用户名: 密码: 验证码:
新型蚁群算法及其在边坡工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边坡稳定分析是岩土工程领域的重要课题之一,其主要的分析方法有极限平衡法、极限分析法、有限元强度折减法等。极限平衡法由于方法简单、使用经验丰富,所以有限元等数值计算方法还不能完全替代极限平衡方法,目前它仍然是分析边坡稳定性的主要方法之一。
     在使用极限平衡法对边坡的稳定性进行分析时,最大的困难在于确定最危险滑动面及其对应的安全系数,由于工程实际中的边坡滑动大多为非圆弧滑动面,因此,本文的重点放在对非圆弧滑动面的搜索上。针对一般滑动面搜索,蚁群算法因其并行性、全局收敛性、鲁棒性、对目标函数无约束等特点而得到了广泛的应用。但蚁群算法也存在搜索效率低和搜索过程中易陷入局部最优解的缺点,因些,本文提出了两种改进的算法:奖惩蚁群算法、相遇蚁群算法,前者把每次搜索过程中的较优解和普通解分离开来,以使算法能较快地收敛于最优解;而后者则是把相遇策略用到了搜索过程中,以期算法有更好的搜索空间和多样性的解。另外,本文还提出了将一种筛选蚁群聚类算法,并且将该方法也成功地应用于岩土边坡的稳定性分析,并取得了较好的效果。本文内容分为七章,简要介绍如下:
     第一章介绍了边坡稳定分析的重要性以及边坡稳定分析常用方法的优缺点,得出了临界滑动面搜索方法研究的重要性,针对存在的问题,确定了本文的研究工作内容。
     第二章先简单介绍了蚁群算法的基本原理,随后用算法求解旅行商问题(TSP)问题来说明算法的模型。
     第三章首先分蚁群算法的一般改进思想,然后分析了算法搜索时间长的原因,在此基础上,提出了奖惩蚁群算法,算法的主要是思想是把每次搜索完成后的蚂蚁分成优秀蚂蚁和普通的蚂蚁,相应路径上的信息素的更新则依据蚂蚁建立路径的排名来进行。通过一系列TSP问题的实验验证,改进算法已能和处理TSP问题的最优算法相媲美。
     第四章针对现在蚁算法的一般改进过于强调算法的收敛速度,却忽略了解的搜索空间及解的多样性提高的问题,提出了相遇蚁群算法,算法在搜索过程中所得到的路径都由两只相遇的蚂蚁来构成,并在算法中设置了一个基本的阈值,用来防止由于相遇蚂蚁太少而不能形成解的问题。同奖惩蚁群算法一样,该改进方法也被应用于一系列的TSP问题,并把所得的结果和现在已知的最优结果相比,从结果可以看出,这种改进算法,其全局搜索能力较之基本蚁群算法有明显的提高,并且不易陷入局部最优解。
     第五章首先阐述了一般蚁群聚类问题的基本原理及其所存在的一些不足,在此基础上,提出了筛选蚁群聚类算法,该方法的思想起源于传统蚁群聚类算法中,蚂蚁因随机移动而浪费了大量的计算机资源,并且最终导致算法所得的聚类质量不高这一现象,因此,改进的方法是让蚁群直接对待聚类的对象进行操作,并且以一定的概率反复筛选出每个对象堆中最不适合的个体,并把该个体移动到和它最相称的对象堆中去,以此来形成高质量聚类。
     第六章介绍了边坡滑动面的构建方法,并给出了相应的临界滑动面搜索的搜索原理以及蚁群算法应用于滑动面搜索的方式,并把前文提出的两种改进算法分别应用于临界滑动面搜索的工程实例中,同时把文中提出的改进的蚁群聚类算法也应用岩土工程边坡稳定性的分析,从这些应用中可以看出,蚁群算法适用于解决边坡工程问题。
     第七章对本文研究进行了总结,并且对下一步工作进行了展望。
Slope stability analysis is one of the most important tasks in the geotechnical engineering and it is always performed by Limit equilibrium method, Limiting analysis and Finite element strength reduction. Due to the simplicity, the limit equilibrium method plays an important role in the slope stability analysis, although the numerical methods such as FEM have becoming more and more important for the analysis of slope stability.
     To locate the critical slip surface and its relevant safety factor is very difficult while using the FEM. In this thesis, the emphasis is laid on the searching of noncircular slip surfaces because of the situation involved in the practical engineering. While searching the general slip surface, the ant colony optimization is adopted for its distinct advantages, such as parallelism, global convergence, robustness, and fewer limitations of the objective function. But the efficiency of the algorithm is lower and it’s easy to get trapped in the local optimization. To make up the anterior shortcomings, two kinds of ant colony optimization are proposed: Premium-Penalty Ant Colony Optimization and Meeting Ant Colony Optimization. To quicken the convergence, the first algorithm focuses on distinguishing the excellent ants from ordinary ones in its searching procedure. The latter tries to enlarge the searching space and diversify the searching solutions by the meeting strategy. What’s more, the Abstraction Ant Clustering Algorithm is proposed in this thesis. It’s applied to the stability analysis problems of the slope engineering and receives better results. The thesis is constituted by the following seven chapters:
     In the first chapter, the significance of soil slope stability analysis is introduced. The general methods of solving the slope stability analysis are illustrated. At the same time, the advantages and disadvantages of all these methods are introduced too. All these discussions lead to the necessity of the location of critical slip surface. Based on the existing problems, the objective of this thesis is put forward.
     In the second chapter, the basic theory of ant colony optimization is introduced. The procedure of the algorithm is illustrated by applying to the TSP problem.
     The ordinary improvements of ant colony optimization are putted forward in the beginning of the third chapter. Then, the shortcoming of long searching time is illustrated. Based on anterior discussion, the Premium-Penalty Ant Colony Optimization is proposed. In order to quicken the convergence of the algorithm, in the new algorithm, all the ants are divided into two groups, which include the excellent group and the ordinary one. After the iteration, the updating of pheromone on all tours is manipulated according to the ants’rank. As proved by the simulation experiments, the Premium-Penalty Ant Colony Optimization is ranked among the best Ant Colony Optimizations for tackling the TSP problems.
     Nowadays, most of the ant colony algorithms’improvements focus on the exploitation of gather information to guide future search of ant colony towards better solution space but neglect the exploration of new tours and diversification of the solutions. Under the perspective, the Meeting Ant Colony Optimization is proposed, which combine pairs of searching ants together to expand the diversification of the search. To make up the influence caused by limited number of meeting ants, a threshold constant is applied to make the algorithm function normally. Just as the methods used in the premium penalty ant colony optimization, the Meeting Colony Optimization is applied to a series of TSP problems too. From the results, it’s obliviously that the global searching ability of the new optimization is improved as contrasted with the basic ant colony algorithm. At the same time, the local optimum can be avoided by the new optimization.
     In the fifth chapter, a basic ant clustering algorithm is introduced and its shortcomings are illustrated. Under this perspective, Abstraction Ant Clustering Algorithm is proposed. In the traditional ant clustering algorithm, the searching ant wastes lots of computer resources by random moving and the final quality of the clustering is effected too. In the new algorithm, the use of the grid as ants’working space has been abolished and the clusters are visited by the ants directly. The unsuitable objects in each cluster are picked out with probability and then they are transferred to their most suitable clusters. In this way, a high quality of clustering and sorting of the elements is obtained.
     In the sixth chapter, the generation of general slip surface is illustrated. At the same time, the model of searching the soil slip surface is proposed too. Based on the anterior discussion, all the new ant colony algorithms are applied to the slope stability analysis problems. As proved by the results of these computational examples, the ant colony optimization is easy to be adopted in the slope engineering.
     In the last chapter, the main achievements of this thesis are summarized and the further research of this field is pointed out.
引文
[1]邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用[J].计算力学学报,2001,18(1):81-87.
    [2]邵龙潭,唐洪祥,孔宪京,韩国城.随机地震作用下土石坝边坡的稳定性分析[J].水利学报,1999,(11):66-71.
    [3] Duncan J M.State of the art:limit equilibrium and finite element analysis of slopes[J].Journal of Geotechnical Engineering,ASCE,1996,122(7):577-596.
    [4] Zienkiewice O C, Humpheson C, Lewis R W. Associated and non-associated viso-plasticity and plasticity in soil mechanics[J]. Geotechnique, 1975,25(4):671-689.
    [5] Ugai K.A method of calculation of total factor of safety of slopes by elasto-plastic FEM[J]. Soil and Foundations, 1989, 29(2):190-195.
    [6] Ugai K, Leshchinsky D. Three-dimensional limit equilibrium and finite element analysis: a comparison of results[J]. Soils and Foundations, 1995, 35(4):1-7.
    [7] Matsui T, San K C. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations, 1995, 35(4): 1-7.
    [8] Griffiths D V , Lane P A . Slope stability analysis by finite elements[J]. Geotechnique, 1999, 39(3): 387-403.
    [9]连镇营,孔宪京,韩国城.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [10]赵尚毅,郑颖人,时卫民等,用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [11]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,2003,22(2):254-260.
    [12]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-27.
    [13]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42-46.
    [14]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [15]邓建辉,魏进兵,阂弘.基于强度折减概念的滑坡稳定性三维分析方法[J]:滑带土抗剪强度参数反演分析.岩土力学,2003,24(6):896-900.
    [16]邓建辉,张嘉翔,阂弘等.基于强度折减概念的滑坡稳定性三维分析方法[J]:加固安全系数计算.岩土力学,2004,25(6):871-875.
    [17]王成华,夏绪勇.边坡稳定分析中的临界滑动面搜索方法述评[J].四川建筑科学研究,2002,28(3):34-39.
    [18]孙涛,顾波.边坡稳定性分析评述[J].岩土工程界,2002,3(11):48-50.
    [19] Baker R, Garber M. Variation approach to slope stability. Proceedings of 9th international conference on soil mechanics and found engineering, 1977, 2:9-12.
    [20] Castillo E, Revilla J. The calculus of variations and the stability of slopes. Proceedings of 9th international conference on soil mechanics and found engineering, 1977, 2:25-30.
    [21] Revilla J, Castillo E. The calculus of variations applied to stability of slopes[J]. Geotechnique, 1977, 27(1):1-11.
    [22] Ramamurthy T, Narayan C G P, Bhatkar V P. Variation method for slope stability analysis. Proceedings of 9th international conference on soil mechanics and found engineering, 1977, 2: 139-142.
    [23] De Josselin, De Jong G. Application of the calculus of variation to vertical cut off in cohesive frictionless soil[J]. Geotechnique, 1980, 30(1): 1-6.
    [24] Siegel R A . Computer analysis of general slope stability problems. Res. Report NO. JHRP-75-8, Engineering Experiment station, Purdue University, West Lafayette, Ind., 1975.
    [25] Lefebvre G.STABR user’s manual. Department of CIVIL Engineering, the university of California at Berkeley, 1971.
    [26] Huang Y H. Stability analysis of earth slopes[M]. New York: Van Nostrand Rein-hold Company, 1983.
    [27]莫海鸿,唐超宏,刘少跃.应用模式搜索法寻找最危险滑动圆弧[J].岩土工程学报,1999,21(6):696-699.
    [28]唐超宏,莫海鸿,刘少跃.模式搜索法在边坡稳定性分析中的应用[J].华南理工大学学报(自然科学版),2000,28(2):42-46.
    [29]江见鲸.土建工程常见程序选编[M].北京:水利电力出版社,1987:1-200.
    [30]马忠政,祁红卫,侯学渊.边坡稳定验算中全面搜索的一种新方法[J].岩土力学,2000,21(3):256-259.
    [31] Nguyen V U . Determination of critical slip surface[J] . Journal of Geotechnical Engineering, ASCE, 1985, 111(2): 238-250.
    [32] De Natale J S . Rapid identification of critical slip surface : structure[J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(10): 568-589.
    [33] Celestino T B, Duncan J M. Simplified search for non-circular slip surface. Proceedings of 10th international conference on soil mechanics and found engineering. A.A.Balkema, Rotterdam, the Netherlands, 1981, 3:391-394.
    [34] Arai K, Tagyo K. Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis[J]. Soils and Foundations, 1985, 25(1):43-51.
    [35] Li K S, White W. Rapid evaluation of the critical surface in slope stability problems[J] . International Journal for Numerical and analytical Method in Geomechanics, 1987, 11(5):449-473.
    [36]阎中华.均质土坝与非均质土坝稳定安全系数极值分布规律及电算程序简介[J].水利水电技术,1983,7(1):1-3.
    [37]周文通.最优化方法在土坝稳定分析中的应用[J].土石坝工程,1984,2(1):1-5.
    [38]孙君实.条分法的数值分析[J].岩土工程学报,1984,6(2):1-12.
    [39] Yamagami T , Ueta Y . Search for noncircular slip surfaces by the Morgenstem-Price method . Proceedings of 6th international conference on numerical methods in Geomechanics, Innsbruck, 1988, 1335-1340.
    [40]陈祖煜,邵长明.最优化方法在确定边坡最小安全系数方面的应用[J].岩土工程学报,1988,10(4):l-13.
    [41] Greco V R. Numerical methods for locating the critical slip surface in slope stability. Proceedings of 6th international conference on numerical methods in Geomechanics, Innsbruck, 1988, 1219-1223.
    [42]邹广电.边坡稳定分析条分法的一个全局优化算法[J].岩土工程学报,2002,24(3):309-312.
    [43] Baker R . Determination of critical slip surface in slope stability computation[J]. International Journal for Numerical and analytical Method in Geomechanics, 1980, 4(4): 333-359.
    [44]曹文贵,颜荣贵.边坡非圆临界滑面确定之动态规划法研究[J].岩石力学与工程学报,1995,14(4):320-328.
    [45] Yamagami T, Jiang C.A search for the critical slip surface in three dimensional slope stability analysis[J]. Soils and Foundations, 1997, 37(3):1-16.
    [46] Yamagami T, Ueta Y. Search for critical slip lines in finite element stress fields by dynamic programming. Proceedings of 6th international conference on numerical methods in Geomechanics, Innsbruck, 1988, 1219-1223.
    [47] Zou J Z, Williams D J, Xiong W L. Search for critical slip surfaces based on finite element method[J]. Canadian Geotechnical Journal, 1995, 32(2):233-246.
    [48]史恒通,王成华.土坡有限元稳定分析若干问题的探讨[J].岩土力学,2000,21(2):152-155.
    [49]金小蕙.饱和土坡渗流-变形-稳定性的非线性祸合有限元分析:(博士学位论文).天津:天津大学,2002.
    [50] Boutrup E , Lovell C W . Search technical in slope stability analysis[J]. Engineering Geotechnical, 1980, 16(1):51-61.
    [51] Siegel R A, Kovacs W D, Lovell C W. Random surface generation in stability analysis[J]. Journal of Geotechnical Engineering, ASCE, 1981, 107(7):996-102.
    [52] Greco V R. Efficient Monte Carlo technique for locating critical slip surface[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(7):517-525.
    [53] Abdallah I H, Waleed F H, Sarada K S. Global search method for locating general slip surface using Monte Carlo Techniques[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(7): 688-698.
    [54] Chen Z Y. Random trials used in determining global minimum factors of safety of slopes[J]. Canadian Geotechnical Journal, 1992, 29(2): 225-233.
    [55] John H. Holland.Adaptation in natural and artificial systems[M]. MIT press,1992:1-50.
    [56]肖专文,张奇志,顾兆岑等.边坡最小安全系数的遗传算法[J].沈阳建筑工程学院学报,1996,12(2):144-147.
    [57]肖专文,张奇志,梁力等.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20(1):44-46.
    [58] Anthony T G . Genetic algorithm search for critical slip surface in multiple-wedge stability analysis[J]. Canadian Geotechnical Journal, 1999, 36(2): 382-391.
    [59]弥宏亮,陈祖煌.遗传算法在确定边坡稳定最小安全系数中的应用[J].岩土工程学报,2003,25(6):671-675.
    [60]周杨,冷元宝,赵圣立等.土质边坡非圆弧滑动面的遗传进化模拟[J].河南科学,2004,22(1):96-99.
    [61]聂跃高,刘伟全,施建勇等.加速遗传算法在路堤边坡稳定性分析中的应用[J].中国公路学报,2003,16(4):16-20.
    [62]朱福明,周锡程,王乐芹.一种改进的遗传算法在土坡稳定中的应用[J].港工技术,2003,(3):20-23.
    [63]丰土根,刘汉龙,高玉峰,杨建贵.加速遗传算法在边坡抗震稳定性分析中的应用[J].水利学报,2002,(9):89-93.
    [64]丰土根,刘汉龙,高玉峰,杨建贵.遗传算法在边坡抗震稳定性分析中的应用[J].岩土力学,2002,23(l):63-66.
    [65]甘为军,黄雅虹,张培震.黄土斜坡最危险滑裂面的遗传算法确定及稳定性分析[J].工程地质学报,1999,7(2):168-174.
    [66]李守巨,刘迎曦,何翔等.基于模拟退火算法的边坡最小安全系数全局搜索方法[J].岩石力学与工程学报,2003,22(2):236-240.
    [67]何则干,陈胜宏.遗传模拟退火算法在边坡稳定性分析中的应用[J].岩土力学,2004,25(2):316319.
    [68] M. Dorigo,T.Stützle.Ant Colony Optimization[M].Cambridge:MIT Press,2004:1-500.
    [69]陈昌富.混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用[J].岩石力学与工程学报,2004,23(20):3450-3453.
    [70]陈昌富,龚晓南,王贻荪.自适应蚁群算法及其在边坡工程中的应用[J].浙江大学学报,2003,37(5):566-569.
    [71]李亮,迟世春,林皋.基于蚁群算法的复合形法及其在边坡稳定分析中的应用[J].岩土工程学报,2004,26(5):691-696.
    [72]高玮.搜索土坡潜在滑动面的蚁群算法[J].水利学报,2005,36(9):1100-1105.
    [73]王成华,夏绪勇,李广信.基于应力场的土坡临界滑动面的蚂蚁算法索技术[J].岩石力学与工程学报,2003,22(5):813-819.
    [74] M. Dorigo,L.M. Gambardella. The colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
    [75] M. Dorigo, V. Maniezzo,A. Colorni.The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on System, Man, and Cybernetics, Part B, 1996,26(1):29-41.
    [76] M. Dorigo, G.D. Caro,L.M. Gambardella.Ant Algorithms for Discrete Optimization[J].Artificial Life, 1999,5(3):137-172.
    [77] M. Dorigo,G.D.Caro.Ant Colony Optimization:A New Meta-Heuristic, Proc.1999 Congress on Evolutionary Computation,July 6-9,1999,1470-1477.
    [78] T.Stutzle,H.H. Hoos.Max-Min Ant System[J].Future Generation Computer Systems,2000,16(8):889-914.
    [79] B. Bullnheimer, R.F. Hartl,C. Strauss.A new rank based version of the ant system-A computational study[J].Central European Journal of Operations Research,1999,7(1):25-38.
    [80] M. Dorigo.Elitist Ant System:Optimization, Learning and Natural Algorithms (Ph.D.Thesis).Italy:Politecnico di Milano,1992.
    [81] E. Bonabeau, M. Dorigo,G. Theraulaz.Swarm Intelligence: FromNatural to Artificial System[M].New York:Oxford University Press,1999:1-300.
    [82] Blum C.Ant colony optimization:Introduction and recent trends[J].Physics of Life Reviews, 2005,2(4):353-373.
    [83] Dorigo M,Blum C.Ant colony optimization theory: A survey[J].Theoretical Computer Science, 2005,344(2-3):243-278.
    [84] Yoshiyuki Nakamichi, Takaya Arita.Diversity Control in Ant Colony Optimization[J].Artif Life Robot, 2004,7(4):198-204.
    [85] J. Handl, J. Knowles, M.Dorigo.Strategies for the increased robustness of ant-based clustering[J].Lecture Notes in Computer Science,2003,2977:90-104.
    [86] J. Handl, J. Knowles, M.Dorigo.On the performance of ant-based clustering[J].Frontiers in Artificial Intelligence and Applications,2003,104: 204-213.
    [87] J. Handl, J. Knowles, M. Dorigo.Ant-Based Clustering and Topographic Mapping[J].Artificial Life, 2006,12(1):35-61.
    [88] Ashish Ghosh, Anindya Halder, Megha Kothari.Aggregation pheromone density based data clustering[J].Information Sciences: an International Journal, 2008,178(13):2816-2831.
    [89] A.L. Vizine, L.N. Castro, E.R. Hruschka.Towards improving clustering ants: An adaptive ant clustering algorithm[J]. Informatica, 2005,29(2):143-154.
    [90]陈昌富.仿生算法及其在边坡和基坑工程中的应用[博士学位论文D].长沙:湖南大学,2001.
    [91] Castillo E. Revilla J.The calculus of variations and the stability of slopes.9th Int.Conf.on Soil Mechanics and Foundation Engrg.Vol 2,Int.Society of SSSoil Mechanics and Foundations Engineering,1977,25-30.
    [92]谢全敏,陈立文,夏元友.基于案例挖掘的边坡稳定性智能评价系统研究[J]岩土力学,2008, 29(1):145–148.
    [93]李怀珍,邓广涛.岩质边坡稳定性预测的BP网络法[J].地质灾害与环境保护,2006,17(3):106-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700