用户名: 密码: 验证码:
铁对水华蓝藻的生态生理学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化的加剧,蓝藻水华发生的频率和幅度也日益增加。大规模的蓝藻水华降低了水资源利用效能,引起严重的生态破坏及巨大的经济损失,而蓝藻毒素的产生也给公众健康带来极大的隐患。清楚地认识到这些问题的严重性之后,围绕蓝藻水华的治理工作就陆续展开,但焦点大都集中在水体中的氮、磷等常量营养元素,很少有人研究水体中的微量元素在蓝藻水华形成和消亡过程中所起的作用。本论文按照“以微量营养盐的加富或缺乏作为防止和辅助防止水华的一种手段”的科学设想(hypothesis),分别从三个不同尺度――滇池试验区6.01 km~2,滇池岸边的围隔100 m~2,实验室100-500 mL三角烧瓶,研究了微量元素铁对水华蓝藻的生态生理学效应。主要结果如下:
     1.从2003年3月到2004年2月,在大尺度――滇池6.01 km~2试验区,研究了铁元素的分布、形态、浓度、迁移转化及其与蓝藻物种组成变成的关系。结果表明,铁、相关的理化因子和蓝藻物种组成是随季节变化而变化的;颗粒态铁和溶解态铁占总铁的比例相近,均为40~50%,而胶体态铁只占总铁的5~9%;三种不同形态铁之间是可以相互转化的,适应浮游植物及水生植物的不同需要;铁在这种大尺度试验区对蓝藻水华的形成与消亡没有显著影响,蓝藻物种的变化是由多个因子决定的;通过典型相关分析(CCA)得知,铜绿微囊藻(Microcystis aeruginosa)的生物量和优势度主要受硝酸盐氮、亚硝酸盐氮、总磷、溶解氧、和水温的影响,而水华束丝藻(Aphanizomenon flos-aquae)的生物量和优势度主要受氨氮的影响。
     2.把尺度缩小到滇池岸边的100 m~2围隔,从2003年6月到10月,在蓝藻水华暴发期间,继续研究不同形态铁对水华蓝藻的生态生理学影响。结果表明,蓝藻水华优势种M. aeruginosa和惠氏微囊藻(Microcystis wesenbergii)在pH7~9和水温20 oC左右的条件下生长旺盛,消耗大量的亚铁,使亚铁浓度大幅度下降;溶解氧和磷酸盐对亚铁浓度无显著影响;在水华蓝藻严重发生的条件下,水体中的总铁和其它不同形态铁的浓度无显著意义的变化,而亚铁浓度变化与水华蓝藻的种群密度和叶绿素a的变化呈显著负相关。在淡水富营养型湖泊中,总铁不构成限制性因子,而铁的生物可利用性则是与水华消长直接相关的重要因素。
     3.继续缩小尺度至室内实验的100~500 mL三角烧瓶中,期望能用水华蓝藻的生理学结果解释和阐明水华蓝藻的生态学问题及现象。
     (1)用不同浓度的[Fe~(3+)]处理从滇池分离得到的优势水华蓝藻--M. aerugi- nosa和M. wesenbergii,研究了它们的生长,叶绿素a,PSII的光合活性以及铁限制条件下铁载体(siderophore)产量的变化。结果表明:它们只能在一定范围的[Fe~(3+)]内(0.01-100μM)生长;铁限制严重抑制藻类的生长,损害光合器官,降低光合活性;藻类自身能产生抵抗铁缺失、铁限制或铁富足的物质(如siderophore等)。M. aeruginosa与M. wesenbergii相比,在铁限制条件下,其产出的铁载体量多,说明其需要更多的铁盐来满足生理代谢活动的需要,但其对高铁胁迫的耐受性却比M. wesenbergii差。
     (2)以滇池优势藻株M. wesenbergii为材料,研究铁限制和补铁实验对M. wesenbergii的生长,叶绿素a,酸/碱性磷酸酶,硝酸还原酶及类囊体膜上的H~+-ATP酶,Mg~(2+)-ATP酶和Ca~(2+)-ATP酶的影响。结果表明:缺铁造成膜通透性改变,离子浓度严重失衡,酶被激活,活性升高,但长时间的缺乏强烈抑制了生长和叶绿素a的增加;补铁后这些酶的活性都急剧增长,但其生长(OD665)和叶绿素a的升高幅度不显著。
     (3)以滇池优势藻株M. aeruginosa为材料,研究了不同环境因子(温度、光照、不同氮源)对其生长特性、光合作用和磷吸收的影响。结果表明:在铁限制条件下,温度、光照、氮源对M. aeruginosa的生长无显著影响,光合活性快速降低;而铁富足条件下,30 oC温度,30μmol quanta·m~(-2)·s~(-1)光照,硝态氮是其生长最好的环境条件,此条件下藻细胞对磷的吸收速率也较快。
Cyanobacterial blooms due to the increasing eutrophication have been a worldwide serious environmental problem in water. Severe cyanobacterial blooms reduced the availability of water resource, causing serious ecological damage and gigantic economic losing, further more, the cyanotoxins biosynthesized from bloom-forming cyanobacteria may pose the major health concerns to humans, as well as to the wildlife. Efforts for cyanobacterial bloom control have been made since people are clearly aware of these serious problems. For eutrophication control, most of the past work has been focused on reducing macronutrients, such as nitrogen, phosphorus, little have been done about the effects of micronutrient on the formation and disappearance of cyanobacterial blooms. According to a hypothesis of that,“regarding the micronutrient enrichment, or deficiency, as a measure or an assistant method in the formation of cyanobacterial blooms”, this paper reported the results from experiments in different scales, they were, 6.01 km~2 experimental area in Lake Dianchi, 100 m~2 enclosures near Lake Dianchi and 100-500 mL conical flasks in laboratory. Ecophysiological effects of iron on the bloom-forming cyanobacteria were studied. The main results are as followings:
     1. Experiments were conducted in the northeastern part of the shallow, hypertrophic lake Dianchi from March 2003 to February 2004. The experimental area was 6.01 km~2, in a relatively large scale. Iron concentrations were measured for three size fractions: particulate iron (φ>0.22μm), colloidal iron (φ: 0.025-0.22μm) and soluble iron (φ<0.025μm), and the main environmental factors were also synchronously analyzed. Results showed that size-fractionated iron, related physico- chemical factors and cyanobacterial species composition all varied with seasonal changes; colloidal iron accounted for only 5~9%, while particulate iron and soluble iron accounted for 40~50% of total iron respectively; size-fractionated iron can transform into each other, thus, it could satisfy the growth requirements of phyto- plankton and aquatic plants. Significant linear correlations were found among the size-fractioned iron, and significant correlations were also obtained between chlorophyll a and environmental factors, such as TN, TP and secchi depth data; but no obvious correlation was found between iron and chlorophyll a in this larger scale experimental area. In addition, cyanobacterial species composition was decided by many factors; results of CCA analysis suggest, the abundance and dominance of M. aeruginosa were influenced by TP, NO_3~--N, NO_2~--N, DO and WT, and the abundance and dominance of A. flos-aquae are influenced by NH_4~+-N.
     2. Secondly, experiments were done in 100 m2 enclosures closely nearby lake Dianchi from June to October 2003, scale was much smaller than the above-mentioned experiment area. Results showed that, under the conditions of pH 7~9 and water temperature 17.5~20.5 oC, photoplankton thrived and absorbed ferrous iron, so the concentrations of ferrous iron decreased highly; DO, phosphate and dissolved total phosphate had no strong influences on the concentrations of different forms of iron; ferrous has significant correlations with population density and chlorophyll a content of phytoplankton. Under serious cyanobacterial bloom, total iron is not a limiting factor in eutrophic freshwater lakes, but iron bioavailability played an important role in waterbloom formation and disappearrance.
     3. With smaller scale further, experiments were carried out in 100~500 mL conical flasks in laboratory under certain conditions. Physiological results in these cases would be helpful to elucidate some ecological phenomena of cyanobacterial bloom formation.
     (1) After M. aeruginosa and M. wesenbergii, the two dominant species in lake Dianchi, were treated with different iron (III) concentrations, variances of growth rate, chlorophyll a, PSII photochemical efficiency and siderophore production were observed and determined. Results showed that, these algae grew only in a certain range of iron (III) (0.01~100μM [Fe~(3+)]); under iron-limited condition, growths was inhibited, pigments and photosynthetic apparatuses were damaged, so as to caused the yield, ETRmax and Ik all declined sharply. By the way, the algae produced some protective substances under stress conditions, such as siderophore et al., and showed small differences of Iron requirement, as M. aeruginosa required higher iron concentration as compared with M. wesenbergii.
     (2) Changes in growth rate, chlorophyll a, activities of ACP/ALP, NR, and Mg~(2+), Ca~(2+), H~+-ATPase on thylakoid membrane of M. wesenbergi were studied under iron limitation and iron addition conditions. Results showed that all these parameters decreased under iron-limited condition and increased markedly after iron enrichments.
     (3) Complex effects of temperature, light, different nitrogen sources and iron on growth, PSII photochemical efficiency and phosphorus uptake of M. aeruginosa were studied. Results showed that under optimal temperature, light and nitrogen, iron limitation inhibited the growth and decreased the PSII efficiency of M. aeruginosa. Under an iron-replete condition, the optimal growth conditions were temperature 30 oC, light intensity 30μmol quanta·m~(-2)·s~(-1) and nitrate-nitrogen, In this case, the phosphorus uptake rates were highly fast.
引文
1. 陈慈美,周慈由,郑爱榕等. 中肋骨条藻增殖的环境制约作用-Fe(III)与 N、Mn、光、温交互作用对藻生化组成的效应. 海洋通报,1996, 15(2): 37-42.
    2. 陈静,郭慧光,王鸿良,和丽萍,胡培铎,陈异晖,李立雄. 滇池草海蓝藻清除应急药剂筛选现场试验研究. 云南环境科学,1999, 18(2): 30-33.
    3. 陈英旭. 环境学. 北京: 中国环境科学出版社,2001.
    4. 付春平,钟成华,邓春光. 水体富营养化成因分析. 重庆建筑大学学报,2005, 22: 128-131.
    5. 葛滢,常杰,王晓月,徐青山. 两种程度富营养化水中不同植物生理生态特性与净化能力的关系. 生态学报,2000, 20(6): 1050-1055.
    6. 郭长城,王国祥,喻国华. 天然泥沙对富营养化水体中磷的吸附特性研究. 中国给水排水,2006, 22(9): 10-13.
    7. 国家环保总局. 水和废水监测分析方法(第四版). 北京:中国环境科学出版社,2002.
    8. 过龙根. 除藻与控藻技术. 中国水利,2006, 17: 34-36.
    9. 何虎翼,何龙飞,李晓峰,顾明华. 硝普纳对铝胁迫下黑麦和小麦根尖线粒体功能的影响. 植物生理与分子生物学学报,2006, 32(2): 239-244.
    10. 何龙飞,刘有良,沈振国,王爱勤. 铝胁迫对小麦根呼吸作用和一些线粒体结合酶活性影响. 作物学报,2001, 27 (6): 857-861.
    11. 何新华. 铁的生物无机化学. 昆明,云南科技出版社,1994.
    12. 洪楠,侯军,李志辉. STATISTICA for Windows 统计与图表分析教程. 北京:北方交通大学出版社,2002.
    13. 胡鸿钧,李尧英,魏印心,等. 中国淡水藻类. 上海:上海科学技术出版社,1980.
    14. 华兆哲,朱晓青. 太湖沉积物磷释放对羊角月牙藻的生物可利用性研究. 环境科学学报,2000, 20(1): 100-105.
    15. 黄仿,武宝玕. 高温胁迫对球等金藻作用机制的叶绿素荧光的研究. 广西师范大学学报(自然科学版),1996, 17(3): 80-85.
    16. 黄仲荪,曾昭淳. 生理生化学(第二版). 重庆:重庆大学出版社,2000.
    17. 江永春,吴群河. 磷的沉积物-水界面反应. 环境技术(增刊),2003,16-19.
    18. 李合生. 植物生理生化实验原理和技术. 北京:高等教育出版社,2000.
    19. 李小平. 美国湖泊宫营养化的研究和治理. 自然杂志,2002, 24(2): 63-68.
    20. 连民,俞顺章. 蓝绿藻的生态学研究进展. 上海环境科学,2001, 20(3): 127-130.
    21. 梁英,冯力霞,尹翠玲,曹春晖. 高温胁迫对三角褐指藻和纤细角毛藻叶绿素荧光动力学的影响. 中国海洋大学学报,2006, 36(3): 427-433.
    22. 刘春光,金相灿,孙凌,孙红文,朱琳,于洋,戴树桂,庄源益. 不同氮源和曝气方式对淡水藻类生长的影响. 环境科学,2006, 27(1): 101-104.
    23. 刘辉宇. 滇池水华束丝藻的生态学和毒理学的初步研究. 硕士学位论文,2005.
    24. 刘小海,段刚,高云涛,杜刚,铁金刚,王伟. Zn2+对滇池藻类生长的影响. 环境科学与技术,2006, 29(7): 47-48.
    25. 刘永定,范晓,胡征宇. 中国藻类学研究:我国有毒蓝藻水华和毒素研究. 武汉:武汉出版社,2001, 243-253.
    26. 刘永定等. 滇池蓝藻水华污染控制方案研究技术研究报告. 2004.
    27. 刘永梅. 水华束丝藻的生理学特性及毒理学研究. 博士学位论文,2006.
    28. 刘玉生,韩梅,梁占彬等. 光照、温度和营养盐对滇池铜绿微囊藻生长的影响. 环境科学研究,1995, 8(6): 7-11.
    29. 陆田生,纪明侯. 胶州湾海水中溶解氨基酸的研究. 海洋与湖沼,1996, 27(2): 117-124.
    30. 陆田生,纪明侯. 小角刺藻生长过程中溶解游离氨基酸含量在海水中的变化. 海洋与湖沼,1997, 28 (3): 256-261.
    31. 马莎,尹家元,曹槐等. 滇池水中铝的形态分布初探. 岩矿测试,2002, 21(6): 120-124.
    32. 牛小君. 富营养化发生机理及水华暴发研究进展. 四川环境,2006, 25(3): 73-76.
    33. 潘纲,张明明,闫海,邹华,陈灏. 黏土絮凝沉降铜绿微囊藻的动力学及其作用机理. 环境科学,2003, 24(5): 1-10 .
    34. 潘双叶. 水体中藻类的危害及控制方法. 黑龙江环境通报,2006, 30(1): 43-45.
    35. 彭进新,陈慧君. 水质富营养化与防治. 北京:中国环境科学出版社,1988.
    36. 钱鲁闽,徐永健,焦念志. 环境因子对龙须菜和菊花心江蓠 N、P 吸收速率的影响. 中国水产科学,2006, 13(2): 257-262.
    37. 秦伯强,杨柳燕,陈洲,朱广伟,张路,陈宜瑜. 湖泊富营养化发生机制与控制技术及其应用. 科学通报,2006, 51(16): 1857-1866.
    38. 饶群,芮孝芳. 富营养化机理及数学模拟研究进展. 水利,2001, 21(2): 15-19.
    39. 沈银武,刘永定,吴国樵,敖鸿毅,丘昌强. 富营养湖泊滇池水华蓝藻的机械清除. 水生生物学报,2004, 28 (2): 131-136.
    40. 史顺玉,沈银武,李敦海,刘永定. 溶藻细菌 DC21 的分离、鉴定及其溶藻特性. 中国环境科学,2006, 26 (5): 587-590.
    41. 宋立荣,雷腊梅,刘永定等. 滇池水华蓝藻铜绿微囊藻和绿色微囊藻的生长生理特性及产毒分析. 水生生物学报,1999, 23(5): 402-408.
    42. 唐建军,王永锐,傅家瑞. 植物铁素营养的生理生态观. 生态科学,1995, 1: 40-47.
    43. 汤卫华,宋虎堂,范志华 水体富营养化的原因、危害及防治. 天津职业院校联合学报,2006, 8(2): 52-54.
    44. 滕亚娟. 不同氮源对骨条藻生长的影响. 水利渔业,2006, 26(4): 55-56, 109.
    45. 王彩虹,牛晓君,周兴求,印春喜,任洪强. 不同 pH 条件下沉积磷释放到水体中化学行为的模拟研究. 四川环境,2006, 25(1): 20-22.
    46. 王苏民,窦鸿身. 中国湖泊志. 北京: 科学出版社,1998.
    47. 王文林,马婷,李强,王国祥. 水生高等植物季相交替群落对富营养化水体净化效果调查. 环境监测管理与技术,2006, 18(1): 16-19.
    48. 吴生才,陈伟民. 水体富营养化的渐进性和灾难性. 灾害学,2004, 19(2): 13- 17.
    49. 谢平. 鲢、鳙与藻类水华控制. 北京:科学出版社,2003.
    50. 邢伟,李敦海,沈银武,刘永定. 滇池试验围隔内不同形态铁浓度的变化与物化因子的关系. 水生生物学报,2006, 30(2): 146-151.
    51. 徐敏,毕永红,赵先富,邓中洋,胡征宇. 大麦杆在控制水华藻类中的应用. 水生生物学报,2002, 26(6): 704-711.
    52. 徐永健,钱鲁闽. 江蓠作为污染指示生物及修复生物的氮营养特性. 中国水产科学,2004, 11(3): 161-167.
    53. 严国安,李益健,王志坚等. 固定化栅藻对污水的净化及其生理特征的变化. 中国环境科学,1995, 15(1): 10-13.
    54. 杨福愉,黄芬. 膜脂-膜蛋白相互作用及其在医学和农业上的应用. 济南:山东科学技术出版社,1996.
    55. 杨州,孔繁翔. 浮游动物诱发藻类群体的形成. 生态学报,2005, 25(8): 2083- 2089.
    56. 余国营, 张晓华, 梁小民等. 滇池水-植物系统金属元素的分布特征和相关性研究. 水生生物学报,2000, 24(2): 172-177.
    57. 袁征,祁建华,张曼平. 海水中铁的来源形态及其与浮游植物的相互关系. 海洋湖沼通报,2003, 4: 38-48.
    58. 张婷,宋立荣. 铜绿微囊藻与三种丝状蓝藻间的相互作用. 湖泊科学,2006, 18(2): 150-156.
    59. 张玮,林一群,郭定芳,付君君,赵以军. 不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响. 水生生物学报,2006, 30 (3): 318-322.
    60. 张锡辉. 铁在饮用水水源中的循环转化. 给水排水,1999, 25(11): 18-22.
    61. 章宗涉,黄祥飞. 淡水浮游生物研究方法. 北京:科学出版社,1991.
    62. 赵以军,王旭,谢青等. 滇池蓝藻水华毒素的分离与鉴定. 华中师范大学学报(自然科学版),1999, 33(2): 250-254.
    63. Armstrong RA. An optimization-based model of iron, light, ammonium co- limitation of nitrate uptake and phytoplankton growth. Limnology and Oceanography, 1999, 44: 1436-1446.
    64. Assmy P, Henjes J, Klaas C, Smetacek V. Mechanisms determining species dominance in a phytoplankton bloom induced by the iron fertilization experiment EisenEx in the Southern Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54: 340-362.
    65. Barbeau K, Moffett JW, Caron DA, et al. Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature, 1996, 380: 61-64.
    66. Bene?ová J, Ni?ková K, Ferimazova N, ?tys D. Morphological and physiological differences in Synechococcus elongatus during continuous cultivation at high iron, low iron, and iron deficient medium. Photosynthetica, 2000, 38: 233-241.
    67. Blomqvist P, Pettersson A, Hyenstrand P. Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Archiv für Hydrobiologie, 1994 , 132(2): 141-164.
    68. Bruland KW, Donat JR, Hutchins DA. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 1991, 36: 1555-1577.
    69. Bruland KW, Orians KJ, Cowen JP. Reactive trace metals in the stratified central North Pacific. Geochimica et Cosmochimica Acta, 1994, 58: 3171-3182.
    70. Byrne RH, Kester DR. Solubility of hydrous ferric oxide and iron speciation in seawater. Marine Chemistry, 1976, 4: 255-274.
    71. Campell D, ?quist G. Predicting light acclimation in cyanobacteria from non- photochemical quenching of Photosystem II fluorescence, which reflects state transitions in these organism. Plant Physiology, 1996, 111: 1193-1198.
    72. Carmichael WW. Cyanobacterial secondary metabolities-the cyanotoxins. Journal of Applied Bacteriology, 1992, 72: 445-459.
    73. Cashikara AG, Kumaresan R, Rao NM. Biochemical characterization and sub- cellular localization of the red kidney bean purple acid phosphatase. Plant Physiology, 1997, 114: 907-915.
    74. Chale FMM. Inorganic nutrient concentration and chlorophyll in the euphotic zone of Lake Tanganyika. Hydrobiologia, 2004, 523: 189-197.
    75. Chapman DJ, Harrison PJ. Nitrogen metabolism and measurement of nitrate reductase activity. In: Lobban CS, Chapman DJ, Kremer BP (Eds) Experimental phycology: a laboratory manual. London: Cambridge University Press, 1988, 196-200.
    76. Chereskin BM, Castelfranco PA. Effects of iron and oxygen on chlorophyllbiosynthesis. Plant Physiology, 1982, 68: 112-116.
    77. Chorus I, Bartram J. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. E and FN Spon, London and New York, 1999.
    78. Courtney DG, Ron GT, Carlyn JM, et al. Biological availability of iron to the freshwater cyanobacterium Anabaena flos-aquae. Journal of Phycology, 2004, 40: 879-886.
    79. Davey M, Geider RJ. Impact of iron limitation on the photosynthetic apparatus of the diatom Chaetoceros muelleri (Bacillariophyceae). Journal of Phycology, 2001, 37: 987- 1000.
    80. Davison W. Iron and manganese in lakes. Earth Science Reviews, 1993, 34: 119- 163.
    81. Descy JP, Hardy MA, Stenuite S, Pirlot S, Leporcq B, Kimirei I, Sekadende B. Phytoplankton pigments and community composition in Lake Tanganyika. Freshwater Biology, 2005, 50: 668-684.
    82. Dimier C, Corato F, Saviello G, Brunet C. Photophysiological properties of the marine picoeukaryote Picochlorum RCC 237 (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 2007, 43: 275-283.
    83. Dortch Q. The interaction between ammonium and nitrate uptake in phyto- plankton. Marine Ecology Progress Series, 1990, 61: 183-201.
    84. Doucette GJ, Erdner DL, Peleato ML, et al. Quantitative analysis of iron stress related proteins in Thalassiosira weissflogii: Measurement of flavodoxin and ferredoxin using HPLC. Marine Ecology Progress Series 1996, 130: 269-276.
    85. Edwards AM, Platt T, Sathyendranath S. The high-nutrient, low-chlorophyll regime of the ocean: limits on biomass and nitrate before and after iron enrichment. Ecological Modelling, 2004, 171: 103-125.
    86. Flynn KJ, Hipkin CR. Interactions between iron, light, ammonium and nitrate: Insights from the construction of a dynamoic model of algal physiology. Journal of Phycology, 1999, 35: 1171-1190.
    87. Fogg GE, Stewart WDP, Fay P, Walsby AE. The Blue-green Algae. London andNew York: Academic Press, 1973.
    88. Fryxell GA, Kaczmarska T. Specific variability in Fe-enriched cultures form the equatoriall Pacific. Journal of Plankton Research, 1994, 16: 775-769.
    89. Gameiro C, Cartaxana P, Cabrita MT, Brotas V. Variability in chlorophyll and phytoplankton composition in an estuarine system. Hydrobiologia, 2004, 525: 113-124.
    90. Ganor E, Fonter HA, Gravenhorst G. The amount and nature of the dustfall on Lake Kinneret, Israel: flux and fractionation. Atmospheric Environment. 2003, 37: 4301-4315.
    91. Geider RJ, Laroche J. The role of iron in phytoplankton photosynthesis and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Research, 1994, 39: 275-301.
    92. Gerringa LJA, Barr HJW, Timmermans KRA. Comparision of iron limitation of phytoplankton in natural oceanic waters and labortory media conditioned with EDTA. Marine Chemistry, 2000, 68: 335-346.
    93. Gledhill M, van den Berg CMG. Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping vol- tammetry. Marine Chemistry, 1994, 47: 41-54.
    94. Goldman CR. Molybdenum as a factor limiting primary productivity Castle Lake. Calofornia Science, 1990, 132: 1016-1017.
    95. Gons HJ. On the light-limited growth of Scenedesmus protuberans Fritsch. Thesis, University of Amsterdam, 1977.
    96. Grace J. Temperature as a determinant of plant productivity. In Plants and Temperature (eds S.P. Long & F.I. Woodward). Company of Biologists Ltd, Cambridge, UK, 1988.
    97. Greene RM, Kolber ZS, Sift DG, et al. Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined form variability in the quantum yield of fluorescence. Limnology and Oceanography, 1994, 39: 1061-1074.
    98. Gregor J, Marsalek B. Freshwater phytoplankton quantification by chlorophyll a:a comparative study of in vitro, in vivo and in situ methods. Water Research, 2004, 38: 517-522.
    99. Gress CD, Treble RG, Matz CJ, Weger HG. Biological availability iron to the freshwater cyanobacterium Anabaena flos-aquae. Journal of Phycology, 2004, 40: 879-886.
    100.Han MY, Kim W. A theoretical consideration of algae removal with clays. Microchemical Journal, 2001, 68: 157-161.
    101.Havens K, East TL, Marcus JH, Essex PK. Dynamics of the exotic Daphnia lumhotzii and native macro-zooplankton in a subtropical chain-of–lakes in Florida, U.S.A. Freshwater Biology, 2000, 45: 21-32.
    102.Havens K, East TL, Meeker RH, Davis WP, Steinman AD. Phytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. Journal of Plankton Research, 1995, 18: 551-566.
    103.Havens K, Phlips EJ, Cichra MF, Li BL. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology, 1998, 39: 547-556.
    104.Healey FP, Hendzel LL. Physiological indicators of nutrient deficiency in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37: 442-453.
    105.Home AJ, Goldman CR. Limnology (second edition). NewYork: Mc-Craw Hill, Inc, 1994.
    106.Hongve D. Cycling of iron manganese and phosphate in meromictic lake. Limnology and Oceanography, 1997, 42: 635-647.
    107.Horne AJ, Commins ML. Macronutrient controls on nitrogen fixation in planktonic cyanobacterial populations. New Zealand Journal of Marine and Freshwater Research, 1987, 21: 423-433.
    108.Horrigan SG, McCarthy JJ. Phytoplankton uptake of ammonium and urea during growth on oxidized forms of nitrogen. Journal of Plankton Research, 1982, 4: 379-389.
    109.Hudson RJM, Convault DT, Morel FMM. Investigations of iron coordination andredox reaction in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Marine Chemistry, 1992, 38: 209-235.
    110.Hudson RJM, Morel FMM. Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnology and Oceanography, 1990, 35: 1002-1020.
    111.Hu Q, Richmond A. Productivity and photosynthetic efficiency of Spirulina Platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. Journal of Applied Phycology, 1996, 8: 139-145.
    112.Hutchins DA, Bruland KW. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature, 1998, 393: 561-564.
    113.Hutchins DA, Witter AE, Butler A, Luther GW. Competition among marine phytoplankton for different chelated iron species. Nature, 1999, 400: 858-861.
    114.Hyenstrand P, Rydin E, Gunnerhed M. Response of pelagic cyanobacteria to iron addition-enclosure experiments from Lake Erken. Journal of Plankton Research, 1999, 22: 1113-1126.
    115.Imai A, Fukushima T, matsushige K. Effects of iron limitation and aquatic humic subatances on the growth of Microcystis aeruginosa. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56: 1927-1937.
    116.Inaba K, Sekine T, Tomioka N, et al. Seasonal and longitudinal changes in copper and iron in surface water of shallow eutrophic Lake Kasumigaura, Japan. Water Research, 1997, 31: 280-286.
    117.Jansson M, Olsson H, Pettersson K. Phosphatase: origin, characteristic and function in lakes. Hydrobiologia, 1988, 170: 157-175.
    118.Jones JG, Gardener S, Simon BM. Bacterial reduction of ferric iron in a stratified eutrophic lake. Journal of General Microbiology, 1983, 129: 131-139.
    119.Jones RJ, Shaw PJ, Haan HD. Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength. Environmental Science and Technology, 1993, 27: 1052-1059.
    120.Jorgensen SE. Application of ecology in environmental management. Boca Raton, FL, USA: CRC Press, 1983.
    121.Kieber RJ, Williams K, et al. Iron speciation in coastal rainwater: concentration and deposition to seawater. Marine Chemistry, 2001, 73: 83-95.
    122.Kolber ZS, Barber RT, Coale KH. Iron limitation of phytoplankton photosynthesis in the Equatorial Pacific Ocean. Nature, 1994, 371: 145-149.
    123.Korb RE, Whitehouse M. Contrasting primary production regimes around South Georgia, Southern Ocean: large blooms versus high nutrient, low chlorophyll waters. Deep Sea Research Part I: Oceanographic Research Papers 2004, 51: 721-738.
    124.Kudo I, Harrison PJ. Effect of iron nutrition on the marine cyanobacterium Synechococcus growth on different N sources and irradiances. Journal of Phycology, 1997, 33: 232-240.
    125.Kudo I, Miyampto M, Noiri Y, Maita Y. (2000) Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 36:1096-1102.
    126.Kudo I, Noiri Y, Nishioka J, Taira Y, Kiyosawa H, Tsuda A. Phytoplankton community response to Fe and temperature gradients in the NE (SERIES) and NW (SEEDS) subarctic Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53: 2201-2213.
    127.Kuma K, Katsumoto A, Shiga N. Variation of size-fractionated Fe concentrations and Fe(III) hydroxide solubilities during a spring phytoplankton bloom in Funka Bay (Japan). Marine chemistry, 2000, 71: 111-123.
    128.Kuma K, Nishioka J, Matsunaga K. Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Liminology and Oceanoraphy, 1996, 41: 396-407.
    129.Kumagai M, Ishikawa K, Chunmeng J. Dynamics and biogeochemical sig- nificance of the physical environment in Lake Biwa. Lakes & Reservoirs: Research and Management, 2002, 7: 345- 348.
    130.Kumar AD. Aquatic Ecosystem. APH publishing Corporation, New Delhi, 2002.
    131.Kustka A, Carpenter EJ, Sa?udo-Wilhelmy SA. Iron and marine nitrogen fixation: progress and future directions. Research in Microbiology, 2002, 153: 255-262.
    132.Lammers PJ, Sanders-Loehr J. Active transport of ferric schizokinen in Anabaena sp. Journal of Bacteriology, 1982, 122: 1-11.
    133.LaRoche J, Boyd PW, Mckay RML, et al. Flavodoxin as an in situ marker for iron stresss in phytoplankton. Natrue, 1996, 382: 802-805.
    134.LaRoche J, Murray H, Orellana M, et al. Flavodoxin expression as an indicator of iron in marine diatoms. Journal of Phycology, 1995, 31: 520-530.
    135.Liang YC, Zhang WH, Chen Q, Liu YL, Ding RX. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 2006, 57: 212-219.
    136.Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids-measurement and charaterization by UV-VIS. In: Lichtenthaler HK editor. Current Protocols in Food Analyticial Chemistry (CPFA), (suppl. 1). New York: Wiley, 2001.
    137.Liebson KE, Hadar Y, Chen Y. Oligotrophic bacteria enhance algal growth under iron deficient conditions. Applied and Environmental Microbiology, 1995, 61: 2439-2441.
    138.Lim PT, Leaw CP, Usup G, Kobiyama A, Koike K, Ogata T. Effects of light and temperature on growth, nitrate uptake and toxin production of two tropical dinoflagellates: Alexandrium tamiyanichii and Alexandrium minutum (Diophyceae). Journal of Phycology, 2006, 42: 786-799.
    139.Lin Y, Tang SM, Chen XL, et al. Impact of dissolvable Fe on multiplication of red tide diatom in enclosed water column. Marine Science Bulletin, 1994, 13: 14-18.
    140.Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books, Sausalito, 1994.
    141.Li X, Qin XM, Michael LM. Physiological and biochemical response of fresh- water cryptomonads (Cryptophyceae) to Fe deficiency. Journal of Basic Microbiology, 2003, 43: 121-130.
    142.Li XY, Liu YD, Song LR, et al. Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin- LR. Toxicon, 2003, 42: 85-89.
    143.Liu YM, Chen W, Li DH, Shen YW, Li GB, Liu YD. First report of aphantoxins in China—waterblooms of toxigenic Aphanizomenon flos-aquae in Lake Dianchi. Ecotoxicology and Environmental Safety, 2006a, 65: 84–92.
    144.Liu YM, Chen W, Li DH,Shen YW, Liu YD, Song LR. Analysis of Paralytic Shellfish Toxins in Aphanizomenon DC-1 from Lake Dianchi, China. Environ- mental Toxicology, 2006b, 21: 289–295.
    145.Lukac M, Aegerter R. Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon, 1993, 31: 293-305.
    146.Lung’Ayia HBO, M’Harzi A, Tackx M, Gichuki J, Symoens JJ. Phytoplankton community structure and environment in the Kenyan waters of Lake victoria. Freshwater Biology, 2000, 43: 529-543.
    147.Luther GW, Wu JF. What controls dissolved iron concentrations in the world ocean? A comment. Marine Chemistry, 1997, 57: 173-179.
    148.Machuca A, Milagres AMF. Use of CAS-gar plate modified to the effect of different variables on the siderophore production by Aspergillus. Letters in Applied Microbiology, 2003, 36: 177-181.
    149.Macrellis HM, Trick CG, et al. Collection and detection of natural iron - binding ligands from seawater. Marine Chemistry, 2001, 76: 175-187.
    150.Mallin MA, Cahoon LB, Mclver MR, Parsons VC, Shank GC. Alternation of factors limiting phytoplankton production in the Cape Fear river estuary. Estuaries, 1999, 22: 825-836.
    151.Manly BFJ. Multivariate statistical methods, a primer. Second edition, Chapman and Hall, London, 1995.
    152.Martin JH, Coale KH, Johnson KS, et al. Testing the iron hypothesis in the Equatorial Pacific Ocean. Nature, 1994, 371: 123-129.
    153.Martin JH, Fitzwater SE. Iron deficiency limits phytoplankton growth in the north-east subarctic Pacific. Nature, 1988, 331: 341-343.
    154.Martin JH. Glacial-interglacial change: the iron hypothesis. Paleoceanography, 1990, 5: 1-13.
    155.Martin JH, Gordon RM, Fitzwater S, et al. Oceanographyic Research Papers. 130Deep Sea Research, 1989, 36: 649.
    156.Martin JH, Gordon RM, Fitzwater SE. The case for iron. Liminology and Oceanography, 1991, 36: 1793-1802.
    157.Matsunaga K, Nishioka J, Kuma K, et al. Riverine input of bioavailable iron supporting phytoplankton growth in Kesennuma Bay (Japan). Water Research. 1998, 32: 3436-3442.
    158.McCarthy JJ. The uptake of urea by marine phytoplankton. Journal of Phycology, 1972, 8: 216-222.
    159.McCarthy JJ, Wynne D, Berman T. The uptake of dissolved nitrogenous nutrients by Lake Kinnert (Israel) microplankton. Limnology and Oceanography, 1982, 27: 673-680.
    160.McKay RML, Geider RJ, LaRoche J. Physiological and biochemical response of the photosynthetic apparatuss of two marine diatoms to Fe stress. Plant Physiology, 1997, 114: 615-622.
    161.McQueen DJ, Lean DRS. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44: 598-604.
    162.Melis A. Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage? Trends in Plant Science, 1999, 4: 130-135.
    163.Miller WL, King DW, Lin J, Kester DR. Photochemical redox cycling of iron in coastal seawater. Marine Chemistry, 1995, 50: 63-77
    164.Millero FJ, Yao WS, Aicher J. The speciation of Fe(II) and Fe(III) in natural waters. Marine Chemistry, 1995, 50: 21-39.
    165.Milligan AJ, Harrison PJ. Effects of non-steady-state iron limitation on nitrogen assimilateory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Journal of Phycology, 2000, 36: 78-86.
    166.Morel FMM, Hudson RJM, Price NM. Limitation of productivity by trace metals in the sea. Limnology and Oceanography, 1991, 36: 1742-1755.
    167.Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher K, Huner NPA. Differentialthermal effects on the energy distribution between photosystemⅡ and photo- system I in thylakoid membranes of a psychrophilic and mesophilic alga. Biochimica et Biophysica Acta, 2002, 1561: 251-265.
    168.Mortimer CH. The exchange between dissolved substances in between water and mud in lakes. Journal of Ecology, 1941, 29: 280-329.
    169.Morton SD, Lee TH. A lgae blooms: possible effects of iron. Environmental Science and Technology, 1974, 8: 673-674.
    170.Muggli DL, Harrison PJ. Effects of iron on two oceanic phytoplankters grown in natural NE subarctic Pacific seawater with no artificeial chelators present. Journal of Experimental Marine Biology and Ecology , 1997, 212: 225-237.
    171.Mur LR, Schreurs H. Light as a selective factor in the distribution of phyto- plankton species. Water Science and Technology, 1995, 32: 25-34.
    172.Myers J, Kratz WA. Relation between pigment content and photosynthetic characteristics in a blue-green algae. Journal of General Physiology, 1955, 39: 11–22.
    173.Needoba JA, Harrison PJ. Influence of low light and a light:dark cycle on NO3- uptake, intracellular NO3- and nitrogen isotope fractionation by marine phyto- plankton. Journal of Phycology, 2004, 40: 505-516.
    174.Neilands JB. Siderophores: structure and function of microbial iron transport compounds. Journal of Biological Chemistry, 1995, 270: 26723-26726.
    175.Nishioka J, Takeda S. Change in the concentrations of iron in different size fractions during growth of the oceanic diatom Chaetoceros sp.: importance of small colloidal iron. Marine biology, 2000, 137: 231-238.
    176.Nishioka J, Takeda S, de Baar Hein JW. Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, 2005, 95: 51-63.
    177.Nishioka J, Takeda S, Wong CS. Change in the concentrations of iron in different size fractions during a phytoplankton bloom in controlled ecosystem enclosures. Journal of Experimental Marine Biology and Ecology, 2001, 258: 237-255.
    178.Nolting RF, Gerringga LJA, et al. Fe(III) speciation in the high nutrient, lowchlorophyll Pacific region of the Southern Ocean. Marine Chemistry, 1998, 62: 335-352.
    179.Phlips EJ, Aldridge FJ, Schelske CL, Crisman TL. Relationships between light availability, chlorophyll a and tripton in a large, shallow subtropical lake. Liminology and Oceangraphy, 1995, 40: 416-421.
    180.Phlips EJ, Cichra M, Havens KE, Hanlon C, Badylak S, Rueter B, Randall M, Hansen P. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow subtropical lake. Journal of Plankton Research, 1997, 19: 319-342.
    181.Pollingher U, Kaplan B, Berman T. The impact of iron and chelators on Lake Kinneret phytoplankton. Journal of Plankton Research, 1995, 17: 1977-1992.
    182.Price NM, Ahner BA, Morel FMM. The equatorial Pacific ocean: Grazer controlled phytoplankton populations in an iron-limited ecosystem. Limnology and Oceanography, 1994, 39: 520-534.
    183.Raven JA. The iron and molybdenum use efficiencies of plant growth with different energy , carbon and nitrogen sources. New Phytologist, 1988, 109: 279-287.
    184.Reynolds CS. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, U.K, 1993.
    185.Robson BJ, Hamilton DP. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling, 2004, 174: 203–222.
    186.Rose C, Axler RP. Uses of alkaline phosphatase activity in evaluating phyto- plankton community phosphorus deficiency. Hydrobiologia, 1998, 361: 145-156.
    187.Rue EL, Bruland KW. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/ adsorptive cathodic stripping voltammetric method. Marine Chemistry, 1995, 50: 117-138.
    188.Rue EL, Bruland KW. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale ironaddition experiment. Limnology and Oceanography, 1997, 42: 901-910.
    189.Rueter JG, Hutchins DA, Smith RW, Unsworth NL, Carpenter EJ, Capone DA. Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, Kluwer Academic Publishers, Netherlands, 1992.
    190.Sandmann G, Boger P. Copper-induced exchange of plasticyanin and cytochrome C2533 in cultures of Anabaena variabilis and Plectonema boryanum. Plant Science Letters, 1980, 17: 417-424.
    191.Sandstr?m S, Ivanov AG, Park YI, et al. Iron stress response in the cyano- bacterium Synechococcus sp. PCC7942. Physiologia Plantarum, 2002, 116: 255-263.
    192.Sanudo-Wilhelmy SA, RiveraDuarte I, Flegal AR. Distribution of colloidal trace metals in the San Francisco Bay estuary. Geochimica et Cosmochimica Acta, 1996, 60: 4933-4944.
    193.Scheffer M, Rinaldi S, Huisman J, Weissing FJ. Why plankton communities have no equilibrium: solution to the paradox. Hydrobiologia, 2003, 491: 9-18.
    194.Scheffer M, Straile D, van Nes EH, Hosper H. Climatic warming causes regime shifts in lake foodwebs. Liminology and Oceanography, 2001, 46: 1780-1783.
    195.Schulz M, Kozerski HP, Pluntke T, Karina Rinke. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Research, 2003, 37: 569 - 578.
    196.Schwyn B, Neilands JB. Universal chemical assay for the detection and determi- nation of siderophores. Analytical Chemistry, 1987, 160: 47-56.
    197.Senior K. Biocontrol of algal blooms using cyanophages. Frontiers in Ecology and the Environment, 2005, 3: 183.
    198.Shaked Y, Erel Y, Sukenik A. The biogeochmical cycle of iron and associated elements in Lake Kinneret. Geochimica et Cosmochimica Acta, 2004, 68: 1439-1451.
    199.Shaw P. The effect of pH, dissolved humic substances and ionic composition on the transfer of iron and phosphate to particulate size fraction in epilimnetic lake water. Limnology and Oceanography, 1994, 39: 1734-1743.
    200.Shi SY, Liu YD, Shen YW, Li GB. The algae-lytic ability of bacterium DC10 and the influence of environmental factors on the ability. Science of China Ser. C, 2005, 48: 250-255.
    201.Shiomoto A. Size-fractionated chlorophyll a concentration and primary produc- tion in the Okhotsk Sea in October and November 1993, with special reference to the influence of dichothermal water. Journal of Oceanography, 1997, 53: 601- 610.
    202.Shortreed KS, Stockner JG. Trophic satus of 19 subarctic lakes in the Yukon Territory. Canadian Journal of Fisheries and Aquatic Science, 1986, 43: 797–805.
    203.Song J M. Oceanic iron fertilization: One strategies for sequestration atmospheric CO2. Acta Oceanologica Sinica. 2003, 22: 57-68.
    204.Stintzi A, Barnes C, Xu JD, Raymond KN. Microbial iron transport via a siderophore shuttle: A membrane ion transport paradigm. Proceedings of the National Academy of Sciences, 2000, 97: 10691-10696.
    205.Stookey L. Ferrizine- a new spectrophotometric reagent for iron. Analytic Chemistry, 1970, 42: 779-781.
    206.Stumn W, Morgan JJ. Aquatic Chemistry, Wiley, 1981.
    207.Sunda WG, Huntsman SA. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chemistry, 1995, 50: 189-206.
    208.Sunda WG, Huntsman SA. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, 1997, 390: 389-392.
    209.Sun HG, Zhang FS. Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots. Chinese Journal of Applied Ecology, 2002, 13: 379-381.
    210.Suzuki Y, Takahashi M. Growth responses of several diatom species isolated from various environments to temperature. Journal of Phycology, 1995, 31: 880-888.
    211.Takamu N, Iwkume T, Rasuno M. Photosynthesis and primary production of Microcystis aeruginosa in lake kasumigaura. Journal of Plankton Research, 1987, 7: 303-312.
    212.Takamura N, Watanabe MM. Seasonal changes in the biomass of four species ofMicrocystis in Lake Kasumigaura. Japanese Journal of Limnology, 1987, 48: 139-144.
    213.Takano K, Hino S. Effect of temperature and soluble reactive phosphorus on abundance of Aphanizomenon flos-aquae (Cyanophyceae). Phycological Research, 2000, 48: 9-13.
    214.Takata H, Kuma K, Iwade S, et al. Spatial variability of iron in the surface water of the northwestern North Pacific Ocean. Marine Chemistry, 2004, 86: 139-157.
    215.Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 1998, 393: 774-777.
    216.Taylor SR. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta. 1964, 28: 1273-1285.
    217.ter Braak CJF, Verdonschot PFM. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 1995, 57: 256-288.
    218.Thomas DN. Iron limitation in the Southern Ocean. Science, 2003, 302: 565-566.
    219.Trick CG, Andersen RJ, Gillam A, et al. Prorocentrin: an extracellular siderophore produced by the marine Dinoflagellate Prorocentrum minimum. Science, 1983, 219: 306-308.
    220.Tsujimura S, Ishikawa K, Tsukada H. Effect of temperature on growth of the cyanobacterium Aphanizomenon flos-aquae in Lake Biwa and Lake Yogo. Phycological Research, 2001, 49: 275-280.
    221.Twiss MR, Auclair JC, Charlton MN. An investigation into iron-stimulated phytoplankton productivity in epipalagic Lake Erie during thermal stratification using trace metal clean techniques. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57: 86-95.
    222.Tucker S, Pollard P. Identification of Cyanophage Ma-LBP and Infection of the Cyanobacterium Microcystis aeruginosa from an Australian Subtropical Lake by the Virus. Applied Environment and Microbiology, 2005, 71: 629-635.
    223.Umamaheswari A, Venkateswarlu K. Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris. Ecotoxicology and Environmental Safety, 2004, 58: 256–259.
    224.Van den Berg CMG. Evidence for organic complexation of iron in seawater. Marine Chemistry, 1995, 50: 139-157.
    225.Van Liere L, Mur LR. Growth kinetics of Oscillatoria agardhii Gomont in continuous culture, limited in its growth by light energy supplies. Journal of General Microbiology, 1979, 115: 153-160.
    226.Vuorio K, Lagus A, Lehtim?ki JM, Suomela J, Helminen H. Phytoplankton community responses to nutrient and iron enrichment under different nitrogen to phosphorus ratios in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology, 2005, 322: 39-52.
    227.Walsby AE. Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles. In: Fay P and Van Baalen C. [Eds] The Cyanobacteria. Elsevier, Amsterdam, 1987, 377-414.
    228.Wang WX, Dei RCH. Biological uptake and assimilation of iron by marine plankton: influences of macronutrients. Marine Chemistry, 2001, 74: 213-226.
    229.Watson AJ, Bakker DCE, Ridgwell AJ, et al. Effects of iron supply on southern ocean CO2 uptake and implications for glacial atmospheric CO2. Nature, 2000, 407: 730-733.
    230.Weier J. John Martin (1935-1993): Earths Observatory. NASA. http:// earth observatory. nasa.gov/Library/Giants/Martin/, 2006.
    231.Wells ML, Goldberg ED. The distribution of colloids in the North Atlantic and Southern Oceans. Limnology and Oceanography, 1994, 39: 286-302.
    232.Wells ML, Price NM, Bruland KW. Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters. Limnology and Oceanography, 1994, 39: 1481-1486.
    233.Wells ML, Trick CG. Controlling iron avalability to phytoplankton in iron-replete coastal water. Marine Chemistry, 2004, 86: 1-13.
    234.Wen X, Gong H, Lu C. Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis. Plant Physiology and Biochemistry, 2005, 43: 389-395.
    235.Wilhelm SW, Trick CG. Iron-limited growth of cyanobacteria: multiple sidero- phore production is a common response. Limnology and Oceanography, 1994, 39: 1979- 1984.
    236.Wu JF, Luther GW. Size-fractionated iron concentrations in the water column of the western North Atlantic Ocean. Limnology and Oceanography, 1994, 39: 1119-1129.
    237.Xing W, Huang WM, Liu YD, et al. Changes in the concentrations of size- fractionated iron and related environmental factors in northeastern part of lake Dianchi (China). Fresenius Environmental Bulletin, 2006, 15(6): 563-570.
    238.Xing W, Huang WM, Liu YD, et al. Environmental mechanism of change in cyanobacterial species composition in the northeastern part of lake Dianchi (China). Fresenius Environmental Bulletin, 2007a, 16: 82-90.
    239.Xing W, Huang WM, Liu YD, et al. Effects of iron on growth, pigment content, photosystem II efficiency and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii. Current Microbiology, 2007b (In Press).
    240.Ye ZH, Cheung KC, Wong MH. Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Canadian Journal of Botany., 2001, 79: 314-320.
    241.Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K. Isolation and Characterization of a Cyanophage Infecting the Toxic Cyano- bacterium Microcystis aeruginosa. Applied Environment and Microbiology, 2006, 72: 1239-1247.
    242.Yu MH, Miller GW. Formation of δ-aminolevulinic acid in etiolated and iron stressed barley. Journal of Plant Nutrition, 1982, 5: 1259-1271.
    243.Zettler ER, Olson RJ, et al. Iron-enrichment bottle experiments in the Equatorial Pacific: Responses of individual phytoplankton cells. Deep Sea Research, 1996, 43: 1017-1029.
    244.Zhang JH, Liu YP, Pan QH, Zhan JC, Wang XQ, Huang WD. Changes in membrane-associated H+-ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses. Plant Science, 2006, 170:768-777.
    245.Zhuang G, Yi Z, Wallace GT. Iron (II) in rainwater, snow and surface seawater from a coastal environment. Marine Chemistry, 1995, 50: 41-50.
    246.Zhu XR, Prospero JM, Millero FJ. Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at barbados. Journal of Geo- physical Research: Atmospheres, 1997, 102(D17): 21297-21305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700