用户名: 密码: 验证码:
微生物法治理滇池水厂藻渣的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来滇池水域严重污染,水体富营养化加剧,常常形成持续周期漫长的水华。水华的爆发不仅带来了严重的生态灾害,同时也给滇池自来水厂带来困扰:在高浓度含藻水的处理过程中,由于藻渣量大而难于处理,经常发生设备堵塞故障。滇池水华藻渣的控制和治理已成为滇池治理的关键课题。目前,除藻方式大体包括三类,一类是单纯的物理除藻,其效果甚微;另一类是化学除藻,该方法虽然效果显著,但容易产生其它的负面影响或造成水质的二次污染;第三类方法就是生物除藻,该种除藻方式具有更为广阔的前景。它充分利用生态系统的食物链或植物群落里的化感作用有效抑制藻类生长。本研究以滇池水华藻渣为研究对象,主要目的是拟通过微生物溶藻作用清除藻渣,处理产生的水经过滇池自来水厂后续处理净化后供水。主要研究内容和结论如下:
     首先,从滇池中取含高浓度藻渣的水样和未爆发水华区域的水样进行藻类多样性调查并从水样中分离后续实验藻种;其次,将滇池水样中的溶藻菌株进行分离纯化、鉴定及酶活测定;再次,利用分离到的溶藻细菌进行溶藻特征试验、溶藻条件优化试验以及溶藻菌之间协同作用试验;最后,提出了清除藻渣的工程应用构想。
     经过研究,得到以下结论:
     (1)无论是春季还是秋季,铜绿微囊藻都是滇池水样中的优势藻。不同季节相比,春季藻类的多样性均明显优于秋季;同一时期滇池水华爆发区域的藻渣样品和未爆发水华区域的水样相比,水华爆发区域藻渣样品中的藻类多样性明显劣于未爆发水华区域的水样。本研究使用在细菌培养基中添加葡萄糖的方法,成功分离到一株藻种,为今后相关的研究提供了实验材料。经研究发现,该藻种叶绿素a在95%冷酒精中680nm处的吸光度值可以代表该藻的细胞数量。
     (2)本实验分别采用以果胶为唯一碳源的液体选择培养基和以藻渣为唯一碳源的固体选择培养基筛选溶藻菌,并设计初步溶藻实验对菌株进行复筛,成功筛选出12株对滇池藻渣具有明显的溶藻效果的菌株。对12株溶藻菌株进行形态学、生理生化以及分子生物学鉴定,结果显示,本研究分离出的12株溶藻菌株分别属于5个属,即类芽孢杆菌属Paenibacillus、芽孢杆菌属Bacillus、假单胞菌属Pseudomonas、梭形杆菌属Lysinibacillus和微小杆菌属Exiguobacterium。对10株菌的酶活进行了测定,结果表示:利用果胶为单一碳源的液体培养基分离出的z02、z05、z08均具有较高的果胶酶活性。此外,通过固体培养基分离出的z03、z07也有很高的果胶酶活性,z02与z07的酶活大致相同但是溶藻效果却有一定差异,酶活性不高的g22、g00、z01、z04、z06也有很好的溶藻效果,说明除果胶酶外还有其它的溶藻物质或溶藻方式存在,细菌的溶藻方式多样,溶藻物质的种类常丰富。
     (3)10株溶藻菌溶藻特征试验结果显示,菌液初始浓度越高,溶藻现象发生的越快、越剧烈。而到了试验末期则不同,这可能是由于菌液浓度高,有机营养的含量也很高,而藻渣中的优势藻铜绿微囊藻可以利用有机营养迅速繁殖,菌液浓度越高藻的繁殖越快。因此,中、低加菌浓度在实验后期的溶藻效果有可能优于高加菌浓度的溶藻效果。温度37℃、摇床转速150r/min、加藻量在2.5%-5%、初始pH为7-8时,是z05溶解藻渣的最佳实验条件; z05菌株传代在三代以内不会造成溶藻效果的下降。在溶解藻渣方面,z03与z05之间有互相促进作用。
     (4)本研究在前期研究的基础上,进一步提出了利用微生物法清除藻渣的工程应用构想,为滇池水厂藻渣处理工艺提供了重要的经验与参考。本研究经进一步研究和试验完善后,其研究成果有望实现工程应用。
In recent years, the water pollution in Dianchi Lake becomes serious, and the eutrophication is intensifying. It often leads to a along period of alga-bloom that in a continuous cycle. The outbreak of the alga-bloom not only leads to serious ecological disaster, but also brings many difficulties to the waterworks of Dianchi Lake. In the treatment process of the water with high concentrations of alga, the incident of equipment plug often occurred because the volume of algal residue is very large and difficult to deal with. The control and management of the algal residue in Dianchi Lake has become a key issue. At present, there are three Methods in the removal of the alga. The first one is purely physical, and its effect is minimal. The second one is chemical, it may produce negative impacts and cause re-contamination, although the effect is remarkable. The third one is biological, and it has a more broadly prospect. It takes advantage of the food chain of ecosystems and the allelopathy of plant communities, to effectively inhibit the growth of alga. The object of this study is the algal residues in Dianchi Lake, and the main purpose is to remove the algal residue by microorganisms. The product of the clean water from the process will be supplied for Kuming, after followed-up treatment of the waterworks of Dianchi Lake. Main contents and conclusions are as follows:
     First of all, algal diversity of water samples which was taken from the algal residue with high concentration of alga and the water samples of the areas where the alga-bloom was not out-breaking were investigated; one of algal species was separated for the follow-up experiment. Secondly, the lytic bacteria strains were isolated and purified from Dianchi Lake, the enzymes’activity of these bacteria was identified. Then, the characteristic test of alga-lying using isolated bacteria, the test on the optimization of alga-lysing and the synergy effect between the alga-lysing bacteria, were carried out. Finally, the engineering applied idea was proposed for removal of algal residue.
     After the study, the conclusions are as follows:
     (1)Whether it is spring or autumn, Microcystis aeruginosa is the dominant algae in Dianchi Lake. Compared in different seasons, the diversity of alga are much better in spring than in autumn; in the same reason, the diversity of alga in water samples which was taken from the algal residue is better than the samples of the areas where the alga-bloom was not out-breaking. In this study, one of algal species was successfully isolated by adding glucose into the medium for bacteria, This can provide a kind of materials for the follow-up test It can be found from the study that the value of absorbance at 680nm of Chlorophyll a of the algal species in 95% cold alcohol can represent the number of the cells of this algal species.
     (2) In this experiment, the alga-lying bacteria were selected by using liquid selection medium with pectin as sole carbon source and solid selection medium with algal residue as the sole carbon source, and the rescreening experiment was designed to reselect alga-lysing strains. Then, 12 strains of alga-lysing bacteria were successfully selected from Dianchi Lake, obviously have strong dissolution of algae. The identification results on morphology、physiological ecology and molecular biology of these strains show that these 12 strains belong to five generas, respectively as Paenibacillus、Bacillus、Pseudomonas、Lysinibacillus and Exiguobacterium. The identification results of enzymes’activity of these bacteria indicated that: z02、z05、z08 which were selected by using liquid selection medium with pectin as sole carbon source have higher pectinase activity. In addition, z03、z07 which were selected by using solid selection medium with algal residue as the sole carbon source also have high pectinase activity. z02 and z07 have the same effect in the pectinase activity, but they have some differences in alga-lysing effect. g22、g00、z01、z04、z06 which pectinase activity are not high, also have a good alga-lysing effect. These study indicate that there are other things or manners existing which can kill algal cells except pectinase, the forms of alga-lysing by bacteria are variety, the type of lysing material is very rich.
     (3) The alga-lysing test results of these 10 bacteria show that, the higher the initial concentration of bacteria is, the faster and more intense lytic phenomenon happens. By the end of the test the situation is different, this may be due to high concentrations of bacteria, a high content of organic nutrients, while the dominant algae Microcystis aeruginosa in algal residue can multiply rapidly by using organic nutrients. The higher the concentration of bacteria is, the faster the alga breed. Therefore, the alga-lysing effect of the medium and low concentration of bacteria may be better than the high concentration of bacteria. Temperature of 37℃、rotation speed of 150r/min、algal residue content of 2.5% -5%、the initial pH of 7-8、are the best experimental conditions by z05 to dissolve the algal residue. The decline of lytic effect will not be caused when z05 passaged less than three generations. In areas of dissolving the algal residue, z03 and z05 can promote each other.
     (4) In this study, the engineering applied idea was proposed for removal of algal residue using microbial method, based on preliminary studies. It provides a lot of experiences and references for the waterworks of Dianchi Lake in treatment process for removing the alga. Improved by further research and testing, the results of this study can be expected to achieve the level of engineering applications.
引文
[1]卢升良.滇池的污染及其控制对策[J].重庆环境科学, 1997, 19(3):1-4.
    [2]彭张兴等.滇池污染状况及对策建议[J].环境科学与管理, 2009, 34(8):29-32.
    [3]吕小玲等.滇池污染现状、趋势及其综合防治对策[J].闽江学院学报, 2002, 23(2):108-111.
    [4]赵不凋等.水体富营养化的形成、危害与防治[J].安徽农学通报, 2007, 13(17):51-53.
    [5]赵生才等.我国湖泊富营养化的发生机制与控制对策[J].地球科学进展, 2004,19(1):62-65.
    [6]李夜光.富营养化水体中N、P浓度对浮游植物生长繁殖速率和生物量的影响[J].生态学报, 2006, 26(2):317-325 .
    [7]程丽巍.水体富营养化成因及其防治措施研究进展[J].环境保护科学, 2007, 33(1):36-39.
    [8]白由路等.农业种植对水体富营养化的影响[J].中国农业资源与区划, 2008, 29(3):67-71.
    [9]张维理等.中国农业面源污染形势估计及控制对策[J].中国农业科学, 2004, 37(7): 1008-1017.
    [10]张梅等.滇池浮游植物种类的动态变化[J].云南大学学报(自然科学版), 2006, 28(1): 73-77.
    [11]连彦峰.农田土壤中磷素流失与水体富营养化[J].河北农业科学, 2008, 12(7):91-93.
    [12]李文霞.水体富营养化与水体沉积物释放营养盐[J].地质通报, 2006, 25(5):602-608.
    [13]李大鹏等.底泥扰动在水体富营养化发展进程中的作用[J].中国给水排水, 2009, 25(14):10-16.
    [14]李文霞.水体富营养化与水体沉积物释放营养盐[J].地质通报, 2006, 25(5):602-608.
    [15]邓晴.滇池流域生态环境现状及保护措施[J].云南环境科学, 1998, 17(3):32-34.
    [16]王海玉.产果胶酶细菌的溶藻作用研究及鉴定[D].云南昆明:云南大学, 2007.
    [17]谢平等.基于贝叶斯公司的湖泊富营养化随机评价方法及验证[J].长江流域资源与环境, 2005, 14(2):224-228.
    [18]王明翠等.湖泊富营养化评价方法及分级标准[J].中国环境监测, 2002 , 18(5):47-49.
    [19]蔡庆华.湖泊富营养化综合评价方法[J].湖泊科学, 1997, 9(1):89-94.
    [20]况琪军等.湖泊富营养化藻类生物学评价与治理研究进展[J].安全与环境学报, 2005, 5(2):87-91.
    [21]付春平.水体富营养化成因分析[J].重庆建筑大学学报, 2005, 27(1):128-131.
    [22]郭怀成.滇池水体富营养化特征分析及控制策略探讨[J].地理科学进展, 2002, 21(5):500-506.
    [23]李志伟等.铜绿微囊藻生长特征及营养盐对其生长的影响[J].水利渔业, 2006, 26(1):65-68.
    [24]王益苍等.微囊藻治理综述[J].科学养殖, 2002, (5): 45-46.
    [25]施玮等.微囊藻毒素毒理学研究综述[J].上海环境科学, 2000, 19(2):82-86.
    [26]王玲玲.水体富营养化的形成机理危害及其防治对策探讨[J].环境研究与监测, 2007, 20(4):33-35 .
    [27]邱雷.蓝藻水华危害初探[J].今日科苑, 2009, (10):267-267 .
    [28]刘瑞翠等.富营养化藻类及其控制方法的探讨[J].青海环境, 2004, 14(2): 89-91.
    [29]许川等.我国水环境微囊藻毒素污染及其健康危害研究[J].癌变-畸变-突变, 2007, 19(3):202-205.
    [30]B. Skocovska, K. Hilscherova, P. Babica, O. Adamovsky, H. Bandouchova, J. Horakova, Z. Knotkova, B. Marsalek, V. Paskova and J. Pikula. Effects of cyanobacterial biomass on the Japanese quail[J]. Toxicon, Volume 49, Issue 6, May 2007, 793-803.
    [31]李效宇等.微囊藻毒素与人类健康关系研究进展[J].中国公共卫生, 2008, 24(8):1016-1017.
    [32]刘洪亮.治理滇池草海水环境的成套技术[J].环境科学研究, 1997, 1(10):1-6.
    [33]朱富寿.蓝藻的生理特性及生态竞争优势[J].生物学教学, 2009, (6):4-7.
    [34]吴庆龙.湖泊蓝藻水华生态遭害形成机理及防治的基础研究[J].地球科学进展, 2008, 23(11):1115-1123.
    [35]秦伯强.太湖生态与环境若干问题的研究进展及其展望[J].湖泊科学, 2009, 21(4):445-455.
    [36]霍守亮等.中国湖泊富营养化防治策略研究[J].环境保护, 2009, (4):16-18.
    [37]邓建明.水华蓝藻暴发的预防与控制技术研究进展[J].水处理技术, 2009, (8):23-26.
    [38]聂发辉.藻型富营养化水体的治理方法[J].中国给水排水, 2006, 22(18):11-15.
    [39]赵军等.水体富营养化的成因及污染沉积物的防控措施研究[J].中国工程咨询, 2007, (7):31-33.
    [40]李小平.美国富营养化湖泊的研究和治理[J].自然杂志, 2002, 24(2):63-68.
    [41]徐大伟.除藻技术的研究进展[J].云南化工, 2007, 34(3):76-79.
    [42]董军等.除藻技术现状分析及瞻望[J].水科学与工程技术, 2007, (4):34-36.
    [43]马国红等.除藻技术应用现状及发展[J].渔业现代化, 2007, 34(4):25-27.
    [44]丁暘等.超声除藻的参数优化及其在太湖除藻中的应用[J].东南大学学报, 2009, 39(2):354-358.
    [45]薛罡等.微絮凝/涤纶高弹丝纤维球过滤工艺除藻试验研究[J].中国给水排水, 2009, 25(7):52-54 .
    [46]彭怡等.气浮法在高含藻原水处理的研究和应用[J].天津化工, 2007, 21(3):59-61.
    [47]赵志伟.气浮工艺强化除藻中试试验研究[J].沈阳大学学报, 2007, 19(2):62-65.
    [48]赵志伟等.预氧化对滦河天津段高藻期藻类的控制效果[J].沈阳建筑大学学报, 2006, 22(4):617-621.
    [49]刘海龙.预臭氧对混凝除藻工艺的影响[J].环境科学与技术, 2009, 32(11):165-168.
    [50]李星.锰铜复合除藻剂灭活铜绿微囊藻效能研究[J].北京理工大学学报, 2009,(10):910-913.
    [51]王晓丽.硫酸盐及其组合除藻的比较分析[J].资源开发与市场, 2008, 24(12):1060-1062.
    [52]和晓荣等.新型除藻剂在滇池富营养化水体治理中的应用[J].昆明理工大学学报, 2007, 32(3):87-90.
    [53]王扬才等.利用鱼类控制蓝藻水华[J].中国水产, 2006, (8):71-80.
    [54]万宏等.讲解稻草对蓝藻生长的抑制作用[J].北京大学学报, 2000, 36(4):485-488.
    [55]郭国强.微囊藻水华的综合防治技术[J].中国水产, 2002, (9):47-48.
    [56]胡洪营等.植物化感作用抑制藻类生长的研究进展[J].生态环境, 2006, 15(1):153-157.
    [57]Keizo. et al. Growth characteristics of virus use as a microbiological control[J]. Microbiology, 1999, 62(2): 898-905.
    [58]Banin E. Penetration of the Coral-bleaching Bacterium Vibrio into patagonica[J]. Environ, 2001, 32(1): 456-478.
    [59]Sigee D. C., Glenn R., Andrews M. J., Bellinger E.G., Butler R.D., Eption H.A.S, Hendry R.D. Biological control of cyanobacteria: principles and possibilities[J]. Hydrobiologia, 2004, 396(2):161-172.
    [60]彭海清等.给水处理中藻类的去除[J].中国给水排水, 2002, 18(2) : 29-31.
    [61]梁恒等.不同水处理工艺流程对除藻效果的影响[J].中国给水排水, 2005, 21(3) : 5-7.
    [62]高健等.传统PAC混凝除藻方法的改进[J].青岛科技大学学报(自然科学版), 2005, 26(2) : 120-123.
    [63]吴洁等.强化混凝-沉淀-砂滤工艺去除海水中藻类的试验研究[J].供水技术, 2008, 2(5):231-235.
    [64]安鑫龙等.溶藻微生物的研究方法[J].水利渔业, 2005, (02) : 17-18.
    [65]Krienitz L, Ballot A, Kotut K, et al. Contribution hot spring cyanobacteria to the misterious death of lesser Flamingos at Lake Bogoria Kenya[J]. FEMS Microbio-Ecol. 2003, (43): 141-148.
    [66]Iamura N, I Motoike, N Noda, et al. Argimicin A, a novel anticyanobacterial compound produced by an algae-lysing bacterium[J]. J Antibiotics, 2000, 53(11): 1317 - 1319.
    [67]Lee S, Kato J, Takiguchi N, et al. Involvement of an extracellular protease in Algicidal activity of the marine bacterium Pseudoalteromonassp strainA28[J]. Appl Environ Microbiol, 2000 , 66 (1) : 4334 -4339.
    [68]BANIN E, KHARE S K, NAIDER F, et al. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae[J]. Appl Environ Microbiol, 2001, 67(4): 1536-1541.
    [69]彭超等. 3株溶藻细菌的分离鉴定及其溶藻效应[J].环境科学研究, 2003, (1): 37-56.
    [70]郑小平等.一株溶藻细菌的分离鉴定及其溶藻效应初探[J].淮海工学院学报(自然科学版), 2005, (1):69-71.
    [71]裴海燕等.一株溶藻细菌的溶藻特性及其鉴定[J].中国环境科学, 2005, 25(3): 283-287.
    [72]李小彩等.一株溶藻细菌(P15)的溶藻效应研究[J].中国给水排水, 2006, 22(19):8-11.
    [73]裴海燕等.一株溶藻细菌的分离鉴定及其溶藻特性[J].环境科学学报, 2005, 25(6) :796– 802.
    [74]陈凤兰等.利用栗褐芽孢杆菌除藻的试验研究[J].中国环境管理干部学院学报, 2006, (3): 52-53.
    [75]赵传鹏等.溶微囊藻菌的分离与溶藻作用[J].东南大学学报(自然科学版), 2005, (04): 602-606.
    [76]吴为中等.溶藻细菌(B_5)的溶藻效果与溶藻特性的初步研究[J].北京大学学报(自然科学版), 2003, (04): 489-493.
    [77]吴刚等.溶藻细菌研究的最新进展[J].环境科学研究, 2002 , 15(5) :43-46.
    [78]尹雯等.含氯化合物对滇池藻渣性状的影响研究[J].云南大学学报(自然科学版), 2006, 28(2): 153-156.
    [79]林敏等.三株溶藻细菌溶藻活性代谢产物的初步研究[J].生态环境, 2007, 16(2): 358-362.
    [80]史顺玉等.细菌溶藻的初步研究[J].水生生物学报, 2004 , 28(2) : 219-221.
    [81]Spears Bryan, Carvalho Laurence, Perkins Rupert, Kirika Alex, Paterson David, Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release[J]. Hydrobiologia, 2007, 584(1): 37-48.
    [82]Catherine Bernard, Paul Monis , Peter Baker. efficiency of two techniques assessed using an image analysis system Journal of Applied Phycology [J]. Disaggregation of colonies of Microcystis, 2004(16): 117–125.
    [83]Mar′ia valeria, Am’e daniel, Alberto wunderlin. Effects of iron, ammonium and temperature on microcystin content by a natural concentrated microcystis aeruginosa population[J]. Water, Air, and Soil Pollution, 2003, 168 (4):235-248.
    [84] Vardaka Elisabeth, Tryfon Eleni. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, microcystis aeruginosa and Cylindrospermopsis raciborskii Moustaka-Gouni, Maria[J]. Hydrobiologia, 2007, 575(1) : 129-140.
    [85]Shen Hong, Song Lirong, Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming microcystis[J]. Hydrobiologia, 2007, 592(1): 475-486.
    [86]毕列爵,胡征宇.中国淡水藻志第八卷[M].北京:科学出版社, 1988.
    [87]周凤霞主编.淡水微型生物图谱[M].北京:化学工业出版社, 2005.
    [88]郭俊涛主编.微生物的鉴别与图谱[M].北京:人民卫生出版社, 2007.
    [89]班海群等.微囊藻的分离纯化培养及产毒特性鉴定[J].卫生研究, 2007, 36(4):393-397.
    [90]周银环等.微藻的分离技术及其应用[J].河北渔业, 2007, (5):43-45.
    [91]宋玉凤等.螺旋藻的奋力筛选即培养条件的选择[J].基因组学与应用生物学, 2009, 28(2):335-338.
    [92]张巍等.松嫩平原盐碱化土壤蓝藻的分离鉴定[J].氨基酸和生物资源, 2008, 30(1):13-17.
    [93]王海玉等.溶藻细菌W-04的筛选及溶藻效果初探[J].中国农学通报, 2009, (20):267-271.
    [94]邓建明等.溶微囊藻细菌的富集筛选及其菌群结构特征[J].微生物学通报, 2009, 36(8):1130-1136.
    [95]毛季琨主编.微生物学实验[M].北京:中国医药科技出版社, 2007.
    [96]陈峥宏主编.微生物学实验教程[M].上海:第二军医大学出版社, 2008.
    [97]沈萍主编.微生物学实验[M].北京:高等教育出版社, 2007.
    [98]黄秀梨主编.微生物学实验指导[M].北京:高等教育出版社, 2008.
    [99]王小敏等.分光光度计法测定果胶酶活力的方法研究.食品工业科技[J].2007,28(5):227-229.
    [100]张飞等.果胶酶活力的测定方法研究.西北农业学报[J].2004,13(4):134-137.
    [101]顾佳佳等.CXJZ95-198菌株果胶酶活力检测方法研究[J].中国麻业科学, 2006, 28(6):309-312.
    [102]顾燕松等.纺织生物助剂果胶酶活的测定方法[J].纺织科学研究, 2002,13(3):29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700