用户名: 密码: 验证码:
不同水分条件下化感水稻根际功能微生物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用水稻化感作用开发生态安全的稻田生物除草技术是当今农业生态学上的研究热点之一。水稻化感作用特性属于数量性状,受外界环境调控,已有研究表明逆境胁迫下水稻化感作用潜力增强。研究者已有从水稻体出发揭示了其生理与分子生物学机理,但对逆境下化感水稻土壤微生物生态学特性的研究相对较少。在抗逆应答特性上,水稻是干旱胁迫敏感型作物,为此,本文主要利用环境微生物系统生物学的研究思路,运用T-RFLP(末端限制性片段长度多样性)、DGGE(变性梯度凝胶电泳)、土壤蛋白质组学三种技术,以强化感水稻品种PI312777和弱化感水稻品种Lemont为材料,分析旱直播模式和育秧移栽模式下强弱化感水稻根际土壤微生态特性,探讨旱作水稻化感作用增强及其在较强化感作用生育期的特异或高峰度表达的菌群,同时在环境蛋白质研究与化感微生物的研究结合上做了尝试性的工作,即利用土壤蛋白质组学研究揭示其功能蛋白。主要结果如下:
     (1)T-RFLP结果显示,旱直播栽培模式和育秧移栽模式下,不同叶龄期(5叶期和7叶期)的强、弱化感水稻秧苗根际土壤微生物组成存在显著差异。旱直播条件下,强化感水稻的根际土壤微生物多样性要高于弱化感水稻;随着生育期增加,强、弱化感水稻的根际微生物的多样性增加,分别从168种、129种增至424种、169种,强化感水稻的根际微生物的增幅远高于弱化感水稻(252%对比于131%);但在育秧移栽模式条件下,强化感水稻根际土壤微生物多样性要低于弱化感水稻。同时,两种栽培模式下强弱化感水稻的水稻根系微生物有17个共有菌群,占所有鉴定种属的8%,主要涉及氮循环(弗兰克氏菌属)、硫循环(外硫红螺旋菌属)、C循环(甲基单胞菌属)、芳香化合物利用(鞘脂单胞菌属)、利用葡萄糖产酸(微杆菌属、短芽孢杆菌属、孪生球菌属),表明两种水稻在分解次生代谢产物,地理化学循环等方面的根基微生态具有稳定性和保守性。
     (2)T-RFLP片段特异性分析显示,水稻旱直播栽培模式能较强诱导强化感水稻的根际微生物类群发生变化,其中PI7增加了30种特异微生物菌群,涉及粘细菌、产酸产气菌、以及其它菌,其中粘细菌有7个菌属,主要功能为降解大分子、纤维或死细胞,推测粘细菌能够通过破坏土壤种子库中杂草种子细胞,降解种子胚根、胚芽,从而达到抑制土壤种子库中种子萌芽作用效果。产酸产气菌属有7个,功能分析其是一类代谢最终产物为丙酸的菌属,推测其与种植化感水稻的根际微环境偏酸性有关。其他的特异菌属功能尚不明确。
     (3)土壤宏蛋白质组学初步分析结果表明,在旱直播模式下,强化感水稻根际土壤的功能蛋白质种类较弱化感水稻土壤更为丰富,其中强化感水稻根际土壤特异蛋白质增加9个,其中2个为信号诱导蛋白,5个为物质和能量代谢蛋白,2个为基因转录蛋白,而弱化感水稻根际土壤特异蛋白质仅为1个结构组成蛋白。由此推测化感水稻的化感物质进入土壤生态系统中能有效提高某些生物体分泌的诱导蛋白识别能力,提高运动趋向速率,进而通过物质和能量代谢的酶化学作用进行转化,形成具化感作用潜力的次生代谢产物对靶标受体进行作用。
     (4)DGGE检测分析显示,旱直播模式下的强化感水稻的特有条带16经系统发育树分析表明,该条带与鞘脂单胞菌属(uncultured Sphingomonas sp.)同源性较高,该菌属在T-RFLP分析中相对优势度表现差异:PI7:1.1%、PI5:2.1%、PI:2.1%,LE7:检测限以下,LE5:1.6%,LE:0.8%。同时,土壤蛋白质组学分析表明该菌属是化感水稻土壤特异功能蛋白来源微生物。该菌属在土壤中与芳香族化合物的降解有关,也是土壤病原菌之一。推测化感物质分泌出较多的芳香族化合物,鞘脂单胞菌属在化学趋化作用下富集,可影响伴生杂草的生长发育,甚至致病于伴生杂草,从而形成化感水稻的抑草作用,但其对伴生杂草的作用机制还有待进一步研究。
     综上所述,两种栽培条件下,强弱化感水稻土壤根际在分解次生代谢产物,地理化学循环方面的微生物具有保守性。旱直播条件能够能较强诱导强化感水稻的根际微生物生长,其中粘细菌对强化感水稻特异性强,推测化感作用与其降解大分子从而影响杂草种子胚根、胚芽的生长有关。此外,鞘脂单胞菌属在化感水稻各个生育期和栽培模式下均存在,推测与其植物致病性及释放相关功能蛋白有关。
Using the trait of rice allelopathy to develop a kind of safe and environment-friendly technology to control field weeds is one of the current hot topics in agroecology research field. As a quantitative trait, the characteristic of rice allelopathy is easily induced by the external stressful environment conditions, which had been proved by many literatures. However, the research works were done to explore the mechanism in views of plant physiology and molecular biology, and less on soil microbial ecology. At the same time, in the responds of the stress-resistant, rice is sensitive to the drought. Hereby, the study focuses on the functional microbials of allelopathic potential in allelopathic rice rhizosphere by contrasting the microbial divisity in the strong allelopathic rice and weak allelopathic rice at seven leaf stage under dry directly sowing and seedling transplanting conditions from the system biology angle, and modern molecular methods polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)、terminal restrain fragment length polymorphism (T-RFLP) and metaproteomics were applicated to reveal the diversity of the rhizosphere micrbial. The main results were summarized as follows.
     (1)The results of T-RFLP showed that under dry directly sowing and seedling transplanting conditions, microbial diversity and structure in the different rice soils were significant different. Under dry directly sowing condition, either at the five leaf stage or seven leaf stage, the diversity of microorganisms in allelopathic rice PI312777 rhizosphere were higher than that of the non-allelopathic rice Lemont rhizosphere. And in the development of rice from 5-leaves to 7-leave the number of microbial species of PI312777 range 168 to 424, whereas Lemont range 129 to 169. The range of increase of rhizosphere microorganisms of allelopathic rice accession was greater than non-allelopathic rice accession (252% to 131%). However, the opposite results were showed under seedling transplanting condition. The range of variation of rhizosphere microorganisms of allelopathic rice accession was weaker than non-allelopathic rice accession. Meanwhile, 17 kinds of microbial floras were showed on all test sample in addition to control treatment, accounting for 8% of the total identified species, and of which, majority refer to nitrogen cycle (Frankia.), sulfur cycle (Ectothiorhodospira.), C cycle (Methylomonas.), the utilization of aromatic compounds (Sphingomonas.), the use of glucose to producing acid (Microbacterium., Brevibacillus., Gemella.). Those were indicated that it is high similarity at the decomposition of secondary metabolites, geo-chemistry cycles of micro-organisms under two cultivation conditions.
     (2)The results of specificity by T-RFLP showed that the dry condition had a strong stimulating effect to rhizosphere microorganisms of allelopathic rice accession. The unique 30 genuses were appeared in PI7. And they could be divided into three functional categories: Myxobacteria, bacteria producing acid & gas and un-detected species. Myxobacteria which seven generas had been showed could decompose polymer, fiber, and dead cells. It suggested that Myxobacteria might play an important role on rice allelopathy through its destruction of weeds seeds in soil seed bank, degradate the seed radicle, embryo that could inhibit the seed germination in soil. The producing acid bacteria and gas contained seven generas which suggested that the soil of allelopathice rice accession was acidic micro-environment.
     (3)The results of specificity by metaproteimics showed that the diversity of function protein appearing in allelopathic rice accession soil were greater than in non-allelopathic rice accession soil under dry directly sowing condition. There are 9 kinds of functional specific protein in allelopathic rice soil, of which 2 were signal-induced proteins, 5 were the material and energy metabolism-related proteins, 2 were gene transcriptional regulation-related proteins, while functional protein-specific of non-allelopathic rice was only one kind which was a structural protein. The result showed that, the root of allelopathic rice exudates allelochemical to the soil ecosystem,thereby the allelochemical induced the functional microbial to secret protein, which raise campaigns trend, further by some material and energy metabolic enzymes converting to allelochemical which was a sense of secondary metabolites, and the final metabolites affected the target receptor.
     (4)The results of DGGE showed that, under dry directly sowing condition, the band 16 appeared only in the soil of allelopathy rice accession, further the results of the phylogenetic analysis showed that it was high homology with uncultured Sphingomonas. sp., which was significant different on analysis of the dominance genus level by T-RFLP. The abundance of test sample are 1.1%(PI7)、2.1%(PI5)、2.1%(PI), non-detection in LE7, 1.6%(LE5)(     All in all, there was similarity in some sense at the decomposition of secondary metabolites, geo-chemistry cycles of micro-organisms under two cultivation conditions. However, dry directly sowing condition could induce the microbial and develop a higher diversity in the rhizosphere microorganisms of allelopathic rice accession than that of non-allelopathic rice. The Myxobacteria was specific in the soil of allelopathy rice accession. It suggested that Myxobacteria played an important role on rice allelopathy through its destruction of weeds seeds in soil seed bank, degradation of the seed radicle, embryo that inhibited the seed germination in soil. Moreover, the genus of Sphingomonas. was available in all test soils except LE7, and the abundance of Sphingomonas.was higher under the two cultivation conditions than that of non-allelopathic rice The explanation of those phenomena is for its function of plant pathogenicity and the related-function protein exudated from Sphingomonas.
引文
[1]程式华,李建.现代中国水稻[M].金盾出版社, 2007.
    [2]周建群.水稻栽培方式研究进展[J].湖南农业科学, 2009,(2):51-54.
    [3]王熹.革新稻作技术维护粮食安全与生态安全[J].中国农业科学, 2006, 39(10):1984-1991.
    [4]程魁,李明.水稻直播栽培技术[J].现代农业科技, 2007,19: 41-41.
    [5]贾忠建.水稻直播田杂草发生及防除综合治理[J].农药研究与应用.
    [6] Khanh T. D., Chung M. I., Xuan T. D.. The Exploitation of Crop Allelopathy in Sustainable Agricultural Production[J]. J. Agronomy & Crop Science, 2005, 191: 172-184.
    [7] Tran Dang Xuan, Tawata Shinkichi, Tran Dang Khanh, et al. 2005. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview[J]. Crop Protection ,24: 197–206.
    [8]林文雄.水稻化感作用[M].厦门:厦门大学出版社. 2005.
    [9] Dilday R. H.,Nastasi P., Smith R. J.. Allelopathic observation in rice to ducksalad[J]. Proceedings of Arkansas Academy of Science, 1989, 43:21-22.
    [10] Olofsdotter M, Jensen L B, and Courtois B. Improving crop competitive ability using allelopathy-an example from rice[J]. Plant Breeding. 2002, 121:1-9.
    [11] Travis S. Walker, Harsh Pal Bais, Erich Grotewold, and Jorge M. Vivanco. 2003. Root Exudation and Rhizosphere Biology[J] , Plant Physiology, 132: 44–51.
    [12] Tiffany L Weir, Sang-Wook Park, Jorge M Vivanco, 2004. Biochemical and physiological mechanisms mediated by Allelochemicals[J]. Current Opinion in Plant Biology. 7:472–479.
    [13] Kim S Y, Madrid A V, Park S T, Yang S J, Olofsdotter M.. Evaluation of rice allelopathy in hydroponics[J]. European Weed Research Society Weed Research. 2005, 45, 74–79.
    [14] Inderjit. 2006. Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study[J]. Soil Biology & Biochemistry, 38: 256–262.
    [15] Chou CH, Linh J. auto in toxication mechanism of oryza sativa l. phytotoxic effects of decomposing rice residues in soil [J]. Journal chemical ecology, 1976, 2(3):353-367.
    [16] Chou CH, Chang FJ, Oka HI. Allelopathic potentials of wild rice, oryza perennis[J]. Taiwania, 1991, 36(3):201-210.
    [17] Haeean S. M., Aidy I. R., Bastawisi A. O., Draz A. E.. Weed management using allelopathic rice varieties in Egypt. In“Allelopathy in Rice”(ed. By Olofsdotter, M.)[J]. International Rice Research Institute. P. 27-37.
    [18] Kim K.U. and Shin D.H.. Rice allelopathy research in Korea. In“Allelopathy in Rice”(ed. By Olofsdotter, M.)[J]. International Rice Research Institute. P. 39-42.
    [19]王大力,马瑞霞,刘秀芬.水稻化感抗草种质资源的初步研究[J].中国农业科学, 2000, 33(3): 94-96
    [20]汤陵华,孙加祥.水稻种质资源的化感作用[J].江苏农业科学, 2002,第一期.
    [21]徐正浩,余柳青,赵明,等.水稻与无芒稗的竞争和化感作用[J].中国水稻科学, 2003,17(1):67-72.
    [22]沈荔花,梁义元,何华勤,等.水稻化感生物测试方法的比较及应用[J].应用生态学报, 2004, 9(18):1575-1579.
    [23]何华勤,林文雄,粱义元,等.应用差异蛋白组学方法分析作物化感作用的分子机理[J].生态学报, 2005, 25(12):3141-3145.
    [24] Song B Q, Xiong J, Fang C X, et al. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment[J]. J Chem Ecol, 2008, 34(5):688-695.
    [25] Fang C X, Xiong J, Qiu L, et al.. Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid[J]. Plant Growth Regul(2009) 57:163-172.
    [26] Weston L. A., Duke S.O.. Weed and crop allelopathy[J]. Critical reviews in plant sciences, 2003, 11:367-389.
    [27] Kuwatsuka, Shindo. Behavior of phenolic substances in the decaying process of plants : Identification and Quantitative Determination of Phenolic Acids in Rice Straw and Its Decayed Product by Gas Chromatography[J]. Soil science and plant nutrition. 1973, 19(3): 219-227.
    [28] Chou C H. Adaptive autointoxication mechanisms in rice[J]. In : Olofsdotter M ed. Allelopathy in Rice. IRRI, Manila,Philippines. 1998, 99-116.
    [29] Olofsdotter M, Navarez D, Moody K. Allelopathic potential in rice(Oryza sativa L.) germplasm[J]. Annuals of Applies Biology, 1995, 12:543-560.
    [30] Mattice J., Lavy T., Skulman B., Dilday R.. Searching for allelochemicals in rice that control ducksalad. In“Allelopathy in Rice”(ed. By Olofsdotter, M.)[J]. International Rice Research Institute. P. 81-98.
    [31] Kim K.U, Shin DH. Allelopathy in Taegu(Korea)[M]. Korea: Kyungpook National University. 2000.
    [32] Chung I. M., Kim K. H., Ahn J. K., et al.. Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts[J]. Crop Protection, 2002, 21(10): 913-920.
    [33] Kong CH, Xu XH, Zhou B, et al.. Two compounds from allelopathic: rice accession and their inhibitory effects on weeds and fungal pathogens [J]. Phytochemistry, 2004, 65:1123-1128.
    [34] He H B, Lin W X, Wang H B, et al. Analysis of metabolites in root exudates from allelopathic and non allelopathic rice seedling[J]. Allelopathy J, 2006, 18(2): 247–256.
    [35] Daizy R. Batish, Shalinder Kaur, Harminder Pal Singh, Ravinder Kumar Kohli. Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa)[J]. Flora - Morphology, Distribution, Functional Ecology of Plants, 2009, 5:388-395.
    [36]梁文举,张晓珂,姜勇,等.根分泌的化感物质及其对土壤生物产生的影响[J].地球科学进展, 2005, 20(3):330-337.
    [37] John T. Romeo. Raising the Beam: Moving Beyond Phytotoxicity[J]. J.Chem.Ecol. 2000, 26:2011–2014.
    [38] Einhellig F A. Interactions involving allelopathy in cropping system[J]. Agronomy Journal, 1996, 88:886-893.
    [39]邱龙,王海斌,熊君,等.外源水杨酸调控水稻化感抑草作用及其分子生理特性[J].应用生态学报, 2008,19(2):330-336.
    [40]孔垂华.植物化感作用研究中应注意的问题[J].应用生态学报,1998,9(3):332-336.
    [41]张开梅,石雷,李振宇.蕨类植物的化感作用及其对生物多样性的影响[J].生物多样性, 2004, 12(4):466-471.
    [42]高凤华,张洪亮,王海光,等.应用cDNA-AFLP比较干旱胁迫条件下水稻和旱稻转录本表达谱[J].科学通报, 2009,54(16):205-2319.
    [43] Nguyen T T, Klueva N, Chamareck V, et al. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice[J]. Mol Genet Genomics, 2004, 272: 35—46.
    [44] Qu Y Y , Mu P , Zhang H L . Mapping QTLs of root morphological traits at different growth stages in rice[J]. Genetica, 2008, 133:187-200.
    [45] Yue B, Xue W, Luo L, et al. Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.)[J]. J Genet Genomics, 2008, 35: 569—575.
    [46]孙小霞.田间旱育条件下水稻化感抑草效应及其根际微生物特性[D].福建农林大学博士学位论文. S512.
    [47] Fujii Y, Akihiro F. Syuntaro H. Rhizosphere soil method: a new bioassay to evaluate allelopathy in the field[J]. Proceedings and selected papers of the fourth world congress on allelopathy. 2004:490-492.
    [48] Lyn Abbott, Daniel Murphy. Soil biological fertility:A key to sustainable land use in agriculture[EB/OL],soil biology basis profitable & sustainable primary industries, www.dpi.nsw.gov.au. 2003.
    [49] Philippe Hinsinger, Claude Plassard, Benoit Jaillard. Rhizosphere: A new frontier for soil biogeochemistry[J]. Journal of Geochemical Exploration, 2006, 88: 210– 213.
    [50] S. K. Schmidt. Ecological implications of the destruction of juglone (5-hydroxy-l,4-naphthoquinone) by soil bacteria[J]. Journal of Chemical Ecology, 1990, 3547-3549.
    [51] Levy E, Carmeli S. Biological control of plant pathogen by antibiotic-producing bacteria[J]. In Allelopathy: Organisms, Processes and Applications. Eds. Inderjit, K M, M Dakshini and F A Einhellig. pp.300–309. American Chemical Society, Washington, DC.
    [52] Blum, U. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions[J]. J. Chem. Ecol. 1998, 24:685-708.
    [53] Travis S. Walker, Harsh Pal Bais, Erich Grotewold, Jorge M. Vivanco. Root Exudation and Rhizosphere Biology[J]. Plant Physiology, 2003, 132: 44–51.
    [54] Harsh P. Bais, Tiffany L. Weir, Laura G. Perry, et al.. The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms[J]. Annu. Rev. Plant. Biol. 2006, 57:233-266.
    [55]胡开辉,罗庆国,林文雄,等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2005,17 (6):1060-1064.
    [56]赵华,谷岩,孔垂华.水稻化感品种对土壤微生物的影响[J].生态学报, 2006,26(8):2770-2773.
    [57]林瑞余,戎红,周军建,等.苗期化感水稻对根际土壤微生物群落及其功能多样性的影响[J].生态学报, 2007, 27(9):3644-3654.
    [58]林瑞余,于翠平,戎红,等.苗期不同化感潜力水稻根际土壤酶活性分析[J].中国农业生态学报, 2008, 16(2):302-306.
    [59]李海波,孔垂华.水稻和稗草共生土壤微生物生物量碳及酶活性的变化[J].应用生态学报, 2008, 19(10):2234-2238.
    [60] Kong, C.H., Wang P., Zhao H., et al.. Impact of allelochemical exuded from allelopathic rice on soil microbial community[J]. Soil Biology and Biochemistry, 2008, 40(7):1862-1869.
    [61] Jennifer L. Kirk, Lee A. Beaudette, Miranda Hart, et al.. Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods, 2004, 58:169–188.
    [62]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA的提取[J].农业环境科学学报, 2005, 24(5): 854-860.
    [63]张于光,李迪强,王慧敏,肖启明.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报, 2005, 16(5): 956-960.
    [64] Dong D X, Yan A, Liu H M, et al.. Removal of humic substances from soil DNA using aluminium sulfate[J]. Journal of Microbiological Methods, 2006, 66(2):217-222.
    [65]李钧敏,金则新.一种高效可直接用于PCR分析的土壤总微生物DNA抽提方法[J].应用生态学报, 2006,17(11):2107-2111.
    [66] Rodriguez-Valera F.. Environmental genomics, the big picture?[J] FEMS Microbiol Lett, 2004, 231(2): 153?158.
    [67] Wilmens P, Bond P L. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to amixed community of prokaryotic microorganism[J]. Environ Microbiol, 2004, 6(9): 911?920.
    [68] Wilmes P, Wexler M, Bond P L. Metaproteomics provides functional insight into activated sludge wastewater treatment[J]. PLoS ONE, 2008, 3(3): e1778.
    [69] Schulze W X, Gleixner G, Kaiser K, et al.. A proteomic fingerprint of dissolved organic carbon and of soil particles[J]. Oecologia, 2005, 142: 335?343.
    [70] Ram R J, VerBerkmoes N C, Banfield J F, et al.. Community proteomics of a natural microbial biofilm[J]. Science, 2005, 308:1915-1920.
    [71]吴谋胜,彭宣宪.采用蛋白质组学方法研究嗜水气单胞菌的生长代谢[J].水产学报, 2002,26(1): 42-46.
    [72] Singleton I, Merrington G, Colvan S, Delahunty J S. The potential of soil protein-based methods to indicate metal contamination[J]. Appl Soil Ecol, 2003, 23:25-32.
    [73] Akifumi Murase, Masaki Yoneda, RisaUeno. Isolation of extracellular protein from greenhouse soil[J]. Soil Biology & Biochemistry, 2003, 35:733–736.
    [74] Ogunseitan O.A.. Direct extraction of proteins from environmental samples[J]. Journal of Microbiological Methods, 1993, 17:273-281.
    [75] Benndorf D, Balcke G U, Harms H, et al.. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater[J]. ISME J, 2007, 61(9): 570?577.
    [76] Chen S N, Matthias C., Rillig, Wang W. Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection [J]. Proteomics, 2009, 9,1–4.
    [77] Erin B.Taylor, Mark A.Williams. Microbial Protein in Soil: Influence of extraction method and C amendment on extraction and recovery[J]. Microb Ecol. Publish online. 2009.
    [78] Paul Wilmes, Philip L. Bond. Metaproteomics: studying functional gene expression in microbial ecosystems[J]. TRENDS in Microbiology, 2006,14(2):92-97.
    [79]于仁涛,高培基,韩黎,黄留玉.宏蛋白质组学研究策略及应用[J].生物工程学报, 2009,25(7):961-967.
    [80] Naoise Nunan, Timothy J.Daniell, Brajesh K.Singh, et al.. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques[J]. Applied And Environmental Microbiology, 2005, Nov.6784–6792.
    [81] Kornelia Smalla, Miruna Oros-Sichler, Annett Milling, et al.. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16SrRNA gene fragments: Do the different methods provide similar results?[J] Journal of Microbiological Methods, 2007, 69:470–479.
    [82]林文雄,郑履端,潘增铣.水稻旱育高产栽培原理和技术[M].福州:福建科学技术出版社. 1999.
    [83] Liu W T, Marsh T L, Cheng H, et a1.. Characterization of microb diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Appl Environ Microbiol, 1997, 63:4516-4522.
    [84]方晓梅,张利平.粘细菌生态多样性的初步研究[J].生物多样性, 2001, 9(3):207-213.
    [85] http://www.hudong.com/wiki/%E7%B2%98%E7%BB%86%E8%8F%8C.
    [86] http://baike.baidu.com/view/1458397.html?fromTaglist.
    [87]丁维新,蔡祖聪.土壤甲烷氧化菌及水分状况对其活性的影响[J].中国农业生态学报, 2003, 11(1): 94-97.
    [88]中国科学院南京土壤研究所微生物室编著.土壤微生物研究法[M].北京:科学出版社, 1985, 1-347.
    [89]张国林,王三英.采用比较蛋白质组学方法研究p38激酶对239T细胞蛋白质表达的影响[J].厦门大学学报, 2005,44:123-127.
    [90] http://www.hudong.com/wiki/%E6%A0%B9%E9%99%85%E5%BE%AE%E7%94%9F%E7%89%A9.
    [91]郝大程,陈士林,肖培根.基于分子生物学和基因组学的植物根际微生物研究[J].微生物学通报. 2009, 36(6): 892~899.
    [92] http://www.cas.cn/kxcb/kpwz/201001/t20100105_2721943.shtml.
    [93] Torsvik,V.,Sorheim,R.,Goksoyr,J.. Total bacterial diversity in soil and sediment communities-a review. J. Ind. Microbiol, 1996, 17:170–178.
    [94]刘新利,李越中.粘细菌次级代谢产物及其在农业上的应用价值[J].中国农业科技导报, 2009, 9(3):44-51.
    [95] Wolfgang Dawida. Biology and global distribution of myxobacteria in soils[J]. FEMS Microbiology Reviews, 2000, 24(4):403– 427.
    [96]李艳利,张荫雷,刘迎,马中良.一株新粘细菌生物学性质的研究[J].微生物学通报, 2008, 35(12):1888-1891.
    [97]孙军德,魏雅冬,佟德利等.溶藻细菌对青苔的防除效果研究[J].沈阳农业大学学报2009,40(4): 439-443.
    [98]闫章才.溶纤维素粘细菌的分离纯化、分类、及降解纤维素机理的研究[D] ,山东大学博士学位论文,2003.
    [99] www.cqvip.com和www.google.com.关键词:种子萌发粘细菌.
    [100]胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J].应用与环境生物学报, 2007,13(3):431-437.
    [101] Ogunseitan O A. Microbial diversity[J]. BlackwellScience, Oxford, UK, 2005, pp292.
    [102] John S. Parkinson. Signal transduction schemems of bacteria[J]. Cell, 1993,73:857-871.
    [103]张宏一,朱志华.植物干旱诱导蛋白研究进展[J].植物遗传资源学报, 2004,5(3):268-270.
    [104] Hamgman K E, Porcella S F, Popova TG, et al.. Evidence for a methyl-accepting chemotaxis protein gene (mcp1) that encodes a putative sensory transducer in virulent Treponema pallidum[J]. Infection and Immunity, 1997, 65(5): 1701-1709.
    [105] Meike Goenrich, Stefan Bartoschek, Christoph H. Hagemeier, et al.. A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy[J]. Journal of Biological Chemistry, 2001, 277: 3069-3072.
    [106]张强,曲媛媛,周集体,等.芳香化合物羟基化酶研究进展[J].应用与环境生物学报, 2009,15(4):540-545.
    [107] http://en.wikipedia.org/wiki/Phosphomannomutase.
    [108] Laurent Claret, Susannah R. Calder, Matthew Higgins, et al.. Oligomerization and activation of the Flil ATPase central to bacterial flagellum assembly[J]. Mol Microbiol. 2003, 48(5): 1349–1355.
    [109] E Burton, J Selhub, and W Sakami. The substrate specificity of 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase[J]. Biochem J. 1969, 111(5): 793–795.
    [110] Claiborne Fuqua W., Stephen C. Winans, E. Peter Greenberg. Quorum Sensing in Bacteria: the LuxR-LuxI Family of Cell Density-Responsive Transcriptional Regulators[J]. Journal of bacteriology, Jan. 1994, 269-275.
    [111]孔垂华,胡飞.植物化感作用(相生相克)及其应用[M].中国农业出版社, 2001.
    [112]张淑香,高子勤.连作障碍与根际微生态研究Ⅱ.根际分泌物与酚酸物质[J].应用生态学报, 2000,11(1):152-156.
    [113]廖微,张健,杨婉身,等.趋化椒根际土壤化感物质成分分析[J].四川农业大学学报, 2006, 24(1):47-50.
    [114] Tharayil N, Bhowmik PC, Xing BS. Preferential sorption of phenolic phytotoxins to soil: Implications for altering the availability of allelochemicals[J]. Journal of Agricultural and food chemistry, 2006,54(8):3033-3040.
    [115]孔垂华,徐效华,梁文举.水稻化感品种根分泌物种酚酸类化感物质的鉴定与抑草活性[J].生态学报, 2004,24(7):1317-1322.
    [116] Story S P, Kline E L, Hughes T A, et al.. Degradation of aromatic hydrocarbons by Sphingomanas paucimobilis strain EPA505[J]. Archives of Environmental Comtamination and Toxicology. 2004, 47:168-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700