//107. AMERICANCHEMICAL SOCIETY,1979:127-143.
    [61] Dehghani M H, Changani F. The effect of acoustic cavitation on chlorophyceae from effluentof wastewater treatment plant[J]. Environmental Technology,2006,27(9):963-968.
    [62] Chemistry U I S O. Ultrasound in synthetic organic chemistry[J]. Chemical Society Reviews,1997,26:443-451.
    [63] Gogate P R, Kabadi A M. A review of applications of cavitation in biochemicalengineering/biotechnology[J]. Biochemical Engineering Journal,2009,44(1):60-72.
    [64] Jorand F, Zartarian F, Thomas F, et al. Chemical and structural (2D) linkage between bacteriawithin activated sludge flocs[J]. Water Research,1995,29(7):1639-1647.
    [65] Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludge disintegration forimproving anaerobic stabilization[J]. Water Research,2001,35(8):2003-2009.
    [66] Wang F, Wang Y, Ji M. Mechanisms and kinetics models for ultrasonic waste activatedsludge disintegration[J]. Journal of Hazardous Materials,2005,123(1-3):145-150.
    [67] Mason T J. Sonochemistry and the environment-Providing a "green" link between chemistry,physics and engineering[J]. Ultrasonics Sonochemistry,2007,14(4):476-483.
    [68] Ahn C Y, Joung S H, Choi A, et al. Selective control of cyanobacteria in eutrophic pond by acombined device of ultrasonication and water pumps[J]. Environmental Technology,2007,28(4):371-379.
    [69] Ahn C Y, Joung S H, Yoon S K, et al. Alternative alert system for cyanobacterial bloom,using phycocyanin as a level determinant[J]. Journal of Microbiology,2007,45(2):98-104.
    [70] Tang J, Wu Q, Hao H, et al. Growth inhibition of the cyanobacterium spirulina (arthrospira)platensis by1.7MHz ultrasonic irradiation[J]. Journal of Applied Phycology,2003,15(1):37-43.
    [71] Tang J W, Wu Q Y, Hao H W, et al. Effect of1.7MHz ultrasound on a gas-vacuolatecyanobacterium and a gas-vacuole negative cyanobacterium[J]. Colloids and Surfaces B:Biointerfaces,2004,36(2):115-121.
    [72] Hao H, Wu M, Chen Y, et al. Cavitation mechanism in cyanobacterial growth inhibition byultrasonic irradiation[J]. Colloids and Surfaces B: Biointerfaces,2004,33(3):151-156.
    [73] Hao H W, Wu M S, Chen W F, et al. Cyanobacterial bloom control by ultrasonic irradiation at20kHz and1.7MHz[J]. Journal of Environmental Science and Health PartA-Toxic/Hazardous Substances&Environmental Engineering,2004,39(6):1435-1446.
    [74]郝红伟,陈以方,吴敏生,等.低功率高频超声抑制蓝藻生长的研究[J].生物物理学报,2003,19(01):101-103.
    [75] Wang B, Zhang G, Ma B, et al. Algae removal by ultrasound assisted coagulation:第4届流域管理和城市供水国际会议, Shenzhen, China,2004[C].中国土木工程学会、中国水利学会、中国城镇供水协会.
    [76] Zhang G, Wang B, Zhang P, et al. Removal of algae by sonication-coagulation[J]. Journal ofEnvironmental Science and Health, Part A,2006,41(7):1379-1390.
    [77] Zhang G, Zhang P, Fan M. Ultrasound-enhanced coagulation for Microcystis aeruginosaremoval[J]. Ultrasonics Sonochemistry,2009,16(3):334-338.
    [78] Zhang L, Zang X, Xu J, et al. Mercury Bioaccumulation in Fishes of Three Gorges ReservoirAfter Impoundment [J]. Bulletin of Environmental Contamination and Toxicology,2007,78(4):3-4.
    [79] Jong Lee T, Nakano K, Matsumura M. A new method for the rapid evaluation of gas vacuolesregeneration and viability of cyanobacteria by flow cytometry [J]. Biotechnology Letters,2000,22(23):1833-1838.
    [80] Joyce E M, Wu X, Mason T J. Effect of ultrasonic frequency and power on algaesuspensions.[J]. Journal of Environmental Science and Health Part A-Toxic/HazardousSubstances&Environmental Engineering,2010,45(7):663-666.
    [81] Kotopoulis S, Schommartz A, Postema M. Safety radius for algae eradication at200kHz-2.5MHz[J].2008IEEE International Ultrasonics Symposium,2008:1706-1709.
    [82] Kotopoulis S, Schommartz A, Postema M. Sonic cracking of blue-green algae[J]. AppliedAcoustics,2009,70(10):1306-1312.
    [83] Chen B L, Huang J, Wang J, et al. Ultrasound effects on the antioxidative defense systems ofPorphyridium cruentum,[J]. Colloids and Surfaces B: Biointerfaces,2008,61(1):88-92.
    [84] Chen J, Yeh H. The mechanisms of potassium permanganate on algae removal[J].Desalination,2005,39(18):4420-4428.
    [85]郝红伟.超声抑制蓝藻生长及其机理研究[D].中国:清华大学,2003.
    [86] Heng L, Jun N, Wen-jie H, et al. Algae removal by ultrasonic irradiation-coagulation[J].Desalination,2009,239(1-3):191-197.
    [87] Ma B, Chen Y, Hao H, et al. Influence of ultrasonic field on microcystins produced bybloom-forming algae[J]. Colloids and Surfaces B: Biointerfaces,2005,41(2-3):197-201.
    [88]陈杰,王波,张光明,等.超声强化混凝去除蓝藻实验研究[J].环境工程学报,2007,1(3):66-69.
    [89] Lee T J, Nakano K, Matsumara M. Ultrasonic Irradiation for Blue-Green Algae BloomControl[J]. Environmental Technology,2001,22(4):383-390.
    [90]冯若.超声手册[M].南京:南京大学出版社,1999.
    [91] Lee T J, Kazunori N, Masatoshi. A new method for the rapid evaluation of gas vacuolesregeneration and viability of cyanobacteria by flow cytometry [J]. Biotechnology Letters,2000,22(23):1833-1838.
    [92] Broekman S, Pohlmann O, Beardwood E S, et al. Ultrasonic treatment for microbiologicalcontrol of water systems[J]. Ultrasonics Sonochemistry,2010,17(6):1041-1048.
    [93]丁红兵.新型超声波克藻技术治理水环境[J].建设科技,2006(13):52-53.
    [94]丁永良,卢守珍,郭磊,等.超声波水域灭藻净水装置在上海曲阳公园景观湖的应用[J].上海水务,2006,22(04):15-18.
    [95]马大酞.现代声学理论基础[M].北京:科学出版社,2005.
    [96]何琳.声学理论与工程应用[M].北京:科学出版社,2006.
    [97]张光明,常爱敏,张盼月.超声波水处理技术[M].北京:中国建筑工业出版社,2006.
    [98]田红.超声波在城市剩余活性污泥中的传输特性的模拟及实验研究[D].重庆大学,2010.
    [99] Chu Z, Jin X, Ang B, et al. Buoyancy regulation of Microcystis flos-aquae duringphosphorus-limited and nitrogen-limited growth [J]. Journal of Plankton Research,2007,29(9):739-745.
    [100] Hofbauer B, Jüttner F. Occurrence of isopropylthio compounds in the aquatic ecosystem(Lake Neusiedl, Austria) as a chemical marker for Microcystis flos-aquae[J]. FEMSMicrobiology Letters,1988,53(2):113-121.
    [101]虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论——以滇池为例[J].植物分类学报,2007,45(5):727-741.
    [102]杨桂军,秦伯强,高光,等.角突网纹溞在太湖微囊藻群体形成中的作用[J].湖泊科学,2009(04).
    [103]苏玉萍,郑达贤,陈娜蓉,等.环境因子对福建省山仔水库水华微囊藻生长的影响[J].植物资源与环境学报,2005,14(3):42-46.
    [104]郭劲松,盛金萍,李哲,等.三峡水库运行初期小江回水区藻类群落季节变化特点[J].环境科学,2010,31(7):1492-1497.
    [105] Tuner D. Aquafluor Handheld Fluorometer and Turbidimeter User’s Manual[R].TunerDesigns,2004.
    [106]周贤杰,罗固源,杨清玲,等. Aquafluor藻细胞活体分析法在三峡库区次级河流回水区Chla测定中的校准及应用[J].环境科学学报,2007(09):1581-1584.
    [107]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第4版)(增补版)[M].北京:中国环境科学出版社,2002.
    [108]翁笑艳,林美爱,严颖.地表水浮游植物叶绿素a测定方法比较研究[J].中国环境监测,2009,25(3):36-38,76.
    [109] Wu X, Joyce E M, Mason T J. The effects of ultrasound on cyanobacteria[J]. Harmful Algae,2011,10(6):738-743.
    [110] OECD. Algae Growth Inhibition Test,201[R].Organization for Economic Co-Operation andDevelopment,1984.
    [111] EPA. EPA Eological Effects Test Guidelines. OPPTS850.5400Algae Toxicity, Tiers Ⅰ andⅡ, EPA712-C-96-164[R].1996.
    [112]中华人民共和国国家质量监督检验检疫总局. GB/T7965-2002声学水声换能器测量[S].2002.
    [113] Kimura T, Sakamoto T, Leveque J M, et al. Standardization of ultrasonic power forsonochemical reaction[J]. Ultrasonics Sonochemistry,1996,3(3):S157-S161.
    [114] Kormann C, Bahnemann D W, Hoffmann M R. Photocatalytic production of hydrogenperoxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, anddesert sand[J]. Environmental Science&Technology,1988,22(7):798-806.
    [115] Koda S, Kimura T, Kondo T, et al. A standard method to calibrate sonochemical efficiency ofan individual reaction system[J]. Ultrasonics Sonochemistry,2003,10(3):149-156.
    [116] Segebarth N, Eu Aerts O, Reiase J. Correlation between acoustic cavitafton noise, bubblepopulation,and sonochemistry[J]. Journal of Physical Chemistry B,2002(106):9181-9190.
    [117] Sellar R S, Batilly S M, Renaud J E. Response Surface Based, Concurrent SubspaceOptimization For Multidisciplinary System Design:34th AIAA Aerospace Sciences Meetingand Exhibit,1996[C].
    [118]李莉.生活垃圾填埋场渗滤液物化和生化预处理及组合处理工艺研究[D].重庆大学,2010.
    [119] Montgomery D C. Design and Analysis of Experiments,6th Edition[M]. New York: Wiley&Sons,2009.
    [120] Wang J, Chen Y, Ge X, et al. Optimization of coagulation-flocculation process for apaper-recycling wastewater treatment using response surface methodology[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2007,302(1-3):204-210.
    [121] Muralidhar R V, Chirumamla R R, Marchant R. A response surface approach for thecomparison of lipase production by Candia cylindracea using two different carbon sources[J].Biochemical Engineering,2001,8(9):17-23.
    [122] Mahvi A H. Application of Ultrasonic Technology for Water and Wastewater Treatment[J].Iranian Journal of Public Health,2009,38(2):1-17.
    [123]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [124] Qian Z, Sagers R D, Pitt W G. Investigation of the mechanism of the bioacoustic effect[J]. JBiomed Mater Res,1999,44(2):198-205.
    [125] Flint E B, Susliek K S. The temperature of cavitation[J]. Science,1991(253):1397-1399.
    [126] McNamara W B, Didenko Y, Suslick K S. Sonoluminescence temperatures duringmultibubble cavitation[J]. Nature,1999(401):772-775.
    [127] Margulis M A. Fundamental problems of sonoehemistry and cavitation[J]. Ultrasonicssonochemistry,1994(1):887-890.
    [128] Koda S, Miyamoto M, Toma M, et al. Inactivation of Escherichia coli and Streptococcusmutans by ultrasound at500 kHz[J]. Ultrasonics Sonochemistry,2009,16(5):655-659.
    [129] Joyce E, Phull S S, Lorimer J P, et al. The development and evaluation of ultrasound for thetreatment of bacterial suspensions. A study of frequency, power and sonication time oncultured Bacillus species[J]. Ultrason Sonochem,2003,10(6):315-318.
    [130] Cameron M, McMaster L D, Britz T J. Electron microscopic analysis of dairy microbesinactivated by ultrasound[J]. Ultrason Sonochem,2008,15(6):960-964.
    [131] Lauterborn W, Ohl C. Cavitation bubble dynamics[J]. Ultrasonics Sonochemistry,1997,4(2):65-75.
    [132] Bhatnagar A. Biochemical mechanism of irreversible cell injury caused by freeradical-initiated reactions[J]. Mol Cell Biochem,1994,137(1):9-16.
    [133] Schafer F Q, Qian S Y, Buettner G R. Iron and free radical oxidations in cell membranes[J].Cell Mol Biol (Noisy-le-grand),2000,46(3):657-662.
    [134] Feril Jr. L B, Kondo T, Ogawa R, et al. Dose-dependent inhibition of ultrasound-induced cellkilling and free radical production by carbon dioxide[J]. Ultrasonics Sonochemistry,2003,10(2):81-84.
    [135] Huang J, Feng R, Zhu C, et al. Low-MHz frequency effect on a sonochemical reactiondetermined by an electrical method[J]. Ultrasonics Sonochemistry,1995,2(2):S93-S97.
    [136] Li Z, Ohno T, Sato H, et al. A method of water-bloom prevention using underwater pulsedstreamer discharge[J]. Journal of Environmental Science and Health Part A-Toxic/HazardousSubstances&Environmental Engineering,2008,43(10):1209-1214.
    [137]梁智辉,朱慧芬,陈九武.流式细胞术基本原理与实用技术[M].武汉:华中科技大学出版社,2008.
    [138]杨晓新.溶藻细菌对球形棕囊藻溶藻机理的研究[D].暨南大学,2008.
    [139]陈朱波,曹雪涛.流式细胞术[M].北京:科学出版社,2010.
    [140] Phinney D L, Cucci T L. Flow cytometry and phytoplanktor[J]. Cytometry,1989(10):511-521.
    [141] Imail I, Ishadi Y. Isolation of a Marine phytoplankton by a gliding bacterium the killsChattonella antiqua (Raphidophyceae)[J]. Nippon Suisan Gakkaishi,1991,57(7):1409-1410.
    [142] Olson R J, Zetler E R. Potential of flow cytometry for pump and probe fluorescencemeasurements of phytoplankton photosynthetic characteristics[J]. Limnology andoceanography,1995,40(4):816-820.
    [143]郭沛涌,沈焕庭,张利华.淡水微型浮游植物的FCM研究[J].中国环境科学,2002,22(2):101-104.
    [144] Wang Y, Hammes F, De Roy K, et al. Past, present and future applications of flow cytometryin aquatic microbiology[J]. Trends in Biotechnology,2010,28(8):416-424.
    [145]张先杰李铎孙海晨李孙家邦.台盼蓝染色与FDA/PI双染色对检测肝细胞活率的评价[J].首都医科大学学报,2000(03).
    [146]谌丽斌,梁文艳,曲久辉,等. FDA-PI双色荧光法检测蓝藻细胞活性的研究[J].环境化学,2005,24(5):554-557.
    [147] Franklin N M, Adams M S, Stauber J L, et al. Development of an improved rapid enzymeinhibition bioassay with marine and freshwater microalgae using flow cytometry[J]. Archivesof environmental contamination and toxicology,2001,40(4):469-480.
    [148]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京市:科学出版社,2003.
    [149] Blackhall M L, Coombes J S, Fassett R. The relationship between antioxidant supplementsand oxidative stress in renal transplant recipients: A review F-1764-2010F-1752-2010[J].ASAIO JOURNAL,2004,50(5):451-457.
    [150] Regelsberger G, Jakopitsch C, Plasser L, et al. Occurrence and biochemistry ofhydroperoxidases in oxygenic phototrophic prokaryotes (cyanobacteria)[J]. Plant Physiologyand Biochemistry,2002,40(6–8):479-490.
    [151] Giannoplities C N, Ries S K. Superoxid dismutase purification and quantitative relationshipwith water soluble protein in seadling[J]. Plant Physiology,1977(59):315-318.
    [152] Trojanowicz M. Chromatographic and capillary electrophoretic determination ofmicrocrystins[J]. Journal of Separation Science,2010,33:359-371.
    [153]欧桦瑟,高乃云,隋铭皓,等.超声辐照降解MC-RR动力学的影响因素[J].中南大学学报(自然科学版),2010,41(2):784-792.
    [154]乔俊莲,董磊,董敏殷,等.高频超声波对微囊藻毒素释放及降解的特性研究[J].中国给水排水,2009,25(17):94-96.
    [155]储昭升,庞燕,郑朔芳,等.超声波控藻及对水生生态安全的影响[J].环境科学学报,2008,28(7):1335-1339.
    [156]董敏殷,乔俊莲,王国强,等.低频超声波对藻毒素释放和降解的研究[J].净水技术,2008,27(6):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700