用户名: 密码: 验证码:
深埋煤层采动过程顶板聚压与煤柱受力的关联性及其断层结构影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井冲击地压引发的动力灾害是矿井最严重的自然灾害之一,其形成受厚层坚硬顶板条件、坚硬而脆性的煤层条件、高自重应力或构造应力和因煤层采动造成的应力集中带的影响,在深井开采条件下尤为突出。论文以岩体工程地质力学和矿山压力理论为指导,结合菏泽煤田赵楼矿井实际地质条件,系统进行了煤岩力学性质及冲击倾向性试验研究和构造条件分析,建立了首采区工作面不同顶板条件的工程地质模型和力学模型,在此基础上重点就煤层开采顶板及煤柱受力、变形特征问题进行了离心模型试验、力学解析和数值模拟分析,以为后期安全生产提供科学依据。论文主要取得以下研究成果:
     根据区域构造资料,结合赵楼井田物探资料,分析赵楼井田构造作用特点,了解井田构造演化规律,系统研究井田构造分布、组合规律,分析不同级别、不同序次、不同性质构造的相互制约和分布特征,把握井田主要构造及其构成的网络。
     经过赵楼矿井煤岩体取样、煤岩体力学性质测试,反映出3煤直接顶板中细砂岩强度高,其弹性变形和脆性破坏特征非常明显;经过对煤样的冲击能量指数、弹性能量指数和动态破坏时间指标的测试,3煤具有强冲击倾向性,经过对3煤顶板砂岩弯曲能量指数的计算,顶板具有弱冲击倾向性,具备了矿井冲击地压的必要条件。
     进行了离心模型试验,利用三组模型分别研究完整连续顶板情况、工作面推进方向与结构面倾向一致和相反的情况下,由于煤岩层的采动对开切眼处煤柱、工作面前方煤体、直接顶和老顶岩层应力变化和变形情况。顶板被断层切割情况下,顶板岩层的完整性受到破坏,应力在构造部位重新分布,形成构造应力的集中,是引发冲击地压的危险部位,但采掘工艺也会导致顶板和煤柱受力与变形的差异。
     建立了首采区工作面揭露断层前后的力学模型,进行了解析:工作面揭露断层前后,顶板岩层最大剪应力和最大弯矩发生在固定端发生在固定端,但其大小均发生了变化,临近断层时,工作面直到断层处的煤层,随工作面向断层推进,煤层的支承压力升高,为煤的抗压强度控制,易发生片帮。
     利用FLAC2D软件,进行了数值模拟分析,获得了不同顶板结构条件模型采动过程中煤柱、直接顶板和老顶的应力分布及变形特征的综合对比结果,模拟反映出了采动过程煤柱及顶板聚压情况及断层结构对其产生的影响特点。无论是逆断层倾向开采,还是顺断层倾向开采,由于断层结构面的存在,使顶板稳定性较差,逆断层倾向开采条件下,临近断层处虽易形成结构,但易因顶板动态变化,开采及支护条件而破坏,顺断层倾向开采,由于结构面的弱化,易沿结构面发生岩层移动,引发断层“活化”,使矿压显现和岩层冒落严重。
As one of the most dangerous mining the geologic hazards,the rock burst, occurs with high frequency.The problems of rock mechanics caused by the deep mining engineering are the focuses in the fields of mining engineering and rock mechanics.The rock burst is influenced by many factors, mainly is the condition of thick and stiff Peak, the condition of stiffness and brittleness of coal, the condition of high ground stress and the stress concentrate areas because of Excavation. In order to make the design and layout of the coalmine reasonable, the paper, based on the concretely geological condition of deep buried coal in Zhaolou coalmine, combined the structure and geophysical information, a test of mechanics character of rock and coal is carried, centrifugal model experiment is carried, geological and mechanical model is set up and is analyzed, a numerical simulation analysis is completed. The main conclusion of the paper is follow:
     Based on the region structure and geophysical information of Zhaolou coalmine, the structure characteristic is analyzed, the law of structure evolvement is explained, the law of distributing and combination of the structure is systemic studied, the main structure and it’s constitutive net is obtained.
     This paper started with the experiment of coal burst tendency that was conducted in main mining coal seam.Through the experiment and analysis of the impact energy index,elastic energy index,dynamic destruction time of coal sample,and the Bending energy index of rock sample,the rock burst tendency of the coal is high and the tendency of rock is weak
     A centrifugal model simulation is processed in order to study the law of deformation and stress distributing because of different roof conditions. As a result of coal mining, coal pillar at the places of first cut, coal in front of workface, direct roof strata and basic roof strata, the rock stress and deformation is different. Three sets of models are built ,they are the conditions of the integrity of the roof , the excavation direction athwart the tendency of the structure ,just as the condition of normal fault and the excavation direction toward the tendency of the structure ,just as the condition of reverse fault .Because of the damage of the integrity of rock roof, the stress redistribution in the structural parts to form a concentration of tectonic stress, it is triggered shocks to the risk of pressure parts, but the extraction process can also lead to structural differences in the impact.
     According to the geology model when workface encounters fault, two mechanics model are built, one is the workface uncovers fault, another is workface just crosses fault, they are different, because of restriction condition, the coal roof mechanics behaviors are different when workface before and after the fault. The most shear strength and moment are happened at different place, when workface is nearer to fault, coal bed between the workface and fault just like coal pole, the bearing pressure rises with the workface advances, coal side is easy to crush, it is controlled by the coal intensity of pressure.
     FLAC2D software is used to carry out a numerical simulation analysis, to obtain a different model of the structure of the roof conditions in the process of mining, coal pillars, direct roof and basic roof the stress distribution and deformation characteristics of a comprehensive comparison of the results of simulation reflects the process of mining coal pillars and Poly roof pressure and fault structure of the impact of their characteristics. Mining the course of a complete roof structure and deformation of the basic state symmetry, and the fault cutting roof stress distribution and deformation of migration occurred in the fault surface structure of discontinuous parts of the deformation and stress distribution of concentration is very obvious.
引文
[1]赵本钧,腾学军.冲击地压及其防治[M].北京:煤炭工业出版社, 1995, 1-5.
    [2]周维垣.高等岩石力学[M].北京:水利电力出版社, 1990.
    [3]刘听成.岩石力学有关名词解释[M].北京:煤炭工业出版社, 1986
    [4]潘一山,李中华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.
    [5]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2859.
    [6]何满潮,谢和平,彭苏萍,等.深部开采岩石力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [7]钱鸣高,刘听成.矿山压力及其控制[M],北京:煤炭工业出版社, 1984, 5-22.
    [8]王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):0448-0455.
    [9] Bieniawski Z T, Denkhaus H G, vogler U W. Failure of Fracture Rock[J]. Int. J. Rock Mech.Min.Sci., 1969, 6: 323-341.
    [10] Tan Jiong Kie. Rock burst. Case Record. Theory and Control. Proceedings of the international symposium on engineering in complex rock formations, 1986:33-47.
    [11]侯发亮,贾愚如.地下响室中岩爆与围岩应力的关系[J].复杂岩石中建筑物国际学术研讨会论文集, 1989.
    [12] Cook N G W. A note on rock bursts considered as a problem of stability. J. South Afr. Int. Min. and Metallurgy, 1965, 65: 437-446.
    [13] Wawersik W K and Fairhurst C A. A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1970, 7: 561-575.
    [14] Hudson J A, Croush S L, Fairhurst C. Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Eng. Geo., 1972, 6: 155-189.
    [15] Denis, Gill E, Michel Aubertin &ichard Simon. A Practical Engineering Approach to the Evaluation of Rockburst Potential. Young(ed), Balkema Rockbursts and Seismicity in Mines. 1993: 63-68.
    [16] Cook N W G, Hoek E, Pretorius J P G, etal. Rock Mechanics applied to the study of rock bursts[J]. J. S. Afr. inst. Min. Metall, 1965, 66: 435-528.
    [17]佩图霍夫等著,段可信译.冲击地压和瓦斯突出的力学计算方法[M].北京:煤炭工业出版社, 1994, 05-38.
    [18] Huanganzeng. Rock Burst and Energy Release Rate. In Proceedings 6th international congress on Rock Mechanics: 971-974.
    [19] Bieniawski Z T, Mechanism of brittle fracture of rocks. Part I, II and III[J]. Int. J. Rock Mech. Min. Sci., 1967, 6: 395-430.
    [20]王淑坤,张万斌,赵国栋.用点载荷方法测定煤的动态破坏时间[J].煤炭开采, 1993, 3: 48-51.
    [21]王元汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报, 1998, (5): 493-501.
    [22]金立平,鲜学福.煤层冲击倾向性试验研究及模糊综合评判[[J].重庆大学学报, 1993, 6: 114-119.
    [23]国家煤炭工业局.中华人民共和国煤炭行业标准. MT/T174-2000, MT/T866-2000
    [24] Kleczek & Zorychta A. Coal Bumps by Mining Tremor, Rockburst and Seismicity in Mines, Young(ed). Rotterdam, 1993: 87-89.
    [25]章梦涛.冲击地压失稳理论[J].岩石力学与工程学报, 1987, 3(1): 197-204.
    [26]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[[J].煤炭学报, 1991, 16(4): 48-53.
    [27]潘一山,章梦涛.冲击地压失稳理论的解析分析[J].岩石力学与工程学报, 1996, 15(supp): 504-510.
    [28]徐曾和,章梦涛.冲击地压失稳理论及其应用[J].第二届全国岩石动力学学术会议论文集, 1990, 10: 332-339.
    [29]徐曾和,李宏,徐曙明.矿井岩爆及其失稳理论[J].中国安全科学学报, 1996, (5): 9-14.
    [30]齐庆新,史元伟,刘天泉.冲击矿压粘滑失稳机制的实验研究[[J].煤炭学报, 1997, 22(2): 144-148.
    [31]李新元.围岩—煤体系统失稳破坏及冲击地压预测的探讨[J].中国矿业大学学报, 2000, 29(6): 633-636.
    [32]尹光志,李贺,鲜学福,等.煤岩体失稳的突变理论模型[J].重庆大学学报, 1994,(1): 23-28.
    [33]张玉祥,陆士良.矿井动力现象的突变机理及控制研究[J].岩土力学, 1997, 18(Supp): 88-92.
    [34]潘一山,章梦涛.用突变理论分析冲击矿压发生的物理过程[J].阜新矿业学院学报, 1992, 11(1): 12-18.
    [35]费鸿禄.岩爆的动力失稳研究[D].沈阳:东北大学, 1993.
    [36]徐曾和,徐小荷,唐春安.坚硬顶板条件下煤柱岩爆的尖点突变理论分析[J].煤炭学报, 1995,(5): 485-491.
    [37] Xu Zenghe, Xu Xiaohe. A CUSP CATASTROPHE, PRECURSORS PATTERN AND EVOLUTION PROCESS OF ROCKBUST OF COAL PILLAR UNDER A HARD ROCK SUBJECT TO ELASTIC SUPPORT, JOURNAL OF COAL SCIENCE & ENGINEERING, 1996, 2(1): 24-31.
    [38]傅鹤林,桑玉发.用突变理论预测地下采场发生冲击的可能性[J].金属矿山, 1996, (1):19-21.
    [39]单晓云.用突变理论预测岩爆的发生的可能性[J].矿山测量, 2000,(4): 36-37.
    [40] Xie H.P. Fractal character and mechanism of rock bursts. Int[J]. J. Rock Mech. Min. Sci. Gromech. Abstr., 1993, 30(40): 343-350
    [41]谢和平.岩爆的分形特征和机理[J],岩石力学与工程学报, 1993, 12(1): 28-37.
    [42]李廷介.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报, 2000, 19(1): 6-10.
    [43]李玉,黄梅.冲击地压防治中的分数维[J].岩土力学, 1994, (4): 34-38.
    [44]李玉,黄梅.冲击地压发生前微震活动时空变化的分形特征[J].北京科技大学学报, 1995, (l): 10-13.
    [45]齐庆新.层状煤岩体结构破坏的冲击矿压理论与实践研究[D].北京:煤炭科学研究总院北京开采所, 1996.
    [46]齐庆新.冲击地压的摩擦滑动失稳机理[J].矿山压力与顶板管理1995(3): 174-177.
    [47]齐庆新,毛德兵,王永秀.冲击地压的非线性非连续特征[J].岩土力学, 2003, 24(supp): 575-579.
    [48] Myer L R and Kemeny J M .Extensive cracking in porous rock under differential compressive stress. Appl. Mech. Rev, 1992, 45(8): 263-280.
    [49] Yoshida H and Horii H. A Micromechanics-based Model for Creep Behavior of Rock. Appl. Mech. Rev. 1992, 45: 294-303.
    [50] Nemat-Nasser S & Horri. Compression-induced Nonplanar Crack Extension with Application to Splitting, Exfoliation, and Rockburst. J. Geoemch. Rev., 1982, 87: 6805-6821
    [51] Bazant Z P, Feng-Bao Lin, Lippmann H. Fracture Energy Release and Size Effect in Borehole Breakout. International Journal for Numerical and analytical Methods in Geomechanics, 1993, 17: 1-11
    [52]张晓春,翟明华,缪协兴,等.三河尖煤矿冲击地压发生机制分析[J].石力学与工程学报, 1998, 17(5): 508-513.
    [53]张晓春,杨挺青,缪协兴.冲击矿压的模拟试验研究[J].岩土工程学报, 1999, 21(1): 66-70.
    [54]张晓春,缪协兴,杨挺青.冲击矿压的层裂板模型及实验研究[J].岩石力学与工程学报, 1999, 18(5): 507-511.
    [55]缪协兴,安里千,翟明华,等.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999, 28(2): 113-117.
    [56]周瑞忠.岩爆发生的规律和断裂力学机理分析[J].岩土工程学报, 1995,(6): 111-117.
    [57]黄庆享.巷道冲击地压的损伤断裂力学模型[J].煤炭学报, 2001,(2): 156-159.
    [58] Zhang Xiaochun, Yang Tingqing. A time-dependent study for rockburst in coal mines. In the 1st International Conference on Advanced in Structural Engineering & Mechanics (ASEE’99): 10-13,August 1999, Seoul Korea.
    [59]张晓春,杨挺青.岩石板梁结构时间相关变形的稳定性分析[J].武汉交通大学学报, 1992, 17(): 23-28.
    [60]张当俊,靳钟铭,康天合.不同采煤方法对冲击地压影响的研究[J].太原理工大学学报,2006,37(6):676-680.
    [61]任宝.坚硬顶板工作面矿山压力显现特征[J].矿山压力与顶板管理,2004,3,79-81.
    [62]彭建勋,金智新,白希军.大同矿区坚硬顶板与坚硬煤层条件下综放开采[J].煤炭科学技术2004,32(2):1-4.
    [63]方新秋,窦林名,柳新仓.大采深条带开采坚硬顶板工作面冲击矿压治理研究[J].中国矿业大学学报,2006,35(5):602-606.
    [64]窦林名,张广文,张士斌,等.济三矿六采区冲击类型及其防治[J].煤矿开采,2007,12(2):58-61.
    [65]牟宗龙,窦林名,张广文,等.坚硬顶板冲击矿压灾害防治研究[J].中国矿业大学学报,2006,35(6):737-741.
    [66]蒋金泉,孙春江,尹增德,等.深井高地应力难采煤层上行卸压开采的研究与实践[J].煤炭学报,2004,29(1):1-6.
    [67]张小涛,窦林名.煤层硬度与厚度对冲击矿压影响的数值模拟[J].采矿与安全工程学报,2006,23(3):277-280.
    [68]张东升,马立强,刘玉德,等.厚硬顶板硬顶煤压缩性分析与综放开采方案选择[J].岩石力学与工程学报, 2006,25(9):1821-1827.
    [69]唐绍辉,吴状军,陈向华.地下深井矿山岩爆发生规律及形成机理研究[J].岩石力学与工程学报,2003,22(8):1250-1254.
    [70]李文,纪洪广,武玉梁.深井冲击地压发生机理分析及预测方法研究[J].中国矿业,2007,16(7):105-107.
    [71]勾攀峰,汪成兵,韦四江.基于突变理论的深井巷道临界深度[J].岩石力学与工程学报,2004,23(24):4137-4141.
    [72]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为的研究进展[J].力学进展,[J],2005,35(1):91-99.
    [73]何满潮,苗金丽,李德建,等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007,26(5):0865-0876.
    [74]唐鑫,潘一山,唐巨鹏,等.阜新矿区冲击地压数值模拟研究[J].煤矿开采,2004,9(4):1-4.
    [75]赵继银,张传信.构造应力场对深井巷道围岩稳定性的影响[J].金属矿山,2005,(5):21-24.
    [76]秦忠诚,王同旭.深井孤岛综放面支承压力分布规律及其在底板中的传递规律[J].岩石力学与工程学报,2004,23(7):1127-1131.
    [77]张永利,李忠华,陈德怀.北京大台井深部岩巷岩爆发生条件及影响因素[J].中国地质灾害与防治学报,2006, 17(3):84-86.
    [78]王庆阳,张德利,李国红.冲击地压的发生与防治[J].煤矿安全,2002, 33(7):9-11.
    [79]夏均民,张开智.冲击倾向性理论在工程实践中的应用[J].矿山压力与顶板管理,2003,(4):96-98.
    [80]赵斌,李秋,李新元.矿井深部开采冲击地压发生的规律及影响因素[J].煤炭工程,2005,(11):52-54.
    [81]朱广轶,李强,郭仁东.老虎台井田构造应力分析[J].辽宁工程技术大学学报,2004, 23(5):591-593.
    [82]汪禄生,曹运江,谭西德,等.利民煤矿煤与瓦斯突出德地质构造条件研究[J].焦作工学院学报,2002, 21(4):251-255.
    [83]慕青松,马崇武,马军伟,等.金川构造应力场对巷道工程稳定性的影响[J].金属矿山,2007,(7):18-22.
    [84]王世安.忻州窑矿“3.23”跨架事故原因分析[J].煤矿安全,2001,(4):6-7.
    [85]孙海丰.深部地层高构造应力煤巷锚杆支护研究[J].煤炭技术[J],2005, 20(6):63-65.
    [86]宋卫华,张宏伟.构造区域应力场与煤与瓦斯突出区域预测[J].矿业开发与环保,2007, 34(4):7-9.
    [87]王恩营,刘明举.煤层断层形成的岩体综合强度分析[J].辽宁工程技术大学学报,2002,21(4):496-498.
    [88]夏玉成.构造应力对煤矿采动损害的影响探讨[J].西安科技学院学报,2004, 24(1):17-19.
    [89]夏玉成,雷达文.构造应力与采动损害关系的数值试验研究[J].辽宁工程技术大学学报,2006, 25(4):527-529.
    [90]陈学华,段克信,黄明利.构造应力作用下冲击地压发生的条件及判据[J],煤炭学报,2005, 30卷(增刊):19-23.
    [91]李先贵.霍州矿区区域地质构造应力—应变场解析[J].山东科技大学学报,2003, 22(3):15-17.
    [92]刘志伟,张宏伟,文振明.矿区岩体应力状态对瓦斯突出区域分布的影响[J].黑龙江科技学院学报,2006, 16(3):139-142.
    [93]郑文涛,汪用,王璐.煤矿瓦斯灾害中地震活动因素探讨[J].中国地质灾害与防治学报,2004, 15(4):54-59.
    [94]裴广文,纪洪广.深部开采过程中构造型冲击地压的能量级别预测[J].煤炭科学技术,2002, 30(7):48-51.
    [95]景海河,管文华,马福义,等.深部巷道构造应力作用下岩爆过程的数值模拟[J].黑龙江科技学院学报,2006,16(1):16-18.
    [96]孙宗欣,张景和.地应力在断层构造前后的变化[J].岩石力学与工程学报,2004, 23(23):3964-3969.
    [97]李忠华,潘一山.断层冲击地压的影响因素与震级分析[J].岩石力学与工程学报,2005, 24(增1):5206-5210.
    [98]冯国财,杨逾,刘文生.断裂活动影响矿区的采煤沉陷灾害问题[J].中国地质灾害与防治学报,2006, 17(1):95-97.
    [99]魏新贤,赵俊辉.构造裂隙对巷道稳定性的影响分析[J].山西煤炭,2003, 23(3):95-97.
    [100]李志华,窦林名,牟宗龙,等.断层对顶板型冲击地压的影响[J].采矿与安全工程学报,2008,25(2):154-159.
    [101]冯恩杰,付民强.东滩矿断层活化对3煤顶板突水的影响[J].煤田地质与勘探,2004,32(4):33-36.
    [102]勾攀峰,胡有光.断层附近回采巷道顶板岩层运动特征研究[J].采矿与安全工程学报,2006,23(3):0285-0288.
    [103]张广宇.断层性质对综采顶板影响程度研究[J].煤炭技术,2008,27(6):80-81.
    [104]孟召平,彭苏萍,冯玉,等.断裂结构面对回采工作面矿压及顶板稳定性的影响[J].煤田地质与勘探,2006,34(3):24-27.
    [105]季明,高峰,朱金艳,等.煤岩正断层处的力学分析与数值模拟[J].煤矿安全,2008,(3):48-50.
    [106]邱虎.地震断层错动产生的应变场特征的研究及地表破裂的研究[D].天津大学,2004.1
    [107]窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J],煤矿支护, 2005, (2): 1-6.
    [108]窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用(续)[J].煤矿支护, 2005, (3): 1-4.
    [109]窦林名,陆菜平,牟宗龙等.冲击矿压的强度弱化减冲理论及其应用[J],煤炭学报, 2005, 30(6): 690-694.
    [110]窦林名,赵从国,杨思光,等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社, 2006, 67-84
    [111]胡耀青,赵阳升,杨栋,段康廉.带压开采顶板破断规律的三维相似模拟研究[J].岩石力学与工程学报,2003, 22(8):1239-1243.
    [112]《土工离心模型试验规程》DL/T5102-1999
    [113]高长胜,徐光明,张凌,等.边坡变形破坏离心机模型试验研究[J].岩土工程学报,2005, 27(4):478-481.
    [114]高大水,郭春茂.地质力学模型试验在高边坡研究中的应用[J].长江科学院院报,1992, 9(3):65-71.
    [115]刘俊新,曹新文,胡启军.红层泥岩路堤离心试验研究[J].铁道工程学报,2005, 86(2):97-100.
    [116]韩立忠.地铁越江隧道地基沉降的离心模型试验分析[J].地下工程与隧道,2005,(3):13-17.
    [117]秦建设,尤爱菊.盾构隧道开挖面稳定数值分析研究[J].矿山压力与顶板管理,2005,(1):27-31.
    [118]吴波,高波.复杂条件下城市地铁隧道施工地表沉降研究[J].中国铁道科学,2006,41(2):129-131.
    [119]漆泰岳,高波,马亮.富水软土地层地铁开挖地表沉降离心模型试验[J].西南交通大学学报,2006,41(2):184-189.
    [120]周小文,濮家骝,殷昆亭,等.南水北调穿黄隧道隧洞衬砌土压力离心试验研究[J].水利水电技术,2003,11(2):193-196.
    [121]周小文,濮家骝.隧洞结构受力及变形特征的离心模型试验研究[J].清华大学学报,2001,41(8):110-113.
    [122]侯瑜京.土工离心机振动台及其试验技术[J].中国水利水电科学研究院学报.2006,(3):15-23.
    [123] Bussiere, B., M. Aubertin, and R.P. Chapuis, The behavior of inclined covers used as oxygen barriers, Canadian Geotech. J., 40 (3): 512-535, 2003.
    [124] Culligan, P.J. and D.A. Barry, Similitude requirements for modeling NAPL movement with a geotechnical centrifuge, Proc. of the Institution of Civil Engineers Geotechnical Engineering, 131, 180-186, 1998.
    [125] Finsterle, S. iTOUGH2 User’s Guide, Report LBNL-40040, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1999.
    [126] Gallagher, P. M., and S. Finsterle, Physical and numerical model of colloidal silica injection for passive site stabilization, Vadose Zone J., 3: 917–925, 2004.
    [127] Ho, C.K. and S.W. Webb, 1998, The Effects of Heterogeneities and Wavy Interfaces on Capillary Barrier Performance, in Proceedings of the TOUGH Workshop 1998, Berkeley, Calif., pp. 216-221, May 4-6, 1998.
    [128] Lo, I.M.C., L.M., Hu, and J.N. Meegoda, Feasibility study of using centrifuge for investigating LNAPL migration in unsaturated soils, Soil & Sediment Cont., 14 (1): 85-103, 2005.
    [129] Moridis, G. and K. Pruess, Flow and Transport Simulations Using T2CG1, A Package of Conjugate Gradient Solvers For the TOUGH2 Family of Codes, Report LBL-36235, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1995.
    [130] Oldenburg, C.M. and K. Pruess, On numerical modeling of capillary barriers, Water Resour. Res., 29(4), 1045–1056, 1993.
    [131] Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 User’s Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1999.
    [132] Smith, R.W., S.M. Payne, and D.L. Miller, INEEL environmental geocentrifuge facility developments, Proc. of Physical Modeling in Geodetics: ICPMG’02, 55-58, 2002.
    [133] Soga, K., J. Kawabata, C. Kechavarzi, H. Coumoulos, and W.A.P. H; Waduge, WAP Title: Centrifuge modeling of no aqueous phase liquid movement and entrapment in unsaturated layeredsoils, J. of Geotech.EOTECHNICAL and Geoenv. Engr., 129 (2): 173-182, 2003
    [134] Tami, D., H. Rahardjo, E.C. Leong, and D.G. Fredlund, Design and laboratory verification of a physical model of sloping capillary barrier, Canadian Geotech. J., 41 (5): 814-830 OCT 2004
    [135] van Genuchten, M.Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc., Vol 44, pp 892-898, 1980.
    [136] Van Genuchten, M.Th., F.J. Leij, and S.R. Yates, The RETC code for quantifying the hydraulic functions of unsaturated soils, U.S. Salinity Laboratory Report EPA/600/2-91/065, USDA, Riverside, Calif., 1991.
    [137] Webb, S.W., and J.C. Stormont, Modeling of Capillary Barriers and Comparison to Data, Proceedings of the TOUGH Workshop 1995, Report LBL-37200, Lawrence Berkeley Laboratory, Berkeley, Calif., pp. 317-322, March 20-22, 1995.
    [138] Webb, S.W., Using TOUGH2 to Model Capillary Barriers, Proceedings of the TOUGH Workshop 1998, Lawrence Berkeley Laboratory, Berkeley. Calif., pp. 192-197, May 4-6, 1998.
    [139]刘守华,蔡正银,徐光明,等.超深厚吹填粉细砂地基大型离心模型试验研究[J].岩土工程学报,2004, 26(6):847-851.
    [140]刘守华,董津城,徐光明,等.地下断裂对不同土质上覆土层的工程影响[J].岩石力学与工程学报,2005, 24(1):1868-1874.
    [141]龚昭熊,郭春茂,刘建.地质力学模型新技术研究-用离心机作静力结构模型试验[J].长江科学院院报,1991, 8(2):1-9.
    [142]龚召熊,陈进,黄薇.再论“用离心机作静力结构模型试验”[J].长江科学院院报,1992, 9(4):17-24.
    [143]黄薇,陈进.离心结构模型试验相似材料研究[J],长江科学院院报,1996,13(1):40-44
    [144]徐光明,章为民.第二届国际软土工程会议模型专题综述[J].水利水电科学进展1997, 17(1):38-42.
    [145]徐光明,高长胜,张凌,等.软土地基上堤防稳定性研究[J].岩石力学与工程学报,2005, 24(13):2315-2321.
    [146]姚燕明,周顺华,李尧臣.离心模型试验边界效应分析[J].力学季刊,2004, 25(2):291-296.
    [147]蔡荣,梁媛,隋旺华,等.离心模型试验概述及其在煤矿开采中的应用[J].工程地质学报,2003,11(2):193-196.
    [148]钱鸣高,石平五.矿山压力与岩层控制[M].中国矿业大学出版社,2003,11.
    [149]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].中国矿业大学出版社,1994,5.
    [150]刘长友,曹胜根,方新秋.采场支架围岩关系及其监测控制[M].中国矿业大学出版社,2003,11.
    [151]宋振骐.实用矿山压力控制[M].中国矿业大学出版社,1988.
    [152]邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J].采矿与安全工程学报,2006,23(2):141-146.
    [153]李忠华,官福海.弹塑性煤柱的应力场计算[J].采矿与安全工程学报,2006,23(1):80-83.
    [154]白峰青,姜兴阁,蒋勤明.断层防水煤柱的可靠度方法[J].辽宁工程技术大学学报(自然科学版),2000,19(4):356-359.
    [155]陈俊杰,邹友峰,郭文兵.断层构造影响下井筒保护煤柱开采研究[J].煤炭工程,2007,(9):72-76.
    [156]张开智,郭周克,程秀洋,等.坚硬顶板煤柱稳定性实测分析[J].煤炭科学技术,2002,30(4):12-15.
    [157]杨科,王树全,刘全明.煤柱宽度对综放回采巷道围岩力学特征影响分析[J].煤炭工程,2005,12,50-52.
    [158]高炜.倾斜煤柱稳定性的弹塑性分析[J].力学与实践,2001,23(2):23-26.
    [159]赵志刚,谭云亮,潘岳,等.狭窄煤柱岩爆的影响因素分析[J].矿业研究与开发,2006,26(4):23-26.
    [160]谢广祥,杨科,刘全明。综放面倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(3):0545-0549.
    [161] Tang C A. Numerical simulation of rock failure and associated seismicity [J]. Int. J. Rock Mech. Sci., 1997, 34(20): 249-252.
    [162]刘红元.采动影响下覆岩破坏过程的虚拟研究[D].沈阳:东北大学, 1998.
    [163] Wang Shuhong, Tang Chunan, Zhu Wancheng, etal. Modeling of mixed crack propagation and coalescence in rock [M]. In: New Development in Rock Mechanics and Rock Engineering. Rinton Press, 2002, 337-341.
    [164] Baradet J P. Numerical Modeling of a Rock burst as Surface Buckling. Rock bursts and seismicity in mines[J],Fairhurst, 1990: 81-85.
    [165] Park D W, Jiang Y M, Morley L A Keeton W Stability Analysis of a Room-and-pillar Mine with Thinly Laminated Roof, Strong Pillars and Weak Floor[J]. Mining Engineering, November 1992: 1355-1366.
    [166]刘波,韩彦辉.FLAC原理、实例与应用指南[M],人民交通出版社,2005,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700