用户名: 密码: 验证码:
平面并联机器人设计、分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究平面并联机器人尺度优化设计,并以3-RRR为例进行优化设计。同时研究了动力学建模方法,在此基础上,分析了机构在奇异位形的动态特性,提出了振动抑制策略,通过仿真和实验进行分析和验证。
     并联机器人的尺度参数可以决定其性能。针对其尺度参数设计,本文提出一种方法步骤进行优化设计,以满足有效工作空间的无奇异高速运动的要求。首先分析推导了3-RRR/4-RRR机构的逆运动学和正运动学,在此基础上,得到机构的雅可比矩阵。然后在机构的参数设计空间,绘制机构的奇异曲线分布图。最后结合奇异曲线分布图,以全局条件数为目标函数,力传递能力为约束条件,对机构进行优化设计。依据上述步骤,优化设计制造了一台3-RRR机构,同时,也设计制作了一台4-RRR机构。
     基于螺旋理论,提出一种平面并联机构(冗余/非冗余)动力学的通用建模方法。利用螺旋理论分析平面并联机构的运动螺旋和力螺旋,在此基础上,基于虚功原理推导了平面并联机构的通用刚体动力学公式。根据公式,分析并建立3-RRR/4-RRR机构的刚体动力学模型。在Adams中对3-RRR机构进行分析,并与matlab分析的结果进行比较,结果相符。对4-RRR机构的驱动力进行力优化和能耗优化,同时和3-RRR机构的驱动力进行比较,结果表明4-RRR机构的驱动力峰值有所下降。
     奇异位形是并联机构的一个固有现象。在前人的研究基础上,利用螺旋理论,分析指出一种新的奇异位形,并称之为约束奇异。它是由于机构局部刚度不足而引起的,同时指出它本质上是力奇异。通过分析推导,得到机构在奇异位形无振动的条件。
     在高速运动中,机构易发生弹性变形,从而易激发机构的振动。本文假定机构弹性变形为线弹性变形,基于等效刚体法,建立机构的坐标系。在惯性坐标系中,先建立了机构单元的动能和势能公式,然后推导了机构支链的动能和势能公式,最后建立了系统的动能和势能公式。考虑机构的主动铰变形的情况,建立了惯性坐标系下的3-RRR机构的弹性动力学公式。因此,此公式可以用于分析机构的残余振动,也可用于分析机构的自激振动。利用弹性动力学公式分析并阐释了机构在奇异位形的残余振动的机理。在研究中,发现了机构在奇异位形发生的非线性振动现象-自激振动。从理论上分析阐释了自激振动的发生机理,并建立了自激振动的公式。
     针对机构在奇异位形的振动,研究振动的抑制策略。分别设计单模态输入整形器和多模态输入整形器抑制残余振动的产生。对于高速运动的机构,动力学的控制显得尤为必要。本文设计了基于滑模原理的鲁棒控制器,建立3-RRR机构的控制方程,分析了其稳定性,仿真结果表明效果较好。
     最后以dSPACE1103为控制器、交流伺服电机为驱动搭建了3-RRR并联机器人。以XL-80激光测量系统和ControlDesk设计实验方案进行实验研究。首先用XL-80对机构在奇异位形的残余振动和自激振动进行实验,结果验证了前述的分析。然后,用ControlDesk对自激振动时的电机转角进行测量,结果表明和前述分析的规律一致。最后,对残余振动的抑制进行实验,结果表明输入整形控制有效地抑制了残余振动,且多模态输入整形器的抑振效果最好。
This thesis proposed a method of the parameters optimal design of the planar parallelrobot, which is applied to3-RRR mechanism. Simultaneously a dynamic modeling, which isused to analyzing the dynamic characteristics of3-RRR mechanism at the singularities, ispresented. A strategy to suspress vibration of the mechanism is put forward and examedexperimently.
     The performation of parallel robot is decided by it kinematic parameters. A methody foroptimal design is proposed to meet the needs of no singularities and high-speed motion in theused work space. Firstly, the inverse and forward kinematic of3-RRR/4-RRR mechanism isderived and Jacobia matrics of the mechanism is attained. Then, the distributioncharacteristics of singular locis in the design space is plotted. Finally, a procedure of optimumdesign of mechanism is addressed, whose objiect function is global condition index subjectedto force transmission capacity. On the method, a3-RRR mechanism is designed andmanufactured. Followly4-RRR parallel mechanism is made.
     An approach to rigid body dynamic analysis of planar parallel mechanism (redulant andnon-redulant) is presented by means of screw theory. Based on the theory of screws and onthe principle of virtual work, a formulation for parallel mechanism is derived. Formulas for3-RRR/4-RRR mechanisms are obtained. The resulting from matlab matchs the analysis resultfrom Adams. Driving forces of4-RRR mechanism is optimized and is compared with thedriving forces of3-RRR mechanism. The result of comparison shows than peak value of4-RRR’s driving forces are smaller.
     Singularities are the nature phenomenon of parallel manipulator. A new singularitynamed constrained singularity, which is caused by deficient rigidity and is force singularity innature, is proposed using screw theory. The condition for no oscillation is derived atsingularity configuration.
     Elastic deformation of the mechanism, which easily leads to oscillation, is arised in thehigh-speed movemotion. Given the linear elastic deformation, a frame is set up using anequivalent rigid link system model. The kinetic and strain energy equation for element e of themechanism are derived firstly and then kinetic and strain energy equation for chains of themechanism are obtained. An elastic equation of motion for3-RRR manipulator, which couldis used to analyze the residu vibration and self-excited oscillation, is constructed in inertialframe by taking into consideration the variation of the driver joint.
     The reason for residu vibration is explained at singularity configuration. A nonlinear self-excited vibration is found at the neighborhood of the singularity configuration of themanipulator. The reason for causing the self-excited vibration is explained and a formulationabout self-excited vibration is builded.
     A scheme for suspressing the oscillation is presented. One modal input shaper andmulti-modal input shaper are constructed respectively to reducing the vibration. Forhigh-speed motion, the dynamical control is needed. Therefore, a slide modal controller,whose control eqution is set up and stability is checked, is designed for motion control. Thesimulation shows that the result is good.
     A3-RRR parallel robot is made with dSPACE1103as controller and AC servo motors onthe basis of3-RRR mechanism. A set of experiments are designed based on XL-80lasersystem and ControlDesk software. A set of experiments about risidu vibration and self-excitedvibration at the singularities are made. The results check the prior analysis about residualvibration and self-excited vibration. And then the rotation angles of servo motors aremeasured with ControlDesk. The resulting angles are in accordance with the priviousexplaination. The experiments of suspressing the residual vibration are done, which show thatinput shaping controller redues the residual oscillation effectively and multi-modal inputshaper suspresses the oscillation in effect.
引文
[1] G.Pollard. Spray Painting Machine. US Patent No.2,213,108,1940
    [2] Gough V.E., Whitehall S.G.. Universal Tyre Test Machine[C]. FISITA NinthInternational Technical Congress,1962:117-137
    [3] Stewart D. A platform with six degrees of freedom[J]. Proc Inst Mech Eng,1965,180(5):371~386
    [4] Hunt K H. Kinematic geometry of mechanisms [M]. Oxford, Great Britain: OxfordUniversity Press,1978
    [5]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:29,228-245
    [6] Gosselin C. M., Angeles J.. The optimal kinematic design of a planar three degree offreedom parallel manipulator[J]. J. of Mech. Transm. Autom. Des.,1988,110(3):35-41
    [7] Sophia E.S.. Design, Manufacture and Control of a planar three degree of freedom[D].McGill: McGill University,1993
    [8] Guilin Yang, Weihai Chen, I-Ming Chen. A geometrical method for the singularityanalysis of3-RRR planar parallel robots with different actuation schemes[C].Proceedings of the2002IEEE/RSJ Intl. conference on intelligent robots and systems,2002,2055-2060
    [9]刘辛军.并联机器人机构尺寸与性能关系分析及其设计理论研究[D].秦皇岛:燕山大学,1999,23-145
    [10] Chablat D., Philippe W.. The Kinematic Analysis of a Symmetrical three Degree ofFreedom Planar Parallel Manipulator[C]. Symposium on Robot Design, Dynamics andControl,2004:1-7
    [11] Kumar V.. Characterization of workspaces of parallel manipulators[J]. ASME J. Mech.Des.,1992,114(3),368–375
    [12] Gao Feng, Liu Xin-Jun and Chen Xu. The relationships between the shapes of theworkspaces and the link lengths of3-DOF symmetrical planar parallel manipulators[J].Mechanism and Machine Theory,2001,36:205-220
    [13] Waseem A. Khan, Venkat N. Krovi, Subir K. Saha. Recursive Kinematics and InverseDynamics for a Planar3R Parallel Manipulator[J]. Journal of Dynamic Systems,Measurement, and Control,2005,127:529-536
    [14] SHAO Zhufeng, TANG Xiaoqiang, CHEN Xu. Inertia match of a3-RRRreconfigurable planar parallel manipulator[J]. Chinese J. of Mech. Engeneering,2009,22(6):791-799
    [15]邵珠峰,唐晓强,王立平.平面柔性3-RRR并联机构自标定方法[J].机械工程学报,2009,45(3):150-155
    [16] Boudreau R., Gosselin C.M.. The synthesis of planar parallel manipulators with agenetic algorithm[J]. ASME J. Mech. Des,1999, Vol.121, No.4:533–537
    [17] Dou Run-Liang. Optimum design of3-RRR planar parallel manipulators[J]. ProcIMechE Part C: Mechanical Engineering Science,2010, Vol.224:411-418
    [18] Marc Arsenault and Roger Boudreau. The synthesis of three-degree-of-freedom planarparallel mechanisms with revolute joints (3-RRR) for an optimal singularity-freeworkspace[J]. Journal of Robotic Systems,2004,21(5):259–274
    [19] Gosselin C.M., Angeles J.. Singularity analysis of closed-loop kinematic chains[J].IEEE Trans Robot Autom,1990,6(3):281–290
    [20] Bonev I. A., Gosselin C. M.. Singularity loci of planar manipulators with revolutejoints[C].2nd Workshop on Computational Kinematics, Seoul, South Korea,2001:1964–1969
    [21] Flavio Firmani, Ron P. Podhorodeski. Singularity analysis of planar parallelmanipulators based on forward kinematic solutions[J]. Mechanism and MachineTheory,2009, Vol(44):13861399
    [22] Sung-Hoon Cha, Ty A. Lasky, Steven A. Velinsky. Singularity Avoidance for the3-RRR Mechanism Using Kinematic Redundancy[C].2007IEEE InternationalConference on Robotics and Automation. Roma, Italy,2007:10-14
    [23]赵新华,沈兆奎,陈广来.平面三自由度并联机器人奇异位形研究[J].天津理工学院学报,2003,19(2):23-25
    [24] Kang Bongsoo, Chu Jiaxin, James K. Mills. Design of High Speed ParallelManipulator and Multiple Simultaneous Specification Control[C]. Proceedings of the2001IEEE International Conference on Robotics and Automation, Seoul, Korea,2001:2723-2728.
    [25] Ke Fu, James K.Mills. A Planar Parallel Manipulator-Dynamics Revisited andController Design[C]. Proceedings of the2005IEEE/RSJ International Conference onIntelligent Robots and Systems,2005:456-461
    [26] Lu Ren, James K.Mills. Adaptive Synchronization Control of a Planar ParallelManipulator[C]. Proceedings of the2004American Control Conference,Boston,Massachusetts, June30-July2,2004:3980-3985
    [27] H.Cheng, Y.K.Yiu, and Z, Li. Dynamics and control of redundantly actuated parallelmanipulators[J]. IEEE/ASME Transactions on Mechantronics,2003, vol.8, No.4:483-491
    [28] Müller A. Internal prestress control of redundantly actuated parallel manipulators—itsapplication to backlash avoiding control[J]. IEEE Trans. Robot.2005,21(4):668–677
    [29] S.Kock, W.Schumacher. A Parallel x-y Manipulator with Actuation Redundancy forHigh-Speed and Active-Stiffness Applications[C]. Proceedings of the1998IEEEInternational Conference on Robotics and Automation, May1998:2295-2230
    [30] Kock, W. Schumacher. Control of a Fast Parallel Robot with a Redundant Chain andGearboxes: exerimental Results[C]. Proceedings of the2000IEEE InternationalConference on Robotics and Automation, April2000:1924-1929
    [31] F. Firmani, R.P. Podhorodeski. Force-unconstrained poses for a redundantly-actuatedplanar parallel manipulator[J]. Mech. Mach. Theory,2004, Vol.39:459-476
    [32] S.B. Nokleby et al. Force capabilities of redundantly actuated parallel mechanisms[J].Mech. Mach. Theory,2005, Vol.40:578-599
    [33] J. F. O’Brien and J. T. Wen. Redundant actuation for improving kinematicmanipulability[C]. In Proc. IEEE International conference on robotics and automation,1999:1520-1525
    [34] S. H. Lee, B. J. Yi, S. H. Kim. Control of impact disturbance by a redundantly actuatedmechanism[C]. In Proc. IEEE International Conference on robotics and Automation,2001:3734-3741
    [35] S. krut, O. Company, and F. Pierrot. Velocity performance indices for parallelmechanisms with actuation redundancy[J]. Robotica,2004, Vol.22, No.2:129-139
    [36]吴宇列,吴学忠,李圣怡.并联机构的奇异与冗余[J].机械科学与技术,2002,21(4):593-595
    [37] Jens Kotlarski, Trung Do Thanh, Bodo Heimann. Optimization strategies for additionalactuators of kinematically redundant parallel kinematic machines[C].2010IEEEInternational Conference on Robotics and Automation Anchorage Convention District.May3-8,2010:656-661
    [38] M.G. Mohamed, C.M. Gosselin. Designing and Analysis of Kinematically RedundantParallel Manipulators with Configurable Platforms[J]. IEEE Trans. Robotics,1999, Vol.21, No.3:277-287
    [39] J.Wang and C.Gosselin. Kinematic analysis and design of kinematically redundantparallel mechanisms[J]. ASME Joornal of Mechanical design,2004, Vol.126, No.1:109-118
    [40] Y.K. Yiu, Z.X. Li. Optimal Forward Kinematics Map for Parallel Manipulator withSensor Redundancy[C]. IEEE Int. Symp. on Comp. Intelligence in Rob. And Aut.,2003:354-359
    [41] J. P. Merlet. Closed Form Resolution of the Direct Kinematics of Parallel ManipulatorsUsing Extra Sensors Data[C]. Proceedings of the1993IEEE International Conferenceon Robotics and Automation, Atlanta,1993:200–204
    [42] F.Marquet. Enhancing Parallel Robots Accuracy with Redundant Sensors[C]. IEEE Int.Conf. Rob.,2002:4114-4119
    [43] V. Bauma, M. Val′aˇzek and Z. Sika. Increase of pkm Positioning Accuracy byRedundant Measurement[C]. Proceedings of the5th Chemnitz Parallel KinematicsSeminar,2006:547–563
    [44] A. Zubizarreta, I. Cabanes, M. Marcos. Control of parallel robots using passive sensordata[C]. Proceedings of the IEEE/RSJ2008International Conference on IntelligentRobots and Systems,2008:2398–2403
    [45] Jens Kotlarski, Houssem Abdellatif, and Bodo Heimann. Improving the pose accuracyof a planar3RRR parallel manipulator using kinematic redundancy and optimizedswitch[C].2008IEEE International Conference on Robotics and Automation Pasadena,2008:3863-3868
    [46] J. Kotlarski, Houssem Abdellatif, Tobias Ortmaier. Enlarging the Useable Workspaceof Planar Parallel Robots using Mechanisms of Variable Geometry[C].2009ASME/IFToMM International Conference,2009:63-72
    [47] Ropponen T., Nakamura Y.. Singularity-free parameterization and performanceanalysis of actuation redundancy[C]. In Proc. IEEE Int. Conf. Robotics Automation,1990:806–811
    [48]韩先国,陈五一,郭卫东.采用冗余驱动提高并联机床精度的研究[J].航空学报,2002,23(5):487-490
    [49] Müller A., Peter Maisser. Generation and application of prestress in redundantlyfull-actuated parallel manipulators[J]. Multibody Syst Dyn,2007, Vol(18):259–275
    [50] Valasek, M., Bauma, V., Sika, Z., etal. Redundantly actuated parallelstructures–principle, examples, advantages[C]. In3rd Parallel Kinematics SeminarChemnitz,2002:993–1009
    [51] Müller A.. Stiffness control of redundantly actuated parallel manipulators[C]. In Proc.IEEE Int. Conf. Robotics Automation, Orlando,2006:1153–1158
    [52]吴宇列,吴学忠,李圣怡.2-DOF冗余平面并联机构的奇异位形与冗余性研究[J].机械设计与研究,2002,18(2):23-24
    [53]张立杰,刘辛军.平面两自由度驱动冗余并联机器人的机构设计[J].机械工程学报,2002,38(12):49-53
    [54]张广立,付莹,杨汝清.一种新型平面三自由度冗余度并联机器人的运动学分析[J].机械设计与研究,2002,18(5):19-21
    [55] G.P. He. F. X. Wang. Optimal synthesis of planar4limbs3-dof over-actuated parallelmechanisms[J]. Mech. Chinese Journal of Mech. Engineering,2007, Vol.20, No.3:34-39
    [56] Xu Boqiang, LI Tiemin, LIU Xinjun. Workspace Analysis of the4RRR Planar ParallelManipulator with Actuation Redundancy[J]. Tsinghua science and technology.2010,Vol.15, No.5:509-516
    [57] O. Alba, G.J.A. Pamanes, P.Wenger. Trajectory planning of a redundant parallelmanipulator changing of working mode[C].12th IFToMM World Congress,2007
    [58] B. Dasgupta, T.S. Mruthyunjaya. Force redundancy in parallel manipulators:theoretical and practical issues[J]. Mech. Mach. Theory,1998, Vol.33, No.6:727-742
    [59] J.F. Gardner, V. Kumar, J.H. Ho. Kinematics and Control of Redundantly ActuatedClosed Chains[C]. IEEE Conf. on Rob. and Aut.,1989:418-424
    [60] Y. Zhang. Singularity elimination of parallel mechanisms by means of redundantactuation[C].12th IFToMM World Congress,2007
    [61] M.A. Nahon, J. Angeles. Force optimization in redundantly-actuated closed kinematicchains[C]. Proc. IEEE Int. Conf. Rob. Aut.,1989:951-956
    [62] H. Abdellatif. Independent Identification of Friction Characteristics for ParallelManipulators[J]. ASME J. Dyn. Sys. Meas., Cont.,2007, Vol.129:294-302
    [63] J. Jeong, D. Kang, Y.M. Cho. Kinematic Calibration for Redundantly Actuated ParallelMechanisms[J]. ASME Journal of Mechanical Design,2004, Vol.126, No.2:307-318
    [64] Jun Wu, Jinsong Wang, Zheng You. A comparison study on the dynamics of planar3-dof4-RRR,3-RRR and2-RRR parallel manipulators[J]. Robot Computer IntegrateManuf.,2011, Vol.27(1):150-156
    [65] Masory O., Wang J.. Workspace evaluation of Stewart Platforms[J]. AdvancedRobotics,1995,9(4):443-461
    [66] Xin Jun Liu, Jinsong Wang, Hao-Jun Zheng. Optimum design of the5R symmetricalparallel manipulator with a surrounded and good-condition workspace[J]. Robotics andAutonomous Systems,2006,54:221–233
    [67] Clavel R. Conception of robot parallel kinematics for production applications[C]. In Int.Symp. On Robotics, stokolm,2002
    [68] Badescu M. and Mavroidis C. Workspace optimization of3-legged UPU and UPSparallel platforms with joint constraints[J]. ASME J. of Mechanical Design,2004,126(2):291-300
    [69] J P Merlet, Parallel manipulator[M]. Spinger,2006:302-311
    [70] Alexei Sokolov, Paul Xirouchakis. Dynamics analysis of a3-dof parallel manipulatorwith R-P-S joint structure[J]. Mechanism and Machine Theory,2007,42:541–557
    [71] Y.K. Yiu, H. Cheng, Z.H. Xiong, G.F. Liu, etal. On the Dynamics of ParallelManipulators[C]. Proceedings of the2001IEEE International Conference on Robotics&Automation, Seoul, Korea,2001:3766-3771
    [72] S. Riebe and H. Ulbrich. Modelling and online computation of the dynamics of aparallel kinematic with six degrees-offreedom[J].Arch. Appl. Mech.,2003,72:813–829
    [73] B. Dasgupta and P. Choudhurry. General strategy based on the Newton–Eulerapproach for the dynamic formulation of parallel manipulators[J]. Mech. Mach.Theory,1999,34:801–824
    [74] W. Khalil and S. Guegan. Inverse and direct dynamic modeling of Gough–Stewartrobots[J]. IEEE Trans. Robot.,2004,20(4):754–762
    [75] W. Khalil and O. Ibrahim. General solution for the dynamic modeling of parallelrobots[J]. J. Int. Robot Syst.,2007, Vol.49:19–37
    [76] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods, andAlgorithms[M]. Springer, Secaucus,2007
    [77] Waseem A, Khan V, Krovi N. Recursive kinematics and inverse dynamics for a planar3R parallel manipulator[J]. Journal of Dynamic Systems, Measurement, and Control,2005,127:529-536
    [78] K.-M. Lee and D. K. Shah. Dynamic analysis of a threedegree-of-freedom in-parallelactuated manipulator. IEEE J. of Robot. Autom.,1988,4(40):361–367
    [79] S. Bhattacharya, H. Hatwal and A. Ghosh. An on-line parameter estimation scheme forgeneralized stewart platform type parallel manipulators[J]. Mech. Mach. Theory,1997,32(1):79–89
    [80] S. Bhattacharya, N. Nenchev and M. Uchiyama. A recursive formula for the inverse ofthe inertia matrix of a parallel manipulator[J]. Mech. Mach. Theory,1998,33(7):957–964
    [81] Asier Z, Itziar C, Marga M. Dynamic modeling of planar parallel robots consideringpassive joint sensor data[J]. Robotic,2010,28:649~661
    [82] Cheng H, Yiu Y. K.,Li Z. X.. Dynamics and control of redundantly actuated parallelmanipulators[J]. IEEE/ASME Transaction on Mechatronies,2003,8(4):483-491
    [83] Yuwen Li, Jinsong Wang, Xin-Jun Liu. Dynamic performance comparison andcounterweight optimization of two3-DOF parallel manipulators for a new hybridmachine tool[J]. Mechanism and Machine Theory,2010,45:1668–1680
    [84] L.-W. Tsai. Robot Analysis: the Mechanics of Serial and Parallel Manipulators[M].John Wiley&Sons Inc.,1999
    [85] Changde Zh, shinmin S. An efficient method for inverse dynamics of manipulatorsbased on the virtual work principle[J]. Journal of Robotics systems,1993,10(5):605-627
    [86] J. Wang and C. Gosselin. A new approach for the dynamic analysis of parallelmanipulator[J]. Multibody Sys. Dyn.,1998,2:317–334
    [87] L.-W. Tsai. Solving the inverse dynamics of a Stewart–Gough manipulator by theprinciple of virtual work[J]. ASME J. Mech. Des.,2000,122:3-9
    [88] Z. Zhu, J. Li, Z. Gan. Kinematic and dynamic modelling for real-time control of tauparallel robot[J]. Mech. Mach. Theory,2005,40:1051–1067
    [89] S. Staicu, D. Zhang and R. Rugesc. Dynamic modelling of a3dof parallel manipulatorusing recursive matrix relations[J]. Robotica,2006,24:125–130
    [90] Jun Wu, Jinsong Wang, Liping Wang. Dynamics and control of a planar3-DOFparallel manipulator with actuation redundancy[J]. Mechanism and Machine Theory,2009,44:835–849
    [91] S. Kumar, D. P. Eberhard. Dynamic analysis of flexible manipulators, a literaturereview[J]. Mechanism and Machine Theory,2006,41:749–777
    [92] Jiegao Wang, C. M. Gosselin and Li CHeng. Modeling and Simulation of RoboticSystems with Closed Kinematic Chains Using the Virtual Spring Approach[J].Multibody System Dynamics,2002,7:145–170
    [93] Polo L.. Design and control of a five bar linkage parallel manipulator with flexiblearms[D] Milan: Politecnico Di Milano,2009
    [94] Alessandro Gasparetto. On the Modeling of Flexible-Link Planar Mechanisms:Experimental Validation of an Accurate Dynamic Model[J]. Journal of DynamicSystems, Measurement, and Control,2004, Vol.126:365-375
    [95] Mathieu Rognant, Eric Courteille, and Patrick Maurine. A Systematic Procedure forthe Elastodynamic Modeling and Identification of Robot Manipulators[J]. IEEETransactions on robotics,2010, Vol.26, No.6:1085-1093
    [96] Xuping Zhang, James K. Mills. Experimental Implementation on Vibration ModeControl of a Moving3-PRR Flexible Parallel Manipulator with Multiple PZTTransducers[J]. Journal of Vibration and Control,2010, vol.16(13):2035-2054
    [97] Yongjie Zhao, Feng Gao, XingjianDong. Dynamics analysis and characteristics of the8-PSS flexible redundant parallel manipulator[J]. Robotics and Computer-IntegratedManufacturing,2011,27:918–928
    [98] Kim N-I, Lee C-W, Chang P-H. Sliding mode control with perturbation estimation:application to motion control of parallel manipulator[J]. Control Engineering Practice,1998,6(11):1321-1330
    [99] Kang J. Y., Kim D. H., Lee K. I.. Robust tracking control of Stewart platform[C].Proceeding of the35th Conference on Decision and Control,1996:3014-3019
    [100] Denkena B, Heimann B, Abdellatif H, etal. Design, modeling and advanced control ofthe innovative parallel manipulator PaLiDA[C]. IEEE/ASME International Conferenceon Advanced Intelligent Mechatronics,2005:632-637
    [101] Honegger M, Brega R, Schweitzer G. Application of a nonlinear adaptive controller toa6DOF parallel manipulator[C]. IEEE Interational conference on robotics andautomation,2000:1930-1935
    [102] Kang, B. S.,Mills, J. K., Two-time scale controller design for a high speed planarparallel manipulator with structural flexibility[J]. Robotica,2002, Vol.20, No.5:519-528
    [103] Kozak K, Imme E U, Singhose W. Locally linearized dynamic analysis of parallelmanipulators and application of input shaping to reduce vibrations[J]. J. of MechanicalDesign,2004,126:156-168
    [104] LI Bing, ZHANG Xuping, Mill J. K., etal. Vibration Suppression of a3-PRR FlexibleParallel Manipulator Using Input Shaping[C]. Proceeding of the2009IEEEinternational Conference on Mechatronics and Automation,2009:9-12
    [105] Ropponen T. Actuation redundancy in a closed-chain robot mechanism[D]. Finland:Helsinki University of Technology,1993
    [106] Chakarov D. Study of the antagonistic stiffness of parallel manipulators with actuationredundancy[J]. Mechanism and Machine Theory,2004,39(6):583-601
    [107] Su Y. X, Zheng C. H, Duan B. Y. Fuzzy learning tracking of a parallel cablemanipulator for the square kilometer array[J]. Mechatronics,2005,15(6):761-746
    [108] C. Gosselin. Kinematic analysis, optimization and programming of parallel roboticmanipulators[D]. Montreal, Quebec, Canada: McGill Univ.,1988
    [109] J. P. Merlet. Parallel manipulators: kinematics, singular configuration andcomplication[C]. Proc.3rd Conf. on advanced robotics,1987:126-135
    [110] K. Kamali and A. Akbarzadeh. A novel method for direct kinematics solution of fullyparallel manipulators using basic regions theory[J]. Journal of Systems and ControlEngineering,2011, vol.225(5):683-701
    [111] Jihou Yang. The Space Model and Dimensional Types of the Four-Bar Mechanisms[J].Mechanism and Machine Theory,1987,22:71-76
    [112] C. Damien, W. Philippe. The kinematic analysis of a symmetrical three degree offreedom planar parallel manipulator[C]. Robotics and Automation1998IEEEInternational conference on,1998:1964-1969
    [113] A.G. Erdman, G.N. Sandor. Mechanism Design: Analysis and Synthesis[M].Prentice-Hall Inc., Englewood,2001:95-110
    [114] Long-Long Wu. Modified transmission angle of planar linkage mechanisms[C].American Society of Mechanical Engineers,1990, Vol.25:131-140
    [115]刘辛军,王立平,吴泽启,etl..基于力传递性能的平面并联机器人的优化设计[J].清华大学学报(自然科学版).2008,48(11):1927-1930
    [116] J. Denavit, R.S. Hartenberg, R. Razi. Velocity, acceleration, and static force analyses ofspatial linkages[J]. Transactions of the ASME, Journal of Applied Mechanics,1965,32(4):903910
    [117] J.E. Holte, T.R. Chase. A force transmission index for planar linkage mechanisms[C].In Proceedings of the ASME Mechanisms Conference,1994:377386
    [118] Y. Takeda, H. Funabashi. Motion transmissibility of in-parallel actuatedmanipulators[J]. JSME International Journal, Series C,1995,38(4):749755
    [119] Chen-Chou Lin, Wen-Tung Chang. The force transmissivity index of planar linkagemechanisms[J]. Mechanism and Machine Theory,2002,37:1465-1485
    [120] Liu Xin-Jun, Wang Jinsong. A new methodology for optimal kinematic design ofparallel mechanisms[J]. Mechanism and Machine Theory,2007, Vol.42(9):1210-1224
    [121] Gosselin C.M. and Angeles J.. A global performance index for the kinematicoptimization of robotic manipulators[J], ASME J. Mech. Des.,1991,113(3):220–226
    [122] Joshi S., Tsai L. W.. Jacobian analysis of limited-DOF parallel manipulators[J]. ASMEJournal of Mechanical Design,2002,124(2):254-258
    [123] Bonev L. A., Zlatanov D., Gosselin C. M.. Singularity analysis of3-dof planar parallelmechanisms via screw theory[J]. J. of Mechanical design,2003,125:573-581
    [124] Lipkin H.. Time derivatives of screws with applications to dynamics and stiffness[J],Mechanism and Machine Theory,2005,40(3):259-273
    [125]蔡胜利,白师贤.冗余驱动的平面并联操作手的输入力优化[J].北京工业大学学报,1997,23(2):37-41
    [126]邵华,关立文,王立平.冗余并联机床驱动力优化解析[J].清华大学学报(自然科学版).2007,47(8):1325-1329
    [127]闫彩霞,何广平.过驱动并联机器人驱动力矩的特解构造法[J].北京航空航天大学学报,2008, Vol.34(16):725-729
    [128]闫彩霞,战强,叔广慧.冗余驱动并联机构预防故障的力矩分配法[J].四川大学学报(工程科学版),2011, Vol.43(2):218-222
    [129]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2006:238-245
    [130] Notash L.. Uncertainty configurations of parallel manipulators[J]. Mechanism andMachine Theory,1998,33:123–138
    [131] Zhao J. S., Feng Z. J., Zhou K.. Analysis of the singularity of spatial parallelmanipulator with terminal constraints[J]. Mechanism and Machine Theory,2005,40:275–284
    [132] J. P. Merlet. Singularity configuration of parallel manipulators and grassmangeometry[J]. Int. J. of Rob. Res.,1989,8(5):45-56
    [133] Park F.C. and Kim J.W.. Manipulability and singularity analysis of multiple robotsystems: a geometric approach[C]. In IEEE International Conference on Robotics andAutomation, Leuven, Belgium,1998:1032–1037
    [134] Ghosal A. and Ravani B.. Differential geometric analysis of singularities of pointtrajectories of serial and parallel manipulators[J]. Journal of Mechanical Design,2001,123:80-89
    [135] H. R. Mohammadi, Daniali P. J., Zsombor-Murray. Singularity Analysis of a GeneralClass of Planar Parallel Manipulators[C]. IEEE International Conference on Roboticsand Automation,1995:1547-1553
    [136] Diniiter Zlatanov, Ilian A. Bonev, C. N.Gosselin. Constraint Singularities of ParallelMechanisms[C]. Proceedings of the2002IEEE International Conference on Roboticsand Automation Washington, DC,2002:124-132
    [137] Wen J.T. and Wilfinger L.S.. Kinematic manipulability of general constrained rigidmultibody systems[J]. IEEE Transactions on Robotics and Automation,1999,15(3):558–567
    [138] Nagarajan. Lagrangian formulation of the equations of motion for elastic mechanismswith mutual dependence between rigid body and elastic motions part1: element levelequations[J]. J. of dynamic systems measurement and control,1990, vol.112:203-214
    [139] Imam, Sandor G. N., Kraner S. N.. Deflection and stress analysis in high speed planarmechanisms with elastic links[J]. ASME J. Engng Ind.,1973,95:541-584
    [140] Piras G., Cleghorn W. L., Mills J. K. Dynamic finite-element analysis of a planarhigh-speed,high-precision parallel manipulator with flexible links[J]. Mechanism andMachine Theory,2005,40:849-862
    [141] Turcic, D. A. and Midha, A.. Dynamic analysis of elastic mechanism systems Part2experimental results[J]. ASME J. Dynam. Systems, Dynamics, Systems, andMeasurement Control,1984,106(4):249-254
    [142] Book, W. J. Recursive Lagrangian dynamics of fexible manipulator arms[J]. Int. J.Robotics Res.,1984,3(3):87-101
    [143] Alessandro D. L. and Bruno Siciliano. Closed form dynamic model of planar multilinklightweight robots[J]. IEEE Transactions on systems man and cyberenetics.1991, vol.21:826-839
    [144] Shabana, A. A.. Resonance conditions and deformable body co-ordinate systems[J].Journal of Sound and Vibration,1996,192:389-398
    [145] Kang, B. S., Mills, J. K.,“Dynamic modeling of structurally-flexible planar parallelmanipulator,” Robotica,20(3), pp.329-339,2002.
    [146] Zhang, X., Cleghorn, W. L., Mills, J. K. Dynamic modeling and experimentalvalidation of a3-PRR parallel manipulator with flexible intermediate links[J]. Journalof Intelligent Robotic Systems,2007,50:323-340
    [147] Lowen, G. G., Chassapis, C.. The elastic behavior of linkage: an update[J]. Mechanismand Machine Theory,1986,21(1):33-42
    [148] Shabana A.A.. Flexible multibody dynamics: review of past and recentdevelopments[J]. Multibody System Dynamics,1997,11:189–222
    [149] Book, W.. Controlled motion in an elastic world[J]. ASME Journal of DynamicSystems, Measurement, and Control,1993,115:252–260
    [150] Giovagnoni M.. Dynamics of flexible closed-chain manipulator[C]. ASME DesignTechnical Conference,1992,69(2):483-490
    [151] Lee, J.D., Geng, Z.. Dynamic model of a flexible Stewart platform[J]. Computers andStructures,1993,48(3):367-374
    [152] Zhou, Z., Xi, J., Mechefske, C. K.. Modeling of a fully flexible3PRS manipulator forvibration analysis[J]. Journal of Mechanical Design,2006,128:403-412
    [153] Wang, X., Mills, J. K.. FEM dynamic model for active vibration control of flexiblelinkages and its application to a planar parallel manipulator[J]. Journal of AppliedAcoustics,2005,66(10):1151-1161
    [154] Xuping Zhang, Mills, J. K., William L. Cleghorn. Coupling characteristics of rigidbody motion and elastic deformation of a3-PRR parallel manipulator with flexiblelinks[J]. Multibody Syst Dyn,2009,21:167–192
    [155]刘善增,余跃庆,杨建新.3-RRC并联柔性机器人动力学分析[J].振动与冲击,2008,27(2):157-161
    [156] Theodore R. J., A. Ghosal. Comparison of the assumed modes and finite elementsmodel for exible multilink manipulators. The Int. J. of Robotics Research,1995, Vol.14:91-111
    [157] Chang L. W., Hamilton, J. F.. The Kinematics of Robotic Manipulators with FlexibleLinks Using an Equivalent Rigid Link System ERLS Model. ASME J. Dyn. Syst.,Meas., Control,1991,113:48–53
    [158]王玉新,汪仪明,刘学深.并联机构构型分岔与保持性研究[J].中国科学E辑,2003,33(1):56-64
    [159]刘延柱.非线性振动.北京:高等教育出版社,2001:126-138
    [160]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990:30-40
    [161] O. J. M. Smith. Posicast control of damped oscillatory systems[C]. Proceedings of theIRE,1957,45(9):1249–1255
    [162] W. E. Singhose. Command generation for flexible systems[D]. Cambridge: MITArtificial Intelligence Lab,1997,1-351
    [163] GAO Mingwang, ZHANG Xianmin and WU ZHiwei. Optimum design of a3-RRRplanar parallel manipulator with a singularity-free workspace[C]. The internationalconference on power transmission, Xi an,2011:606-610
    [164] dSPACE DS1103PPC Controller Board. Germany,2008
    [165] dSPACE ControlDesk Experiment Guide For ControlDesk3.2. Germany,2008
    [166] XL-80激光系统帮助. Renishaw,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700