用户名: 密码: 验证码:
脲、腈和酰胺在超临界醇或醇水混合体系中的醇解反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口的急剧增长、资源的耗竭和工业的快速发展,环境问题日益严重。化学工业生产所带来的污染是当今环境污染的主要来源之一,因此,开发绿色化工技术已成为化学工业发展的必然趋势。
     近几十年来,超临界流体技术作为绿色化工技术的代表之一得到迅速发展,常见的超临界流体包括超临界水、超临界二氧化碳和超临界醇。与超临界水和二氧化碳相比,超临界醇除了具有超临界流体共有的优异传质性能外,还拥有以下3个特性:1、对于需较高操作温度和压力的工艺,超临界醇的操作条件更温和,对设备的腐蚀能力更低,产物的分离与提纯更为简单、节能;2、具有良好的溶解性,可以溶解木质素、纤维素等生物质资源和高分子材料;3、超临界醇既可以作为反应介质,又可以作为反应物参与烷基化反应,避免使用有毒害的烷基化试剂。因此,超临界醇在有机合成、废弃高分子材料回收、生物质资源化和纳米材料的制备等领域得到了广泛应用。
     酯类化合物在化工生产和日常生活中起着重要的作用,可作为医药合成的中间体,也可用于香料、香精、化妆品等的制造。采用传统的醇解反应制取酯类化合物时,存在许多问题,如需要加入强酸作为催化剂,腐蚀反应设备,产物不易分离等,且产物产率较低,反应时间过长。鉴于超临界醇的优势,采用超临界醇的方法有望克服传统方法的弊端,实现提高产物产率和缩短反应时间的目标。
     本论文中我们选取了脲、苯乙腈和己内酰胺作为研究对象,考察了其在超临界醇及醇水混合体系中的醇解制备酯类化合物的反应,并结合实验结果探讨了反应机理。研究内容有望丰富有机反应在超临界醇体系中的基础理论研究,并为工业化生产提供可靠的实验数据。
     具体研究内容如下:
     1.脲在超临界甲醇和乙醇体系中的醇解反应研究
     研究了尿素在超临界甲醇中生成碳酸二甲酯的醇解反应,考察了反应温度、反应时间、甲醇和脲的摩尔比、反应溶液的体积、少量水的添加和反应釜的处理方法对该醇解反应的影响。实验结果表明,在538K、2.0h、甲醇/尿素的摩尔比为14、反应溶液体积为285μL和清洗反应釜的溶剂为丙酮的条件下,得到碳酸二甲酯的最佳产率为98%。在最佳条件的基础上讨论了加入少量的水对该反应的影响。并提出尿素在超临界甲醇中的反应机理。同时也对脲在超临界乙醇中的醇解反应作了比较研究,探讨了反应温度、反应时间、填充气体和不同金属氧化物等对该反应的影响。研究结果表明超临界甲醇的反应活性要优于超临界乙醇。依据实验结果探讨了脲在超临界乙醇中的醇解反应机理。
     2.苯乙腈在超临界甲醇-水、乙醇-水和2-丙醇-水混合体系中的醇解反应研究
     研究了苯乙腈在超临界甲醇-水、乙醇-水和2-丙醇-水的混合体系中的醇解反应。并对反应温度、反应时间和摩尔比等反应条件进行了优化。实验结果表明,苯乙腈在超临界甲醇、乙醇和2-丙醇及水混合体系的醇解反应产物——苯乙酸甲酯、苯乙酸乙酯和苯乙酸异丙酯的最佳产率分别为70%、80%和31%。苯乙腈在甲醇和乙醇中溶解度的差异是导致苯乙酸乙酯的产率比苯乙酸甲酯产率高的根本原因。而2-丙醇在超临界态下的醇盐离子浓度较低,是导致苯乙酸异丙酯产率低的直接原因。依据实验结果探讨了苯乙腈在超临界醇水混合体系中的醇解反应机理。
     3.己内酰胺在超临界乙醇-水混合体系中的醇解反应研究
     研究了己内酰胺在超临界乙醇和水混合体系下的醇解反应,产物为6-氨基-己酸乙酯。考察了反应温度、反应时间、起始反应物的摩尔比和助剂等对产物产率的影响。在573K、2.5h、己内酰胺/水/乙醇的摩尔比为1:56:28和加入少量氯化锡作为催化剂的条件下,6-氨基-己酸乙酯的产率为98%。同时,研究了该反应的动力学特征,得出该反应为二级反应,并根据阿累尼乌斯方程式得出该反应在酸性和碱性条件下的活化能Ea分别为85kJ.mol-1和116kJ.mol-1。根据实验结果提出了己内酰胺在超临界乙醇与水混合体系的反应机理。
With the rapid growth of population, depletion of resources, and the rapid development of industry, the environmental pollution has become more and more serious. The pollution caused by the chemical industry is the main source of today's environmental pollution. The development of green chemical technology has become an inevitable trend of evelopment of chemical industry.
     In recent decades, the supercritical fluid technology as the representative of the green chemical technology obtained the rapid development. The supercritical fluids include the supercritical water, the supercritical carbon dioxide, and the supercritical alcohol. Compared with the supercritical water and carbon dioxide, the supercritical alcohol has the excellent mass transfer performance as well as other supercritical fluids. Besides, it also has the three characters, namely,1. For the technology operated at the high temperature and pressure, the supercritical alcohol has the advantages of the mild operating conditions, reducing the corrosion of the equipment, the simple and energy conservation for the product's purification and separation.2. It has good solubility. In instance, it can be dissolved lignin, cellulose and other biomass resources and polymer materials.3. Supercritical alcohol can be used as reacton medium, and also be used as a reactant in alkylation reaction, which avoid using the toxic alkylation agents. So the supercritical alcohol is widely used in many fields, such as organic synthesis, the waste polymer recycled, the biomass resource, and the preparation of nanoparticles and so on.
     The esters or ester amine compounds plays an important role in the chemical production and daily life, being used as the medicine intermediate and making the spices,flavors, cometics etc. However, there are much drawback to produce these compounds by the conventional methods, such as adding strong acid as catalyst, easy corrosion reaction equipment, difficult separation of products, and low yield. Based on the advantage of supercritical alcohol, it could-resolve the problems to promote the yield and reduce the reaction time.
     In the paper, urea, nitrile and amide are used as subjects. And the alcoholysis of urea, phenylacetonitrile, and caprolactam in supercritical alcohol or alcohol/water system is proposed in order to enrich the application of organic synthesis using supercritical alcohol method and to provide the experimental data and the theoretical basis for the chemical industry.
     The details are given as follows:
     1. Research on the alcoholysis of urea in supercritical methanol and ethanol
     The synthesis of dimethyl carbonate (DMC) from the direct alcoholysis of urea in supercritical methanol system was investigated. The effects of different reaction parameters, such as reaction temperature, reaction time, the molar ratio of methanol/urea, reaction pressure, the volume of reaction solution, the treating reactor and the amount of water on DMC yield were systematically investigated. The-experimental results indicated that the optimal reaction conditions were reaction temperature of538K, time of2h, the molar ratio of methanol/urea of14, and the reactor loading of285μL, respectively. And the DMC yield was98%under the optimal reaction condition. The reaction mechanism of urea in supercritical methanol was proposed. At the same time, the alcoholysis of urea in supercritical ethanol was compared with the alcoholysis of urea in supercritical methanol. The reaction condition, such as CO2(N2or air) loaded into the reactor and metallic oxides on the reaction was further investigated. It suggested that the reactivity of supercritical methanol is better than that of supercritical ethanol. A probable mechanism for alcoholysis of urea in supercritical ethanol was also proposed.
     2. Research on the phenylacetonitrile in supercritical alcohol with little water system
     The alcoholysis of phenylacetonitrile in supercritical methanol, ethanol and2-propanol with little water system was investigated. The effects of various operating conditions, such as the reaction temperature, the reaction time, the molar ratio of phenylacetonitrile/water/methanol or ethanol on product yield were systematically investigated. The experimental results indicated that the yields of methyl phenylacetate, ethyl phenylacetate, and isopropyl phenylacetate are70%,80%and31%, respectively. The solubility parameter of ethanol was close to phenylacetonitrile, but was greatly less than methanol which leaded to the yield of ethyl phenylacetate being higher than that of methyl phenylacetate. The low alkoxide ion concentration in supercritical2-propanol resulted in the low yield of isopropyl phenylacetate. At the same time, a plausible mechanism was proposed for phenylacetonitrile in supercritical methanol, ethanol and2-propanol with little water system.
     3. Research on the caprolactam in supercritical ethanol with water
     The reaction of caprolactam in supercritical alcohol with water system was investigated. The main product was ethyl-6-aminohexanoate. The effects of the reaction temperature, reaction time, molar ratio of reactant/water and additives on the yields of ethyl-6-aminohexanoate were systematically investigated. The optimal yield (98%) was obtained at573K,2.5h, molar ration of caprolactam/water/alcohol of1:56:28and SnCl2as additive. At the same time, the reaction between caprolactam and alcohol was proposed by a lumped kinetic equation as a second-order reaction in supercritical ethanol with water system, and the active energy was obtained according to the Arrhenius equation under the acid and base condition. Based on the experimental results, the reaction mechanism of caprolactam in supercritical ethanol with water was proposed.
引文
[1]刘志敏,张建玲,韩布兴,超临界水中的化学反应,化学进展,2005,17,266-274.
    [2]D. Kusdiana, S. Saka, Effects of water on biodiesel fuel production by supercritical methanol treatment, Biores. Technol.,2004,91,289-295.
    [3]王连鸳,超临界甲醇在化学反应中的应用,清华大学博士论文,2007.
    [4]N. Asahi, Y. Nakamura, Chemical shift study of liquid supercritical methanol, Chem. Phys. Lett.,1998,290,63-67.
    [5]P.E. Savage, S. Gopalan,T.I. Mizan, C.J. Martino; E.E. Brock, Reactions at supercritical conditions:applications and fundamentals, AIChE J.,1995,41, 1723-1778.
    [6]A. Baiker, Supercritical fluids in heterogeneous catalysis, Chem. Rev.,1999,99, 453-473.
    [7]J.R. Hyde, P. Licence, D. Carter, M. Poliakoff, Continuous catalytic reaction in supercritical fluids, Appl. Catal. A.,2001,222,119-131.
    [8]B. Subramaniam, M.A. McHugh, Reactions in supercritical fluids-a review, Ind. Eng. Chem. Process Des. Dev.,1986,25,1-12.
    [9]Tomoharu Oku, Yoshitaka Arita, Takao Ikariya, Continuous chemoselective methylation of m-cresol and phenol with supercritical methanol over solid acid and base metal oxide catalysts, Adv. Synth. Catal.,2005,347,1553-1557.
    [10]D.S. Bulgarevich, K. Otake, T. Sako, T. Sugeta, Y. Takebayashi, C. Kamizawa, D. Shintani, A. Negishi, C. Tsurumi, Kinetics of the N-alkylation by supercritical methanol, J. Supercrit. Fluids,2003,26,215-224.
    [11]T. Kamitanaka, K. Yamamoto, T. Matsuda, T. Harada, Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols, Tetrahedron,2008,64,5699-5702.
    [12]Z.Q. Hou, L.G. Luo, K. Liu, C.Z. Liu, Y.Y. Wang, L.Y. Dai, High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol, Chem. Eng. J.,2014,236,415-418.
    [13]Z.Q. Hou, L.G. Luo, C.Z. Liu, Y.Y. Wang, L.Y. Dai, Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water, Chem. Pap.,2014,68,164-169.
    [14]P.G. Jessop, W. Leitner, Chemical synthesis using supercritical fluids,Wiley-VCH, Weinheim,1999.
    [15]Y. Arai, T. Sako, Y. Takebayashi, Supercritical fluids, Springer, Berlin,2002.
    [16]P.G. Jessop, T. Ikariya, T. Noyori, Homogeneous catalytic hydrogenation of supercritical carbon dioxide, Nature,1994,368,231.
    [17]M.T. Reez, W. Konen, T. Strack, Supercritical carbon dioxide as a reaction medium and reaction partner, Chimia,1993,47,493.
    [18]T. Matsuda, Y. Ohashi, T. Harada, R. Yanagihara, T. Nagasawa, K. Nakamura, Conversion of pyrrole to pyrrole-2-carboxylate by cells of Bacillus megaterium in supercritical CO2, Chem. Commun.,2001,2194-2195.
    [19]P.G Jessop, T. Ikariya, R. Noyori, Homogeneous hydrogenation of carbon dioxide, Chem. Rev.,1995,95,259-272.
    [20]S.P. Gubin, V.I. Menshov, V.M. Kirilets, E.Ya. Plopskii, F. Tehai, Hydrogenation of unsaturated bonds with isopropyl alcohol without catalyst, Izv. Akad. Nauk. SSSR Ser. Khim,1983,2835.
    [21]S.P. Gubin, Supercitical hydrogenation without hydrogen and catalyst:feasibility of the method, Doklad Akad. Nauk.,1995,345,490-492.
    [22]T. Sako, T. Sugeta, K. Otake, N. Nakazawa, M. Sato, Depolymeriation of polyethylene terephthalate to monomers with supercritical methanol, J. Chem. Eng.,1997,30,342-346.
    [23]T. Sako, T. Suzuki, Highly selective and noncatalytic organic synthesis with supercritical alcohol, Chem. Chem. Industry,1999,52,288.
    [24]S. P. Gubin, V. I. Menshov, A. N. Ivanov, F. Tegai, E. Ya. Polpskii, V. M. Kirilets, Alkylation of phenols with methanol without catalyst, Izv. Akad. Nauk. SSSR Ser. Khim.1985,9,2159-2160.
    [25]T. Nakagawa, H. Ozaki, T. Kamitanaka, H. Takagi, T. Matsuda, T. Kitamura, T. Harada, Reaction of supercritical alcohols with unsaturated hydrocarbons, J. Supercrit. Fluids,2003,27,255-261.
    [26]T. Kamitanaka, T. Hikida, S. Hayashi, N. Kishida, T. Matsuda, T. Harada, Direct addition of supercritical alcohols, acetone or acetonitrile to the alkenes without catalysts, Tetrahedron Lett.,2007,48,8460-8463.
    [27]M. Modell, Supercritical water oxidation, in:H. M. Freeman, Standard handbook of hazardous waste treatment and disposal, McGraw Hill, New York,1998, 8153-8168.
    [28]E. F. Gloyna, L. Li, Supercritical water oxidation research and development update, Environ, Environ. Prog.,1995,14,182.
    [29]J.W. Tester, H.R. Holgate, F.J. Armellini, P.A. Webley, W.R. Killilea, G.T. Hong, H.E. Barner, Supercritical water oxidation technology, in:W. D. Tedder, F. G. Pohland (Eds), In Emerging Technology in Hazardous Waste Management, Am. Chem. Soc.,1993,1,35-76.
    [30]J.W. Tester, J.A. Cline, Hydrolysis and oxidation in sub-and supercritical water: connecting process engineering science to molecular interactions, Corrosion, 1999,55,1088-1100.
    [31]P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino, E.E. Brock, Reactions at supercritical conditions:applications and fundamental, AIChEJ,1995,41, 1723-1778.
    [32]P. E. Savage, Organic chemical reactions in supercritical water, Chem. Rev., 1999,99,603-621.
    [33]R.W. Shaw, N. Dahmen, Destruction of toxic organic materials using supercritical water oxidation:current state of the technology, in:E. Kiran (Ed.), Supercritical Fluids, Kluwer Academic Publisher, Netherlands,2000.
    [34]P. Kritzer, E. Dinjus, An assessment of supercritical water oxidation-existing problems, possible solution and new reactor concepts, Chem. Eng. J.,2001,83, 207-214.
    [35]Veriansyah Bambang, Kim, Jae-Duck, Supercritical water oxidation for the destruction of toxic organic wastewaters:A review, J. Environ. Sci.,2007,19, 513-522.
    [36]G.T. Hong, P.K. Fowler, W.R. Killilea, K.C. Swallow, Supercritical water oxidation:treatment of human waste and system configuration tradeoff study, in: Processing of 17th Intersociety Conference on Environmental Systems, Seattle, WA,1987.
    [37]P.A. Webley, J.W. Tester, H.R. Holgate, Oxidation kinetics of ammonia and ammonia-methanol mixtures in supercritical water in the temperature range 530-700℃ at 246 bar, Ind. Eng. Chem. Res.,1991,30,1745-1754.
    [38]M.J. Cocero, E. Alonso, R. Torio, D. Vallelado, F. Fdz-Polanco, Supercritical water oxidation in a pilot plant of nitrogenous compounds:2-propanol mixtures in the temperature range 500-750℃, Ind. Eng. Chem. Res.,2000,39,3707-3716.
    [39]P. Savage, J. Rovira, N. Stylski, C. Martino, Oxidation kinetics for methanol/methanol mixtures in supercritical water, J. Supercrit. Fluids,2000,17, 155-170
    [40]G. Anitescu, V. Munteanu, L.L. Tavlarides, Co-oxidation effects of methanol and benzene on the decomposition of 4-chlorobiphenyl in supercritical water, J. Supercrit. Fluids,2005,33,139-147.
    [41]J.M. Ploeger, P.A. Bielenberg, R.P. Lachance, J.W. Tester, Co-oxidation of methylphosphonic acid and ethanol in supercritical water I:Experimental results, J. Supercrit. Fluids,2006,39,233-238.
    [42]S. Saka, D. Kusdiana, Biodiesel fuel from rapeseed oil as prepared in supercritical methanol, Fuel,2001,80,225-231.
    [43]A. Demirbas, Biodiesel from vegetable oils via transesterification in supercritical methanol, Energ. Convers. Manage.,2002,43,2348-2356.
    [44]B. Freedman, E.H. Pryde, Fatty esters from vegetable oils for use as a Diesel fuel. Proceeding of the International Conference on Plant and Vegetable Oils as Fuels, 1982, p.117-22.
    [45]E.S. Lipinsky, T.A. McClure, C.K. Wagner, S. Kresovich, J.L. Otis, H.R. Applebaum, Proceedings of the International Conference on Plant and Vegetable Oils as Fuels,1982, p.1-10.
    [46]J. Fuls, F.J.C. Hugo. On farm preparation of sunflower oil esters for fuel. Third International Conference On Energy Use Management,1981. P.1595-1602.
    [57]F. Ma, M.A. Hanna, Biodiesel production:a review, Bioresour. Technol.,1999, 70,1-15.
    [48]鞠庆华,郭卫军,张利雄,徐南平,杜泽学,闵恩泽,甘油三乙酸酯超临界酯交换反应及其动力学研究,石油化工,2005,34,1168-1171.
    [49]Y. Warabi, D. Kusdiana, S. Saka, Reactivity of Triglycerides and fatty acids of rapeseed oil in supercritical alcohols, Bioresour. Technol.,2004,91,283-287.
    [50]朱海峰,程健,何寿林,超临界甲醇中的酯交换反应及其动力学,武汉化工学院学报,2006,28,8-15.
    [51]H.Y. He, T. Wang, S.L. Zhu, Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process, Fuel,2007,86,442-447.
    [52]M.M. Gui, K.T. Lee, S. Bhatia, Supercritical ethanol technology for the production of biodiesel:Process optimization studies, J. Supercrit. Fluids,2009, 49,286-292.
    [53]I. Vieitez, C. Silva, I. Alckmin, G.R. Borges, F.C. Corazza, J.V. Oliveira, M.A. Grompone, I. Jachmanian, Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures, Renew. Energ.,2010, 35,1976-1981.
    [54]Y. Yang, Y.J. Lu, H.W. Xiang, Y.Y. Xu, Y.W. Li, Study on methanollytic depolymerization of PET with supercritical methanol for chemical recycling, Polym. Degrad. Stabil.,2002,75,185-191.
    [55]R.E.N. Castro, G.J. Vidotti, A.F. Rubira, E.C. Muniz, Depolymerization of poly(ethylene terephthalate) wastes using ethanol and ethanol/water in supercritical conditions, J. Appl. Polym. Sci.,2006,101,2009-2016.
    [56]T. Goto, S. Ashihara, T. Yamazaki, I. Okajima, T. Sako, Y. Iwamoto, M. Ishibashi, T. Sugeta, Continuous process for recycling silane cross-linked polyethylene using supercritical alcohol and extruders, Ind. Eng. Chem. Res.,2011,50, 5661-5666.
    [57]邵千钧,彭锦星,修树东,文先红,竹子在超临界甲醇中的热解油产物分析,太阳能学报,2007,28,984-987.
    [58]P.D. Patil, V.G. Gude, A.Mannarswamy, P. Cooke, N. Nirmalakhandan, P. Lammers, S.G. Deng, Comparison of direct transesterification of goal biomas under supercritical methanol and microware irradiation conditions, Fuel,2012, 97,822-831.
    [59]J, Miller, L, Evans, A, Littlewolf, D, Trudell, Batch microreactor studies of lignin and lignin model compound depolymerization by base in alcohol solvents, Fuel, 1999,78,1363-1366.
    [60]Z, Tang, Y, Zhang, Q, Guo, Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol, Ind. Eng. Chem. Res.,2010,49,2040-2046.
    [61]M, Nagy, K, David, G, Britovsek, A, Ragauskas, Catalytic hydrogenolysis of ethanol organosolv lignin, Holzforschung,2009,63,513-520.
    [62]S. Cheng, C. Wilks, Z. Yuan, M. Leitch, C. Xu, Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent, Polym. Degrad. Stabil.,2012,97,839-48.
    [63]J. Tsujino, H, Kawamoto, S, Saka, Reactivity of lignin in supercritical methanol studied with various lignin mode compounds, Wood. Sci. Technol.,2003,37, 299-307.
    [64]K, Barta, T, Matson, M, Fetting, S, Scott, A, Iretskii, P, Ford, Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol, Green. Chem.,2012,12,1640-7.
    [65]P. Wang, K. Yokoyama, T. Konishi, N. Nishiwaki, K. Kobiro, Ultimately simple one-pot single-step sunthesis of rare earth doped spherical mesoporous metal oxide nanospheres with upconversion emission ability in supercritical methanol, J. Supercrit. Fluids,2013,80,71-77.
    [66]H. Choi, B. Veriansyah, J. Kim, J.D. Kim, J.W. Kang, Continuous synthesis of metal nanoparticles in supercritical methanol, J. Supercrit. Fluids,2010,52, 285-291.
    [67]C. Slostowski, S. Marre, O. Babot, T. Toupance, C. Aymonier, Near- and supercritical alcohols as solvent and surface modifiers for the continuous synthesis of cerium oxide nanoparticles, Langmuir,2012,28,16656-16663.
    [68]B. Veriansyah, R.F. Susanti, A.Nugroho, B.K. Min, J. Kim, Continuous synthesis of high-surface-area aluminum hydroxide methoxide nano- and microparticles in supercritical methanol and their conversion into γ-Al2O3, Mater. Lett.,2011,65, 772-774.
    [69]A. Nugroho, B. Veriansyah, S.K. Kim, B.G. Lee, J. Kim, Y.W. Lee, Countinuous synthesis of surface-modified nanoparticles in supercritical methanol:A facile approach to control dispersibility, Chem. Eng. J.,2012,193,146-153.
    [70]M. Kim, H.S. Lee, S. J. Yoo, Y.S. Youn, Y.H. Shin, Y.W. Lee, Simultaneous synthesis of biodiesel and zinc oxide nanoparticles, Fuel,2013,109,279-284.
    [1]H.Y. Lin, B.L. Yang, J.J. Sun, X.P. Wang, D.P. Wang, Kinetics studies for the synthesis of dimethyl carbonate from urea and methanol, Chem. Eng. J.,2004, 103,21-27.
    [2]M.H. Wang, H. Wang, N. Zhao, W. Wei, Y.H. Sun, Synthesis of dimethyl carbonate from urea and methanol over solid base catalysts, Catal. Commun., 2006,7,6-10.
    [3]M.A. Pacheco, C.L. Marshall, Review of dimethyl carbonate(DMC) manufacture and its characteristics as a fuel additive, Energ. Fuel.,1997,11,2-29.
    [4]S. Megahed, W. Ebner, Lithium-ion battery for electronic applications, J. Power Sources,1995,54,155-162.
    [5]J.K. Kim, G. Cheruvally, J.H. Ahn, Y.G Seo, D.S. Choi, S.H. Lee, C.E. Song, Organic radical battery with PTMA cathode:Effect of PTMA content on electrochemical properties, J. Ind. Eng. Chem.,2008,14,371-376.
    [6]B.M. Bhanage, S. Fujita, Y. Ikushima, M. Arai, Transesterification of urea and ethylene glycol to ethylene carbonate as an important step for urea based dimethyl carbonate synthesis, Green Chem.,2003,5,429-432.
    [7]M.H. Wang, H. Wang, N. Zhao, W. Wei, Y.H Sun, Synthesis of dimethyl carbonate from urea and methanol over solid base catalysts, Catal. Commun., 2006,7,6-10.
    [8]J.J Sun, B.L. Yang, X.P. Wang, D.P. Wang, H.Y. Lin, Synthesis of dimethyl carbonate from urea and methanol using polyphosphoric acid as catalyst, J. Mol. Catal. A:Chem.,2005,239,82-86.
    [9]M.H. Wang, H. Wang, N. Zhao, W. Wei, Y.H. Sun, High-yield synthesis of dimethyl carbonate from urea and methanol using a catalytic distillation process, Ind. Eng. Chem. Res.,2007,46,2683-2687.
    [10]W. Joe, H.J. Lee, U.G Hong, Y.S. Ahn, C.J Song, B.J. Kwon, I.K. Song, Urea methanolysis to dimethyl carbonate over ZnO-CeO2-MO (MO:La2O3, Y2O3, Co2O3, Ga2O3, and ZrO2) catalysts, J. Ind. Eng.Chem.,2012,18,1730-1735.
    [11]M.H. Wang, N. Zhao, W. Wei, Y.H. Sun, Synthesis of dimethyl carbonate from urea and methanol over ZnO, Ind. Eng. Chem. Res.,2005,44,7596-7599.
    [12]C.C. Wu, X.Q. Zhao, Y.J. Wang, Effect of reduction treatment on catalytic performance of Zn-based catalyst for the alcoholysis of urea to dimethyl carbonate, Catal. Commun.,2005,6,694-698.
    [13]D.P. Wang, B.L. Yang, X.W. Zhai, L.G. Zhou, Synthesis of dimethyl carbonate by catalytic alcoholysis of urea, Fuel Process. Technol.,2007,88,807-812.
    [14]王洪波,祁增忠,夏代宽,氧化锌催化尿素醇解制备DMC的研究[J],工业催化,2005,13(2):29-32.
    [15]赵艳敏,刘绍英,王公应等,尿素法合成碳酸二甲酯的研究进展[J],化工进展,2004,23(10):1049-1052.
    [16]赵新强,邬长城,杨红健,王延吉,尿素与甲醇均相催化合成碳酸二甲酯的研究,化学反应工程与工艺,2002,18(3),200-206.
    [17]K.C. Tomishige, K. Kunimori, Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst:effect of H2O removal from the reaction system, Appl. Catal. A-Gen.,2002,237,103-109.
    [18]Mariko Adachi-Pagano, Claude Forano, Jean-Pierre Besse, Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology, J. Mater. Chem.,2003,13,1988-1993.
    [19]T. Kamitanaka, K. Yamamoto, T. Matsuda, T. Harada, Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols, Tetrahedron,2008,64,5699-5702.
    [20]E.S. Song, J.W. Lim, H.S. Lee, Y.W. Lee, Transesterification of RBD palm oil suing supercritical methanol, J. Supercrit. Fluid.,2008,44,356-363.
    [21]P.G. Duan, S. Li, Y. Yang, Z.Z. Wang, L.Y. Dai, Green medium for the hydrolysis of 5-cyanovaleramide, Chem. Eng. Technol.,2009,32,771-777.
    [22]P.G. Duan, Y.P. Xu, X.J. Bai, Upgrading of crude duchweed bio-oil in subcritical water, Energ. Fuel.,2013,27,4729-4738.
    [23]M.A. Pagano, C. Forano, J.P. Besse, Synthesis of Al-rich hydrotalcite-like compound by using the urea hydrolysis reaction-control of size and morphology, J. Mater. Chem.,2003,13,1988-1993.
    [1]M.F. Karlsson, G. Birgersson, A.M.C. Prado, F. Bosa, M. Bengtsson, P. Witzgall, Plant odor analysis of potato:Response of guatemalan moth to above- and belowground potato volatiles, J. Agr. Food. Chem.,2009,57,5903-5909.
    [2]R.G. Buttery, L.C. Ling, R. Teranishi, Volatiles of corn tassels:Possible corn ear worm attractants, J. Agr. Food. Chem.,1980,28,771-774.
    [3]S. Pinheiro, M.B. Lima, C.B.S.S. Goncalves, S.F. Pedraza, F.M.C. Farias, Control of diasteroselectivity in the aldolization of methyl phenylacetate, Tetrahedron Lett.,2000,41,4033-4034.
    [4]K. Nomura, H. Ogura, Y. Imanishi, Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure, J. Mol. Catal. A:Chem.,2002,178, 105-114.
    [5]M. Periasamy, N.K. Babu, K.N. Jayakumar, A novel arylation of arylacetic acid esters using tertiary arylamines and TiCl4, Tetrahedron Lett.,2003,44,8939-8941.
    [6]M.M. Caruso, B.J. Blaiszik, S.R. White, N.R. Sottos, J.S. Moore, Full.recovery of francture toughness using a nontoxic solvent-based self-healing system, Adv. Funct. Mater.,2008,18,1898-1904.
    [7]J.G Edward, J.H. David, Alcoholysis of aromatic nitriles with polyhydric alcohols, United States Patent Office,2,921,088,1960.
    [8]D. Kusdiana, S. Saka, Effect of water on biodiesel fuel production by supercritical methanol treatment, Bioresource Technol.,2004,91,289-295.
    [9]A. Demirbas, Biodiesel from vegetable oils via transesterification in supercritical methanol, Energ. Convers. Manage.,2002,43,2349-2356.
    [10]E.S. Song, J.W. Lim, H.S. Lee, Y.W. Lee, Transesterification of RBD palm oil using supercritical methanol, J. Supercrit. Fluids.,2008,44,356-363.
    [11]M. Goto, Chemical recycling of plastics using sub- and supercritical fluids, J. Supercrit. Fluids.,2009,47,500-507.
    [12]E.J. Minami, S. Saka, Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process, Fuel,2006,85, 2479-2483.
    [13]T. Kamitanaka, K. Yamamoto, T. Matsuda, T. Harada, Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols, Tetrahedron,2008,64,5699-5702.
    [14]M. Bicker, D. Kaiser, L. Ott, H. Vogel, Dehydration of d-fructose to hydroxymethylfurfural in sub-and supercritical fluids, J. Supercrit. Fluids.,2005, 36,118-126.
    [15]S. Skerget, Z. Knez, M.K. Hrncic, Solubility of solids in sub- and supercritical fluids:a review, J. Chem. Eng. Data.,2011,56,694-719.
    [16]V. Trivedi, R. Bhomia, J.C. Mitchell, N.J. Coleman, D. Douroumis, M.J. Snowden, Study of the effect of pressure on melting behavior of saturated fatty acids in liquid or supercritical carbon dioxide, J. Chem. Eng. Data.,2013,58, 1861-1866.
    [17]D. Kusdiana, S. Saka, Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol, Fuel,2001,80,693-698.
    [18]W.L. Cao, H.W. Han, J.C. Zhang, Preparation of biodiesel from soyben oil using supercritical methanol and co-solvent, Fuel,2005,84,347-351
    [19]K.T. Tan, M.M. Gui, K.T. Lee, A.R. Mohamed, Additive-assisted rupe rearrangement of 1-ethynylcyclohexan-l-ol in near-critical water, J. Supercrit. Fluid.,2010,53,82-87.
    [20]I. Vieitez, C. Silva, I. Alckmin, GR. Borges, F.C. Corazza, J.V. Oliveira, M.A. Grompone, I. Jachmanian, Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures, Renew. Energ.,2010, 35,1976-1981.
    [21]M.X. He, D.C. Feng, F. Zhu, Z.T. Cai, Alcoholysis of N-methyl-1,2-thiazetidine-1,1-dioxide:DFT study of water and alcohol effects, J. Phys. Chem. A.,2004,108,7702-7708.
    [22]P.G. Duan, S. Li, Y. Yang, Z.Z. Wang, L.Y. Dai, Green medium for the hydrolysis of 5-cyanovaleramide, Chem. Eng. Technol.,2009,32,771-777.
    [23]Y.J. Chang, Z.Z. Wang, L.G. Luo, L.Y. Dai, Additive-assisted rupe rearrangement of 1-ethynylcyclohexan-l-ol in near-critical water, Chem. Pap.,2012,66,33-38.
    [24]W. Reeve, C.M. Erikson, P.F. Aluotto, A new method for the determination of the relative acidities of alcohols in alcoholic solutions. The nucleophilicities and competitive reactivities of alkoxides and phenoxides, Can. J. Chem.,1979,57, 2747-2754.
    [25]G. Madras, C. Kolluru, R. Kumar, Synthesis of biodiesel in supercritical fluids, Fuel,2004,83,2029-2033.
    [1]W. Riemenschneider, H.M. Bolt, Esters, organic. In Ullmann's encyclopedia of industrial chemistry.2005, New York, NY, USA:Wiley.
    [2]Z. Wirpsza, Elastic phenol-urethane-formaldehyde reins, Polimery-W,1986,31 12-14.
    [3]M.X. He, D.C. Feng, F. Zhu, Z.T. Cai, Alcoholysis of N-methyl-1,2-thiazetidine-1,1-dioxide:DFT study of water and alcohol effects, J. Phys. Chem. A.,2004,108,7702-7708.
    [4]T. Kamitanaka, K. Yamamoto, T. Matsuda, T. Harada, Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohol, Tetrahedron,2008,64,5699-5702.
    [5]E.S. Song, J.W. Lim, H.S. Lee, Y.W. Lee, Transesterification of RBD palm oil using supercritical methanol, J. Supercrit. Fluids.,2008,44,356-363.
    [6]I.M. Abdulagatov, A.R. Bazaev, E.A. Bazaev, M.B. Saidakhmedova, A.E. Ramazanova, Volumetric properties of near-critical and supercritical water+ pentane mixtures:Molar, excess, partial, and apparent volumes, J. Chem. Eng. Data.,1998,43,451-458.
    [7]M. Bicker, S. Endres, L. Ott, H. Vogel, Catalytical conversion of carbohydrates in subcritical water:A new chemical process for lactic acid production, J. Mol. Catal. A:Chem.,2005,239,151-157.
    [8]Y.J. Chang, Z.Z. Wang, L.G. Luo, L.Y. Dai, Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water, Chem. Pap.,2012,66,33-38.
    [9]A.M. Diez Pascual, A. Compostizo, A. Crespo-Colin, R.G. Rubio, Bulk and interfacial properties of a cationic micellar system near the critical point, Chem. Phys.,2007,335,124-132.
    [10]C.C. Kao, O.R. Ghita, K.R. Hallam, P.J. Heard, K.E. Evans, Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water, Compos. Part A:Appl. S.,2012,43,398-427.
    [11]A. Kruse, E. Dinjus, Hot compressed water as reaction medium and reactant: Properties and synthesis reactions, J. Supercrit. Fluids,2007,39,362-380.
    [12]C. Liu, K. Tobita, Hydraulic analysis of the water-cooled blanket based on the sub-critical water condition, Fusion. Eng. Des.,2010,85,979-982.
    [13]J.L. Mi, M. Christensen, C. Tyrsted, K.(?). Jensen, J. Becker, P. Hald, B.B. Iversen, Formation and growth of Bi2Te3 in biomolecule-assisted near-critical water:In situ synchrotron radiation study, J. Phys. Chem. C.,2010,114,12133-12138.
    [14]M.K. Rana, A. Chandra, Solvation structure of nanoscopic hydrophobic solutes in supercritical water:Results for varying thickness of hydrophobic walls, solute-solvent interaction and solvent density, Chem. Phys.,2012,408,28-35.
    [15]M. Watanabe, T. Sato, H. Ionmata, R.L. Smith Jr, K. Arai, A. Kruse, E. Dinjus, Chemical reactions of C1 compounds in near-vritical and supercritical water, Chem. Rev.,2004,104,5803-5822.
    [16]M. Watanabe, T. Iida, Y. Aizawa, T.M. Aida, H. Inomata, Acrolein synthesis from glycerol in hot-compressed water, Bioresource. Technol.,2007,98,1285-1290.
    [17]A.Yuksel, M. Sasaki, M. Goto, Complete degradation of Orange G by electrolysis in sub-critical water, J. Hazard. Mater.,2011,190,1058-1062.
    [18]CM. Comisar, S.E. Hunter, A. Walton, P.E. Savage, Effect of pH on Ether, Ester, and Carbonate Hydrolysis in High-Temperature Water, Ind. Eng. Chem. Res., 2008,47,577-584.
    [19]A.M. Alhanzmi, P.R. Alburquerque, T. Junk, Halogen Exchange in Near-Critical Water, Green. Sustainable Chem.,2011,1,128-131.
    [20]A. Sinag, S. Gulbay, B. Uskan, M. Canel, Biomass decomposition in near critical water, Energ. Convers. Manage.,2010,51,612-620.
    [21]J. An, L. Bagnell, T. Cablewski, C.R. Strauss, R.W. Trainor, Applications of High-Temperature Aqueous Media for Synthetic Organic Reaction, J. Org. Chem., 1997,62,2505-2511.
    [22]K. Chandler, F.H. Deng, A.K. Dillow, C.L. Liotta, C.A. Eckert, Alkylation Reaction in Near-Critical Water in the Absence of Acid Catalysts, Ind. Eng. Chem. Res.,1997,36,5175-5179.
    [23]J. Feng, S.N.V.K. Aki, J.E. Chateauneuf, J. F. Brennecke, Abstraction of Hydrogen from Methanol by Hydroxyl Radical in Subcritical and Supercritical Water, J. Phys. Chem. A.,2003,107,11043-11048.
    [24]朱宪,樊琪,朱广用,万学亮,大豆渣在近临界水中水解反应工艺,化学工程,2011,39,79-83.
    [25]X.Y. Wu, X.Y. Lu, Hydrolysis kinetics of benzyl phenyl ether in high temperature liquid water, Chinese. Chem. Lett.,2011,22,733-737.
    [26]刘体锋,吕秀阳,近临界水中聚甲基丙烯酸甲酯水解反应动力学,高分子材料科学与工程,2012,28,64-68.
    [27]H.J. Edeer, A. Kruse, C. Mas, K.H. Ebert, Modelling of the pyrolysis of tert-butylbenzene in supercritical water, J. Supercrit. Fluids,1999,15,191-204.
    [28]A. Kruse, Hydrothermal biomass gasification, J. Supercrit. Fluids,2009,47, 391-399.
    [29]H. Schmieder, J. Abeln, N. Boukis, E. Dinjus, A. Kruse, M. Kluth, G. Petrich, E. Sadri, M. Schacht, Hydrothermal gasification of biomass and organic wastes, J. Supercrit. Fluids,2000,17,145-153.
    [30]A. Kruse, E. Dinjus, Hot compressed water as reaction medium and reactant properties and synthesis reaction, J. Supercrit. Fluids,2007,39,362-380.
    [31]S.E. Hunter, P. E. Savage, Acid-Catalyed Reaction in Carbonate Dioxide-Enriched High-Temperature Liquid Water, Ind. Eng. Chem. Res.,2003, 42,290-294.
    [32]Y. Ikushima, M. Sato, A one-step production of fine chemicals using supercritical water:an environment benign application to the synthesis of monoterpene alcohol, Chem. Eng. Sci.,2004,59,4895-4901.
    [33]N. Akiya, P.E. Savage, Effect of Water Density on Hydrogen Peroxide Dissociation in Supercritical water.1. Reaction Equilibrium, J. Phys. Chem. A., 2000,104,4433-4440.
    [34]K. Kim, S.H. Son, K.S. Kim, J.H. Han, K.D.Han, S.H. Do, Treatment of radioactive ionic exchange resins by super-and sub-critical water oxidation (SCWO), Nul. Eng. Des.,2010,240,3654-3659.
    [35]P.G. Duan, S. Li, Y. Yang, Z.Z. Wang, L.Y. Dai, Green medium for the hydrolysis of 5-cyanovaleramide, Chem. Eng. Technol.,2009,32,771-777.
    [36]Y.J. Chang, Z.Z. Wang, L.G. Luo, L.Y. Dai, Additive-assisted rupe rearrangement of 1-ethynylcyclohexan-l-ol in near-critical water, Chem. Pap.,2012,66,33-38.
    [37]E. Szajna, M.M. Makowska-Grzyska, C.C. Wasden, A.M. Arif, L.M. Berreau, A deprotonated intermediate in the amide methanolysis reaction of an N4O-ligated mononuclear zinc complex, Inorg. Chem.,2005,44,7595-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700