用户名: 密码: 验证码:
土壤溶质迁移与混合层深度模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤溶质迁移是环境科学、水文学、水力学、土壤侵蚀、土壤学、生态学和水土保持等学科的一个交叉领域,包含了土壤溶质的迁移和转化、土壤特性、水文条件以及土壤侵蚀等系列机理研究,其研究的焦点—混合层深度被广泛应用在溶质迁移模型和非点源污染模型中,如SWAT, AnnAGNPs等。研究土壤中的溶质迁移机理,对于探讨土壤质量、保护与改善流域水质以及提高农业的生产力均具有重要的理论价值和生产意义。
     本文采用室内模拟地表径流和降雨的试验方法,选择溴为示踪剂,研究土壤溶质迁移过程机理,揭示了伯努利效应在土壤溶质迁移过程不可忽略的作用,对引起土壤溶质迁移流失的四种迁移途径(对流、扩散、土壤侵蚀和伯努利效应)进行了量化研究,并提出了径流条件和降雨—径流条件下混合层深度模型,为非点源污染模型的校正提供理论依据。
     本论文完成的主要工作和取得的主要研究结论如下:
     1、模拟径流试验结果表明,随着地表径流量的增加,在伯努利效应下,土壤溶质流失量增加;地表径流量较低时,土壤侵蚀量较小,可以忽略,但是随着流速的增加,引起的土壤侵蚀量也增加,携带土壤溶质流失加剧;随着地表水位线的增加,土壤溶质流失、土壤侵蚀程度和土壤表土的流失都会加剧。在土壤水分饱和条件下,当地表径流量较大时,伯努利效应对土壤溶质迁移具有重要作用,如在地表径流流量大于200 ml/s时,伯努利效应引起的土壤溶质流失占总流失量一半以上。土壤渗流条件下,地下水水位线的高低是土壤溶质迁移的决定因素;对流效应同地下水水位线高低呈线性增长关系,即同土壤饱和导水系数成正比。在自由排水条件下,当地表径流量较慢时,扩散作用对于土壤中化学物质流失起着主导作用。与土壤饱和状态和自由排水状态相比,土壤渗流状态对地表水质影响、土壤营养物质流失和土壤侵蚀量等问题更为剧烈。在地表径流的初期,饱和状态时土壤营养物质流失量少于自由排水状态;随着地表径流时间的持续,饱和状态时土壤营养物质流失量要大于自由排水状态。
     2、模拟降雨-径流试验结果表明,相同降雨条件下,因土壤水文条件不同,导致土壤溶质流失量也不同:土壤渗流条件>土壤水分饱和条件>自由排水条件下;在相同水力梯度条件下,因不同降雨条件,导致土壤溶质流失量也不同:降雨强度与土壤中养分流失量呈指数函数关系。在自由排水条件下,雨滴溅蚀不仅压实土壤表面,降低地表水入渗到土壤层中去,同时也扩大了土壤溶质扩散系数,增加了土壤溶质迁移至地表径流中的流失量;在土壤水分饱和条件下,因为扩散作用在土壤水分饱和条件下为主导迁移途径,同时降雨强度可以导致分子扩散系数的扩大,所以降雨因素导致土壤溶质迁移增加量要比自由排水条件表现更明显。另外,在土壤渗流条件下,不仅土壤溶质扩散系数被扩大,同时土壤表面在降雨条件下更容易被侵蚀流失。在降雨-径流条件下,溴分子的扩散系数被扩大了0.11~5.98倍,它随着降雨强度的增加而增加,随着地下水水位线的增加而增加。在降雨—径流过程中地表径流流量比较小,土壤侵蚀比较小;但是在降雨强度达到90 mm/h时,降雨强度也加剧了土壤侵蚀造成土壤流失携带溶质进入地表径流。所以随着降雨强度的增加,土壤渗流条件下土壤溶质流失要比其他条件下严重。通过我们现有的降雨模拟机的模拟3种降雨强度,结果表明每一滴雨滴造成的土壤养分流失通量为固定值。同时,提出一个简单的二维模拟土壤溶质迁移过程的对流-扩散模型。
     3、利用试验资料对混合层深度进行分析与检验,结果表明,土壤中化学物质迁移到地表径流的流失过程也不是单一的过程,混合层仅是一个模型概念,不能用简单一个深度来表示,它受着地表径流量、土壤质地、降雨强度、地表水文条件等,即降雨强度、对流、扩散、水力侵蚀和伯努利效应等因素的影响。混合层的深度随着地表径流量的变化而变化,成指数关系;与土壤水分条件成线性增加关系。在相同地表径流量前提下,在自由排水状态时,扩散通量导致土壤溶质迁移流失至地表径流中起着主导作用,不同的混合层深度表示不同静压地下水水位线下扩散作用的不同;理论上,静压地下水水位线相差10 mm,由扩散作用导致两者之间混合层深度的差值不能超过0.8 mm。而也在相同地表径流量前提下,土壤渗流状态时,对流通量导致土壤溶质迁移流失至地表径流中起着主导作用,相同地表径流量之间,混合层深度的差值表示为对流作用的结果,对流作用在土壤溶质迁移流失过程中起着决定性作用;理论上,静压头从土壤水分饱和状态提高到土壤渗流状态下时,每提高10 mm的静压头可以导致混合层深度加深7.7 mm。无论在径流条件下还是降雨-径流条件下,在自由排水状态时,混合层深度小于2.5 mm;在土壤水分饱和状态时,混合层深度小于6 mm;在土壤渗流状态时,混合层深度跟地下水水位线的高低关系密切,模型中描述土壤溶质迁移量应与地表水位线的高低有着密切的关系,表现为整个土层均为混合层。随着水头增高,混合层深度也增加;.对于同一水头高度,随着地表径流量的增加,混合层深度增加;在相同地表径流量前提下,随着降雨强度的增加,混合层深度也增加,表明混合层深度与水头高度、降雨强度和地表径流量具有很好的变化规律。利用幂函数、指数函数和线性函数模型分析试验资料,结果表明,在土壤渗流和土壤水分饱和条件,线性函数适合表示土壤溶质迁移同地表径流量之间的关系,简化地表径流溶质迁移过程。在自由排水条件下,当地表径流总量与降雨量之间的比值小于10时,采用反比例函数表示土壤溶质迁移同地表径流量之间的关系;当二者之间的比值大于10时,采用线性关系表示土壤溶质迁移同地表径流量之间的关系。
Mixing zone depth (MZD) has been an interdisciplinary field focused in hydrology, soil water dynamic, soil erosion, soil science, soil & water conservation, and related environmental science, including the mechanisms of chemical transport and transfer from soil to surface runoff, soil properties, hydraulic gradient and soil erosion. The depth of mixing zone has also been used in the chemical transport model and non-point source pollution models widely, e.g. SWAT, AnnAGNPs, and so on. The mechanisms of chemical transport from soil to surface runoff are great important for improving soil and groundwater qualities in watershed, and increasing agricultural productivity both in theory and practice.
     Selecting bromide as chemical tracer, the paper has discussed the mechanisms of chemical transport processes by simulated surface runoff and rainfall. It was been discovered that Bernoulli Effect should be neglected in chemical transport from soil to surface runoff. We developed a laboratory flow cell and experimental procedures to quantify chemical transport from soil to runoff by each of individual processes:i.e.,1) erosion; 2) convection under a vertical hydraulic gradient; 3) convection from surface flow or the Bernoulli Effect; and diffusion. According our data, the mixing zone depth is gotten by theories under different conditions. The results will be used to improve the water quality model.
     The main conclusions are as follows:
     1. The results of simulated runoff experiments in laboratory showed that with the increasing of velocity of surface runoff, the soil nutrient flux from soil into surface runoff is enhanced by Bernoulli Effect and erosion under different soil hydrologic condition. This means soil nutrient loss in the soil will rise. With the augmentation of absolute Value of static head, soil nutrient losses, soil erosion and sediment loss add under artesian seepage condition, on the contrary, they decrease under free drainage condition. These results show that artesian seepage condition could make greater contributions to water quality problems, soil nutrients losses problems and soil erosion problem than saturation and free drainage conditions. In early period of surface runoff, under saturation condition, the losses amount of soil nutrient is less than that under free drainage condition (FDC). But if the duration of surface runoff is rather long, it is just on the contrary. At the same time, under artesian seepage condition, the losses amount of soil nutrient is more several times or dozens of times than that under free drainage condition. Under free drainage and saturation condition (SC), soil erosion, which causes bromide mass flux into surface runoff, makes a significant contribution to chemical loss in the soil. Under artesian seepage condition (ASC), convection possesses considerable percentage of bromide mass flux into surface runoff. So soil erosion intensity under artesian seepage condition is more powerful than those under saturation and free drainage condition. And soil erosion and the associated Bromide flux occurred in the first instance of flow introduction. Erosion increased as the hydraulic gradient shifted from free drainage to artesian seepage and as the flow rate was increased.
     2. The results of simulated rainfall-runoff experiments in laboratory indicated that different chemical loss flux could be caused by different hydraulic gradient under the same rainfall intensity by the following sequence as ASC> SC> FDC. Under the same hydraulic gradient, different chemical loss flux was gotten by different rainfall intensity, it was exponential relationship between chemical loss flux and rainfall intensity. Under FDC, raindrop erosion zone concept is a gross simplification and can not be used adequately to scribe chemical loading processes from soil to runoff water. It was only a model concept; it couldn't be represented by a not only compact surface soil which can prevent surface water into soil layer but also accelerated diffusion coefficient. Under SC, convection had a great contribution to chemical loss from soil to runoff. Therefore, more chemical loss mass from soil to runoff was led to for enlarging diffusion coefficient by rainfall intensity. Also, chemical loss by rainfall under SC was more obvious than under FDC. In addition, rainfall not only caused accelerated diffusion coefficient but sever soil loss by under ASC. In rainfall-runoff simulated experiment, accelerated diffusion coefficient was equal to 1.11 to 6.98 times the molecular diffusion coefficient, which enlarged with increasing of rainfall intension and hydraulic gradient. Although, soil erosion was weak for a little the runoff flow rate, rainfall aggravated soil loss when rainfall intensity gets to 90 mm/h. Consequently, under ASC chemical loss from soil to runoff was more serious than under SC and FDC. Our data proved that there is a linear relation between rainfall intensity and raindrop energy under FDC, i.e., it is a constant that the same bromide loss mass can be caused by per milliliter rainfall. And we found a simple two-term diffusive and convective model for chemical loading.
     3. Our data indicated that chemical transport process from soil to surface runoff water was not a simple process. Mixing zone was the soil depth that chemicals entry into surface water via interaction with diffusion, convection, erosion and Bernoulli Effect. It has close relationship with soil texture, static head, and flow rate and runoff time. Results of our experiment showed the variability of mixing zone depth under different hydraulic head and runoff flow rate. It is definitely not a constant value of 10 mm as assumed in most of the models. With soil water increasing from FDC to SC to ASC. static head rises gradually from blew to above soil surface. Results of our experiment showed there was exponentially relationship between mixing zone depth and runoff flow rate, there exists increasing relationship linearly between MZD and hydraulic gradient. At the same runoff time, more bromide flux means deeper MZD. At the same flow rate, under FDC, diffusive flux controlled chemical transport. Different MZD displayed different diffusion under different static head. The maximum different of MDZ is less than 0.8 mm with different static head. Under ASC, convective flux controlled chemical transport. Different MZD displayed different convection under different static head. It has a great contribution to chemical loss from soil into surface runoff. From SC to ASC, at the same of flow rate, MZD enhances 7.7 mm with static head increases per 10 mm. In runoff and rainfall-runoff simulated experiment, MZD is less than 2.5 mm under FDC, is less than 6 mm under SC. But the whole soil layer is mixing zone under ASC.
引文
卜玉山,Magdoff F R.2003.十种士壤有效磷测定方法的比较[J].土壤学报,40(1):140-146.
    郭太龙,王全九.2008.黄土坡面土壤侵蚀中溶质随径流迁移的水动力特性研究[J].水土保持学,22(9):17-22.
    雷志栋,杨诗秀,谢森传.1988.土壤水动力学[M].北京:清华大学出版社.
    李裕元,邵明安.2001.侵蚀条件下坡度土壤水分与有效磷的空间分布特征[J].水土保持学报,15(2):41-44.
    李裕元,邵明安.2004.降雨条件下坡地水分转化特征实验研究[J].水利学报,35(4):48-53.
    李韵珠,李保国.1998.土壤溶质运移[M].北京:科学出版社.
    梁冰,赵颖,薛强等.2008.土壤中污染物迁移转化规律的数值模拟研究[J].岩土力学,29(8):2473-2477.
    邵明安,杨文治,李玉山.1987.植物根系吸收土壤水分的数学模型[J].土壤学报,24(4):295-305.
    邵明安,张兴昌.2001.坡面土壤养分与降雨、径流的相互作用机理及模型[J].世界科技研究与发展,23(2):7-13.
    邵明安.1991.植物根系吸收土壤水分的一个简化模式Ⅰ[J].中国科学院西北水保所集刊,13:33-37.
    邵明安.2002.农田生态系统中物质运移过程研究[M].西安:陕西人民出版社.
    石辉,邵明安.1999.土壤中农用化学物质的迁移[J].世界科技研究与发展,4
    石辉,邵明安.1999.土壤磷素转化的双库模型[J].应用基础与工程科学学报,7(1):29-33.
    石辉,邵明安.2004.土壤系统中溶质运移研究[J].水土保持学报,4:118-119.
    唐国勇,黄道友,童成立等.2005.土壤氮素循环模型及其模拟研究进展[J].应用生态学,16(11):2208-2212.
    童菊秀,杨金忠.2008.农田地表径流中溶质流失规律研究[J].水利学报,39(5):542-549.
    王全九,穆天亮,王辉.2009.坡地对黄土坡地径流溶质迁移特征的影响.干旱地区农业研究[J].27(4):176-179.
    王全九,邵明安.1998.非饱和土壤导水特性分析[J].土壤侵蚀与水土保持学报[J].4(6):16-22.
    王全九,邵明安,郑纪勇.2007.土壤中水分运动与溶质迁移.北京:中国水利水电出版社.
    王全九,沈冰,王文焰.1998.降雨动能对溶质径流过程影响的实验研究[J].西北水资源与水工程,9(1):17-21.
    王全九,王文焰.1998.降雨-地表径流-土壤溶质相互作用深度[J].土壤侵蚀与水土保持学报,1998,4(2):4146.
    王全九,张江辉,丁新利等.1999.黄士区土壤溶质径流迁移过程影响因素浅析[J].西北水资源与水工程,10(1):9-13.
    王辉.2006.降雨条件下黄土养分迁移机理及模型模拟.[博士学位论文].杨凌.西北农林科技大学.
    姚贤良,程云生.1986.土壤物理学[M].北京:农业出版社.
    张兴昌,邵明安.2000.侵蚀条件下土壤氮素流失对土壤环境的影响[J].土壤与环境,9(3):249-252.
    张亚丽,张兴昌,邵明安等.2004.降雨强度对黄土坡面矿质氮素流失的影响[J]农业工程学报,20(3):55-58.
    张亚丽,张兴昌.2005.径流与坡面土壤矿质氮素的作用深度研究[J].科技技术与工程,5(17):1256-1259.
    张亚丽.2007.黄土坡地土壤氮磷等化学物质径流迁移与混合层深度研究.[博士学位论文].西安.西安理工大学.
    张增强,张一平.1977.化学物质在土壤中的持留释放与运移[J].农业环境保持,16(4):168-171
    赵其国.1995.为跨世纪土壤学的发展作出新贡献.土壤学报,32(1):1-13.
    Ahuja, L.R., A.N. Sharpley, M. Yamamoto, R.G. Menzel.1981. The depth of rainfall-runoff-soil interactions as determined by 32P
    Ahuja L R.1982. Release of a soluble chemical from soil to runoff [J]. Thran. ASAE,25:948-956.
    Ahuja, L. R., and O. R. Lehmen.1983. The extent and nature of rainfall-soil interaction in the release of soluble chemicals to runoff, J. Environ. Qual.,12,34-40.
    Ahuja, L.R.1986. Characterization and modeling of chemical transfer to runoff. [J]. Advances in Soil Science 4:149-188.
    Amer F, Boulden DR, Black CA, Duke FR.1955. Characterization of soil phosphorus by anion-exchange resin and P32- equilibrium. Plant and Soil,6:391-408.
    American public health association.1998. Standard methods for the examination of water and wastewater.[M].20th ed. Washington, DC.
    Anderson, J.E.1979. A theoretical foundation for the gravity equation, American Economic Review, 69,106-116.
    Barraclough, D.1989. A useable mechanistic model of nitrates leaching. Ⅰ. The model. Jouranl of Soil Science 40: 543-554.
    Barrow NJ.1979. The description of desorption of phosphate from soil. J Soil Sci.30:259-270.
    Bauley G W, Swank R R & Nicholson H P.1974. Predicting pesticide runoff from agricultural lands:A conceptual model. J. Environ. Qual.3:95-102.
    Bear J.1972. Dynamics of Fluids in Porous Media [M]:American Elsevier Publishing Company, Inc.26-42.
    Bennett, C.O., and J.E. Myers.1982. Momentum, heat, and mass transfer.3rd ed. McGraw-Hill, New York.
    Bigger, J. W., Nielsen, D. R.1967. Miscible displacement and leadring phenomenon in irrigation of agricultural lands. Hagen, Haire and Eminster (Eds.), Amer. Soc. of Agronomy, Madison Wisc.
    Bingner R. L., F.D. Theurer, Y. Yuan.2007. AnnAGNPS Technical processes Documentation. Version 4.0 [C]. USDA-ARC National Sedimentation Laboratory &. USDA-NRCS National Water and Climate Center.
    Botterweg, P., R. Leek, E. Romstad, and A. Vatn. 1998. The EUROSEM-GRIDSEM modeling system for erosion analyses under different natural and economic conditions. Ecological Modelling 108:115-129.
    Bouraoui F. and Dillaha T. A. 2000. ANSWERS 2000: Non-point-source nutrient planning model [J]. J Envir Engrg, ASCE,122(11):1045-1055.
    Bruce R R, Harper L A, Leonard R A et al.1975. A model for runoff of pesticide from upland watersheds [J]. J. Environ. Qual.,4:541-664.
    Bruce R R, Harper L A, Leonard R A et al.1975. A model for runoff of pesticide from upland watersheds [J]. J. Environ. Qual.,4:541-664.
    Chen, W. and Wagenet, R J.1995. Solute transport in porous media with sorptionsite heterogeneity, Environ. Sci. and Teschnol.,29:2725-2734.
    Chien S H, Clayton W R. 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci.Soc.Am.J.,44:260-264.
    Clayton T. Crowe, Donald F. Elger and John A. Robersom. 2004. Engineering Fluid Mechanics,7th Ed, Publisher: John Wiley & Sons Inc, New York.
    Coats K. H. and B. D. Smith. 1964. Dead-end pore volume and dispersion in porous media. SPEJ,4:73-84
    Crawford N.H. and A.S. Donigian, Jr. 1973. Pesticide Transport and Runoff Model for Agricultural Lands, Office of Research and Development, U.S. Environmental Protection Agency, EPA-660/2-74-013.
    DeCoursey D G. 1982. ARS's Small Watershed Model. Paper No. 82-2094 [M]. American Socitey of Agricultural Engineers, St. Joseph, MI,33.
    Donigian A S, Grawford N H. 1999. Modeling non-point pollution from the land surface [M]. EPA-600/3-76-083. Athens, GA:EPA Technological Service, US Environmental Protection Agency.
    Donigian A S, Grawford N H.1999. Modeling pesticides and nutrients on agricultural lands [M]. EPA-600/2-76-043, Athens, GA:US Environmental Protection Agency.
    Donigian A S, Grawford N H.1999. Simulation of agricultural runoff [M]. EPA-600/9-76-016. Athens, GA: US Environmental Protection Agency,151-156.
    Donigian A S.1977. Agricultural runoff management (ARM) model [A]. Version Ⅱ: Refinement and testing. EPA 6003-77-098[C]. US Gov. Print Office, Washington, D. C.
    Donigian A S.1977. Simulation of nutrient loading in -surface runoff with the NPS model [M]. EPA-660/3-77-065. Athens, GA: US Environmental Protection Agency.
    Donigian A. S. and N. H. Grawford.1976. Modeling nonpoint pollution from the land surface. EPA-600/ 3-76-083. EPA Technological Service, US Environmental Protection Agency, Athens, GA.
    Donigian, A. S., Jr., D. C. Beyerlein, H. H.Davis and et al.1977. Agricultural Runoff Maangement (ARM) Model Version Ⅱ: Refinement and Testing, USEPA Rep.600/3-77-098, U.S. Environ. Prot. Agency Environ. Res. Lab., Athens, Ga.
    Emmerich, W. E., Woolhiser, D. A., and Shirley, D. E.1989. Comparison of Lumped and Distributed Models for Chemical Transport by Surface Runoff. J. Environ. Qual.,18:120-126.
    Flangan D C, Foster G R.1989. Storm Patter effect on nitrogen and phosphorus losses in surface runoff [J].Transactions of the ASAE,32(2):535-544.
    Frere M H, Pnstad C A, Holtan H N.1975. ACTMO, an agricultural chemical transport model [M]. ARS-H-3, VSDA. US. Gov. Print Office, Washington, D.C.,
    Frere, M. H., Ross, J.D., and Lane, L.J.1980. The nutrient submodel. In: CREAMS: A Field Scale Model for Chemical, Runoff, and Erosion from Agricultural Maangement Systems [A]. USDA. Conservation Research Report No.26, USDA [C]. USA:Washington,65-67.
    Gao, B., M.T.Walter, T.S. Steenhuis, et al.2005. Investigating raindrop effects on the transport of sediment and non-sorbed chemicals from soil to surface runoff. J. Hydrol.308:313-320.
    Gao, Bin; Walter, M Todd; Steenhuis, Tammo S, et al.2004. Rainfall induced chemical transport from soil to runoff: theory and experiments. [J] Journal of Hydrology. (Amsterdam),295(1-4):291-304.
    Gerke H H. and van Genuchten M Th.1993. Kinematics wave approximation to infiltration into soils with sorbing macropores. Water Resour. Res.,21(7):990-996.
    Haith D A, Tubbs L J, Pickering N B.1984. Simulation of pollution by soil erosion and soll nutrient loss. Wageningen, Netherlands: Pudoc,77.
    Haith D A.1980. A mathematical model for estimating losses in runoff [J]. J. Environ. Qual.,9(3): 428-433.
    Heathman G C, Ahuja L R, Baker J L.1985. The transfer to soil surface-applied chemicals to runoff [J].Trans .of ASAE.28:1909-1915,1920.
    Holtan H N.1979. rocedure's manual for sediment, phosphorus and nitrogen transport [M]. Computation with USDAHL. Report No. MP 943. Maryland Agricultural Experimental Station. University of Maryland, College Park, MD.
    Holtan H N.1971. USDAHL-70 model for watershed hydrology [M]. Technical Bulletin No.1435. Agricultural Research Agency, US Department of Agriculture, WASHINGTON, D.C.,
    Huang, C. L.K. Wells, L.D. Norton.1999. Sediment transport capacity and erosion processes model concepts and reality [J]. Earth surface process and landforms,24:503-516.
    Huang, C., J.M. Laflen.1996. Seepage and soil erosion for a clay loam soil. Soil Sci. Sco. Am. J. 60:408-416.
    Huang, C., L.K. Well, and L.D. Norton.1999. Sediment transport capacity and erosion processes: Concept and reality. Earth Surf. Processes Landforms 24:503-516.
    Huang, C.1998. Sediment regimes under different slope and surface hydrologic conditions. [J]. Soil Sci. Sco. Am. J.62:423-430.
    Huber W C, Heaney J P, Nix S J.1981. Stormwater management model [M]. User's manual version Ⅲ. Department of Environment Engineering and Science, University of Florida, FL.
    Huff, D. D., and P. Kruger.1967. A Numerical Model for the Hydrologic Transport of Radioactive Aerosols from Precipitation to Water Supplies. Amer. Geophys. Union. Geophysical Monograph Series,11:85-96.
    Jabro J., E.Lotse, K. Simmons, D. Baker.1991. A field study of macrospore flow under saturated conditions using a bromide tracer [J]. Journal of Soil and Water Conservation,46(5):376-380.
    Jury F. A. and H. Fluhler.1992. Transport of chemicals trough soil: Mechaisius, models and application. Adv. Argon,47:141-201.
    Jury, W. A.1983. Chemical transport modeling:Current approaches and unresolved problems. In: Chemical Mobility and Reactivity in Soil System.SSSA Special Publication Number 11. Published by the OIL SCIENCE SOCIETY OF AMERICA, AMERICAN SOCIETY OF AGRONOMY:49-64.
    Karin Bohren and Parricia Smith.2003. Application Group. Quik Chem Method 10-135-21-2-B. Determination of bromide by flow injection analysis [R].9,3.
    Kenimer A L.1989. PLIERS:Pesticide losses in erosion and runoff simulator [J]. Trans. ASAE,32: 127-136.
    Kevin Swittala Application Group. Quik Chem Method 12-135-21-2-A. Determination of bromide in 2 M KC1 soil extracts by flow injection analysis [R].2003,8,22
    Knisel W.1980. Crems:A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems, U. S. Department of Agriculture, Conservation Research Report, No.26. 640-641
    Kuo S, Lotse E G,1974. Kinetics of phosphate adsorption and. desorption by hematite and gibbsite [J]. Soil Sci,116:400-.406.
    Laws, J.O., Recent studies in raindrops and erosion. Agric. Eng.1940.21 11, pp.431-433.
    Leonard, R.A., Langdale, G.W. and Fleming, W.G.1979, Herbicide runoff from upland piedmont watersheds: data and implications for modeling pesticide transport. [J]. Journal of Environment Quality,8:223-228.
    Lichtinstein E. P. 1958. Movement of insecticides in soils under leaching and non-leaching conditions. J. Econ. Entomol,51:380-383.
    M. Nofuents and M.J. Polo.2008. A first approach to the characterization of solute transfer from soil to runoff in transient shallow flows. [J] Gerphysucal research letter.35:1029-1033.
    M. Th. van Genuchten and R. W. Cleary.1979. Movement of solutes in soil: Computer-simulated and laboratory results. In: G. H. Bolt.ed., Soil Chemistry, B. Physicochemical Models. Elsevier, Amsterdam,349-386
    Markus Flury.1996. Experimental evidence of transport of pesticides through field soils-a Review. J. Environ. Qual.,25:25-45.
    McDowell R. W. and Sharpley A.N. 2001. The effect of antecedent moistuer conditions on sediment and phosphorus soil during overland flow: Mahantango Creek catchment, Pennsylvanian, USA [J].
    Millington, R.J., and J.M. Quirk.1961. Permeability of porous solids. Trans. Faraday Soc.57: 1200-1207.
    Mualem Y.1982. Amodified dependent-domain theory of hysteretic [J].Soil Sci,137:283-291.
    Neitsch, S.L., J.R. Arnold, J. R. Kiniry, et al.2005. Soil and water assessment tool theoretical documentation Version 2005. [M].Texas; Grassland Soil Water Research Laboratory.
    Novotny V. A review of hydrologic and water quality models used for simulating agricultural pollution[A]. In:Giorgini A, Zingales F (Eds.).1986. Agricultural nonpoint source pollution, model selection and application[C]. Dev. Environ. Model.10, Elsevier,9-35.
    Pereira, W. E., and F. D. Hostettler.1993. Nonpoint source contamination of the Missippi River and its tributaries by herbicides. Environs. Sci. Technol,27:1542-1552.
    Ponce, E.D., E.R. Eeledon and C. Ponce.1975. Effect of temperature on growth of Leishmania in tissue culture. Am. Soc Parasitol (Abstract):74.
    Rachel Carson.1962. Silent Spring. Published by Houghton Mifflin.
    Rivlin J. (Byk) and Wallach R.1995. An Analytical Solution for the Lateral Transport of Dissolved Chemicals in Overland Flow. Water Resources Research.
    Rivlin J. (Byk), Wallach R., and Grigorin, G.1997. An Analytical Solution for the Lateral Transport of Dissolved Chemicals in Overland Flow Varying Soil Surface concentration. J. of Contaminant Hydrology.
    Roanld, G. Mezel.1980. Enrichment ratios for water quality modeling. In: CREAMS: A Field Scale Model for Chemical, Runoff, and Erosion from Agricultural Maangement Systems [A]. USD A. Conservation Research Report No.26, USDA [C]. USA: Washington,486-492
    Romkens J M, Nelson D W.1974. Phosphorus relationships in runoff from fertilized soils. J.Environ. Qual. 3:10-13.
    Schwab, A. Paul.1985. Chemical equilibrium and reaction models. Proceedings (SSSA Special Publication) Number 42:the application of chemical equilibrium in solute transport models
    Scifres, C. J.. O. C. Burnside, and M. K. Mccerty.1969. Movement and persistence of picloram in pasture soils of Nebraska. Weed Sci.17:486-488.
    Shao M A. Yang W Z, Li Y S.1988. A Dynamic model of soil moisture availability to plants in the loess region [J]. Chinese Science Bulletin,33 (17):1470-1473.
    Sharpley A N, Kleinman P J A, McDowell R W, et al.2002. Modeling phosphorus transport in agricultural watersheds: Process and possibilities. [J]. Soil and Water Conservation,6
    Sharpley, A.N.1982. A prediction of the water extractable phosphorus content of soil following a phosphorus addition. J. Environ. Qual.11:166-170.
    Smith S J.1987. Soluble organic nitrogen losses associated with recovery of mineralized nitrogen[J]. Soil Sci. Soc.Am. J.,51:1191-1194.
    Snyder, J.K. and Woolhiser, D.A.,1985. Effects of infiltration on chemical-transport into overland flow. Trans ASAE 28(5):1450-1457.
    Spencer, W.F., M.M. Cliath. Blair, J.W., et al.1985. Transport of pesticides from irrigates fields in surface runoff and tile drain waters. USDA-ARS Conservation Res. Rep.31,72pp.
    Steenhuis, T. S., J. Boll, G. Shalit, and et al.1994. A simple equation for predicting preferential flow solute concentrations, J. Environ. Qual.,23,1058-1064.
    Timmons, D.R., Holt, R.F.1980. Soluble N and P concentrations in surface runoff water. In: CREAMS:A Field Scale Model for Chemical, Runoff, and Erosion from Agricultural Maangement Systems [A]. USDA. Conservation Research Report No.26, USDA [C]. USA:Washington, 534-543
    True H A. Planning models for nonpoint runoff assessment[A].1976. In: Ott W R (Ed.). Proc. Environmental Modeling and Simulation [C]. EPA 600/9-76-016. US Environmental Protection Agency, Cincinatti, OH.
    True H A. Planning models for nonpoint runoff assessment [A].1972. In: Ott W R (Ed.). Proc. of the Conference on Environmental Modeling and Simulation [C]. EPA 600/9-76-016. US Environmental Protection Agency, Cincinatti, OH,74-76.
    U. S. Environmental Prtection Agency.1992. National survey of pesticides in drinking wells. Phase report, USEPA. Washington D. C.
    Vadas P A, Kleinman P J A, Sharpley A N.2004. A simple method to predict dissolved phosphorus in runoff from surface-applied manures. [J]. Journal of Environment Quality,33:749-756.
    Vinten, A.J.A. and K.A. Smith.1993. Nitrogen cycling in agricultural soils. In Nitrate Process, Pattern and Maangement. Ed. T.P.Burt, A.L. Heathwaite and S.T.Trudgill,39-75. English: John Wiley & Sons Ltd.
    Wallach R, Martinus Th., Van Genuchten, et al.1989. Modeling solute transfer from soil to surface runoff:The concept of effective depth of transer. J. Hydrology,109:307-317.
    Wallach R, Rina Shabtai.1992. Modeling surface runoff contamination by soil chemicals under transient water infiltration [J].Journal of Hydology,132:263-281.
    Wallach R, Rina Shabtai.1992a. Surface runoff contamination by soil chemicals:simulations for equilibrium and first-order kinetics [J].Water Resources Research,28(1):167-173.
    Wallach R, Shabtai R.1992b. Modelling suarfce runoff contamination by soil chemicals under transient water infilrtation. Journal of Hydrolog.132:263-281.
    Wallach R.1988. Modeling the losses of soil-applied chemicals in runoff: Lateral irrigation versus precipitation [J]. Soil Sci. Soc. Am. J.,52:605-612.
    Wallach R.1988. Transfer of chemical from solution to surface runoff: A diffusion-based soil model[J]. Soil Sci. Soc. Am. J.,52:612-618.
    Wallach, R. and Steenhuis, T S. 1998. Model for non-reactive solute transport in structured soils with continuous preferential flow paths [J]. Soil Sci. Soc. Am.,62: 881-886.
    Walton, R., Volker, R., Bristow, K., and Smettem, K.2000. Experimental examination of solute transport by surface runoff from low angle slopes. Journal of Hydrology,233:19-36.
    Walton, R., Volker, R., Bristow, K., and Smettem, K.2000. Solute transport by surface runoff from low angle slopes: Theory and application. Hydrological Processes,14:1139-1158.
    Walton, R.S., R.E. Volker, K.L. Bristow, and K.R.J. Smettem.2000. Solute transport by surface runoff from low-angle slopes: Theory and application. Hydrol. Processes 14:1139-1158.
    Wang Q J, Horton R, Shao M A.2002. Effective raindrop kinetic energy influence on soil potassium transport into runoff [J]. Soil Science,167(6):369-376.
    Warrick, A.W. Soil water dynamics. Oxford University Press, Oxford,2003.
    Wauchope R D.1978. The pesticide content of surface water draining from agriculture field-Areview. [J] Journal of Environmental Quality.7:459-472.
    Williams J R.1980. SPNM, a model for predicting sediment, phosphorus, nitrogen yields from agricultural basins [J]. Water Resour. Bull.16(5):843-848.
    Young R A, Onstad C A, Bosch D D et al.1987.AGNPS, Agricultural nonpoint pollution[M]. A watershed analysis tool. Conservation Research Report 35. US Department of Agriculture, Washington, D.C.
    Young R A, Onstad C A, Bosh D D et al.1985.Agricultural nonpoint source pollution models (AGNPS) Ⅰ & Ⅱ[M]. Model documentation. Minnesota Pollution Control Agency, St. Paul, MI, and Agricultural Research Service, US Department of Agriculture, Washington, D.C.
    Young R A, Onsted C A, Bosh D D, et al.2000. Agricultural nonpoint source pollution models (AGNPS) [A]. Minnesota Pollution Control Agency, St. Paul, MI, and Agricultural Research Service, US Department of Agriculture. Model documentation [C]. Washington, DC.
    Zhang, X.C., L.D.Norton, and M.A. Nearing.1997. Chemical transfer from soil solution to surface runoff. Water Resources Research 33(4):809-815.
    Zhang, X.C., L.D.Norton, T. Lei, and M. A. Nearing.1999. Coupling mixing zone concept with convection diffusion equation to predict chemical transfer to surface runoff. Transactions of the ASAE. 42(4) 987-994.
    Zheng, F., C.Huang, L.D. Norton.2004. Effects of near-surface hydraulic gradients on nitrate and phosphorus losses in surface runoff. [J]. J Environ. Qual.,33:2174-2182.
    Zheng, F., C. Huang, L.D.Norton.2004.Vertical hydraulic gradient and run-on water and sediment effects on erosion processes and sediment regimes. [J]. Soil Sci. Sco. Am. J.,64:4-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700