用户名: 密码: 验证码:
基于知识元的突发事件系统结构模型及演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济增长和社会发展,人类赖以生存的环境不断恶化,自然灾害、事故灾难以及复合灾害引发的各类突发事件频繁发生,严重地威胁着人类社会和谐发展。突发事件类别多样,不同类型突发事件表现出来的个性特征存在着很大差异。突发事件发生发展的情境不同,突发事件之间的关联关系不同,同一突发事件将会出现不同的演化路径。在突发事件的应对过程中,应急管理者面对大量的、多源的、异构的信息,需要站在综合、总体的层面识别出突发事件的发展态势和演化方向,并在支持信息不完备的情况下快速、科学地进行决策。通过提炼突发事件系统的一般性规律,使应急管理者从共性角度了解突发事件系统的层次结构和演化路径,认知突发事件发生演化的过程,为制定科学有效的应对策略提供理论指导。
     国内外学者从自然灾害、事故灾难、公共卫生事件、社会安全事件等不同方面入手,研究特定领域内突发事件的演化规律。鲜有将突发事件与所处情境视为一个复杂系统,从系统视角研究突发事件系统共性结构特征和共性演化规律。在知识的视角下,知识元与特定领域知识无关,使得利用知识元描述不同类型突发事件系统要素的共性属性特征,进而构建突发事件系统共性结构模型成为可能。如何对各种不同属性特征的突发事件系统进行分析,如何利用人们已有知识和知识管理模型,发掘各类突发事件系统的共性结构特征和演化规律,并以科学的符号进行统一描述成为突发事件应急管理中的关键问题。
     本研究在上述背景下,通过分析突发事件系统的构成,构建突发事件系统中事件知识元和承灾体知识元模型,在知识元模型的基础上剖析突发事件系统的共性结构。界定突发事件系统熵的概念,反映系统内部无序程度,由风险熵和决策熵组成。以知识元模型为基础,在突发事件系统共性结构的框架内,研究突发事件系统熵变过程,辨识系统的演化规律。风险熵是突发事件系统熵演化基础,没有风险熵,应急管理者无需向系统注入决策熵,提出基于事件知识元的突发事件风险熵的预测方法。具体研究如下:
     (1)将突发事件与所处情境视为一个复杂系统,分析突发事件系统的组成,构建了突发事件系统中描述突发事件和客观事物的事件知识元和承灾体知识元。解析突发事件系统的共性结构,形式化描述各个层次,建立了基于知识元的突发事件系统共性结构模型。切分突发事件演化的时间域和情境的空间域,分析突发事件系统的共性结构特征,阐述突发事件系统内部的熵现象,揭示突发事件发生本质、演化实质以及演化的客观基础。
     (2)提出了用以表征系统内部无序程度的突发事件系统熵的概念,由系统中事件知识元实体对象的环境输入属性集提供的风险熵和应急输入属性集提供的决策熵构成。剖析了突发事件系统熵的演化过程,将系统熵变历程归纳为熵的积累期、熵的突变期和熵的衰退期。运用突变论,基于知识元建立了突发事件系统熵的突变模型,获得系统熵的突变条件,确定系统熵稳定态的参数区域。揭示了突发事件系统熵的演化具有渐变和突变两种演化形态,包含滞后突变、超前突变、同步渐稳和异步失稳四种演化路径。
     (3)针对突发事件演化过程中影响因素多、实时观测样本数据少且维数高导致的无法定量描述事件风险熵的难题,提出了基于知识元的突发事件风险熵预测方法。采用投影寻踪方法对突发事件的多因素观测数据进行降维,获得事件知识元实体对象高维输入属性集的一维投影特征值,以此单因素反映多因素的数据特征;利用信息扩散理论将输入属性集的单因素投影特征值扩散到输出属性的风险指标论域的控制点上,获得不同风险等级突发事件的发生概率。借鉴信息熵理论,给出突发事件风险熵的计算方法,预测突发事件发生的可能性。
     (4)以2008年我国南方雨雪冰冻事件系统为例,以长沙市为研究区域,对雨雪冰冻事件系统的构成方法和雨雪冰冻事件风险熵的预测过程进行实例检验。实例分析结果表明本研究提出的基于知识元的突发事件系统共性结构模型,便于描述突发事件发生规律和不同层次内的演化规律。基于知识元的突发事件风险熵预测方法能够根据观测样本的时间序列对风险熵进行预测,风险熵的变化趋势与实际情况相吻合且符合熵变规律。
     本研究以知识元为基础系统地剖析了突发事件系统所具有的共性结构,论述了系统熵的演化规律,提出了突发事件风险熵的预测方法,为突发事件应急管理的理论研究与实践工作提供参考和借鉴。
Witn economic growth and social development, human beings encounter increasing degradation in the environment for survival. Various emergencies derived from natural and accidental disasters, along with those combined, have had severe threats on human society and its harmonious development. Given the variety of the emergencies, they present great differences in their respective features. With different situation and association in between, the same event may present different evolving paths. In the course of answering the emergency, the managers may be faced with plenty of multi-sourced heterogeneous information, and have to identify the development trend and evolving direction in a comprehensive and integral perspective, followed by a rapid and scientific decision-making based on incomplete supporting information. It is helpful for the emergency managers to understand the hierarchical constitution and evolving laws of emergencies by summarizing their general rules, thus is a better cognition of their evolving process and a response in time.
     Researchers at home and abroad have studied the evolving laws of emergencies in certain categories, ranging from natural disasters to accidents, public health incidents, social security events, to name a few, but few regard the emergency and its circumstances as a complex system to look into their systematically constitutional features and evolving laws in generality. In the perspective of knowledge, the knowledge source has nothing to do with the knowledge in specific field, which makes it possible to constitute the general structure model of the emergency system by means of describing the general features of various elements in the system. How to analyze emergency systems with different features? How to make use of the existing knowledge and its management models to find out the general features and evolving laws of various emergencies, and make them expressed in a scientific and unified way? It is essential for such questions to be answered in the management of emergencies.
     Under the above background, this thesis is to establish the modal of knowledge elements in events and hazard bearing body of the emergency system by the conceptualization of emergency and the analysis of its system. Based on the modal of knowledge element, the changing processes of the general structure and the system entropy of the emergency system are to be analyzed, followed by the identification of the general law of the system evolution. According to the knowledge element of the event, the prediction method for risk entropy of the emergency is to be offered. The details are as follows:
     (1) The concept of the emergency is defined from the source of its occurrence by regarding emergencies and their circumstances as a complicated system, followed by the analysis of the system's composition and the establishment of its event knowledge element and hazard bearing body knowledge element. The general structure of the emergency system is analyzed, with format description of various levels and the setting of the general structure modal of the emergency system based on knowledge element. The temporal and spatial domains of the emergency evolution is segmented, thus is the analysis of its characters in dissipative structure and the disclosure of its essence in occurrence, evolution and objective foundation.
     (2) The entropy phenomenon inside the emergency system is explained in details by putting forward the concept of emergency system entropy to reveal the disorder degree inside the system, which is composed of the positive and negative entropies provided respectively by environmental input feature set and emergency response output feature set of the event knowledge element entity in the system. Following the analysis of the evolving process of the system entropy is the induction of the entropy's accumulative, mutation and declining periods from the system entropy evolution. With the application of catastrophe theory, the mutation modal of the emergency system entropy is established based on knowledge element. After getting the changing conditions'of the system entropy, the thesis confirms the parameter domain of the system entropy's stable status. It is revealed that emergency system entropy evolves in two forms, namely, gradual and sudden changes, with four paths of lagging mutation, leading mutation, synchronous gradual stabilization and asynchronous instability.
     (3) Given such challenges as many influencing factors in the course of emergency evolution, and the difficulty in quantitative description of the risk entropy derived from few on-site observation data and multiple dimensions, this thesis puts forward the emergency risk entropy prediction methodology based on knowledge element. By means of projection pursuit, the multi-element observation and measurement data is de-dimensioned, thus is the acquirement of the projected characteristic value from the multi-dimension input feature set of the subject in the event knowledge element, based on which data characteristics of the multi-elements are reflected by single elements. By means of information diffusion theory, the single element's projected characteristic value of the input feature set is spread to the control point of output feature's risk index discourse domain, thus is the acquirement of emergency occurrence probability at different risk levels. By means of information entropy theory, emergency risk entropy calculating method is provided, thus is the prediction of emergency occurrence possibility.
     (4) With reference to the sudden freezing rain and snow event system (SURSES) of China in2008, Changsha City in Hunan Province of China is chosen as the case study area to test the formation method of the SURSES and the risk entropy prediction process of sudden freezing rain and snow events. The case analysis results present that the general structure model of emergency system based on knowledge element put forward by this study is more convenient to be used in describing emergency occurrence law and the evolving rules at different levels. The risk entropy prediction method based on knowledge element can predict the risk entropy according to the time series of the sample. The changing trend of the risk entropy coincides with the rules of the entropy change.
     Based on knowledge element, this study systematically analyzes the general structure of emergency system, discusses the evolving rules of the system entropy, puts forward the prediction methodology of emergency risk entropy, and provides theoretical and practical reference for emergency response management.
引文
[1]钟永光,毛中根,翁文国,等.非常规突发事件应急管理研究进展[J].系统工程理论与实践,2012,32(5):911-918.
    [2]陈安.应急管理的机理体系[J].安全,2007,25(06):10-12.
    [3]Turner B A. The Organization and Inter Organization Development of Disasters[J]. Administrative Science Quarterly.1976,21(3):378.
    [4]Turner B A. Engineering Safety[M]. The sociology of safety in Blockley, Maidenhead:McGraw-Hill International,1992.
    [5]Ibrahim M. Shaluf, Fakharul-razi Ahmadun, Aini Mat Said, et al. Technological man-made disaster precondition phase model for major accidents[J]. Disaster Prevention and Management.2002,11(5): 380-388.
    [6]Toft B, Reynolds S. Learning from disasters[M]. Oxford:Butterworth-Heinemann,1994.
    [7]Fink S. Crisis management:Planning for the inevitable[M]. New York:American Management Association,1986.
    [8]Shaluf, I. M., Ahmadun, F.-r., Mustapha, S. a. Technological disaster's criteria and models[J]. Disaster Prevention and Management.2003,12(4):305-311.
    [9]B. T. Burkholder, M. J. Toole. Evolution of complex disasters[J], The Lancet London:Oct 14,1995, 346(8981):1012-1015.
    [10]J.L. Cortizo, E. Rodriguez, R. Vijande, et al. Blended learning applied to the study of Mechanical Couplings in engineering [J]. Computers & Education,2010,54(4):1006-1019.
    [11]R.P. Dhote, R.V.N. Melnik, J. Zu. Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures [J]. Computational Materials Science,2012,63(10):105-117.
    [12]Md. Saiful Islama, Sinin Hamdan, Mahbub Hasan, et al. Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites [J]. International Biodeterioration & Biodegradation,2012,72(8):108-113.
    [13]Jim E. Morel, Ryan McClarren. Stability of explicit radiation-material coupling in radiative transfer calculations [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2011,112(10):1518-1524.
    [14]Dimitris I. Chortis, Dimitris S. Varelis, Dimitris A. Saravanos. Prediction of material coupling effect on structural damping of composite beams and blades [J]. Composite Structures,2012,94(5): 1646-1655.
    [15]Stefanie Hufhagl-Eichiner, Steven A. Wolf, Laurie E. Drinkwater. Assessing social-ecological coupling:Agriculture and hypoxia in the Gulf of Mexico [J]. Global Environmental Change,2011, 21(2):530-539.
    [16]Jeppe Nicolaisen, Tove Faber Frandsen. Consensus formation in science modeled by aggregated bibliographic coupling [J]. Journal of Informetrics,2012,6(2):276-284.
    [17]周创兵,李典庆.暴雨诱发滑坡致灾机理与减灾方法研究进展[J].地球科学进展,2009,24(5):477-487.
    [18]魏一鸣,张林鹏,范英.基于Swarm的洪水灾害演化模拟研究[J].管理科学学报,2002,5(6): 39-46.
    [19]陈长坤,孙云凤,李智.冰雪灾害危机事件演化及衍生链特征分析[J].灾害学,2009,24(1):18-21.
    [20]方志耕,杨保华,陆志鹏,等.基于Bayes推理的灾害演化GERT网络模型研究[J].中国管理科学,2009,17(2):102-107.
    [21]肖盛燮.生态环境灾变链式理论原创结构梗概[J].岩石力学与工程学报,2006,25(S1):2593-2602.
    [22]范海军,肖盛燮,郝艳广,等.自然灾害链式效应结构关系及其复杂性规律研究[J].岩石力学与工程学报,2006,25(S1):2603-2611.
    [23]李润求,施式亮,彭新.煤矿瓦斯爆炸事故演化的突变模型[J].中国安全科学学报,2008,18(3):22-27.
    [24]龚承柱,李兰兰,柯晓玲,等.基于multi-agent的煤矿水害演化模型[J].煤炭学报,2012,37(6):1005-1009.
    [25]佘廉,刘山云,吴国斌.水污染突发事件:演化模型与应急管理[J].长江流域资源与环境,2011,20(8):1004-1009.
    [26]陈长坤,李建,孙云凤,等.基于粗糙集的城市燃气管道破坏灾害演化诱发机制分析[J].灾害学,2011,26(3):92-96.
    [27]王议锋,田一,杨倩.非典数学模型的建立与分析[J].工程数学学报,2003,20(7):45-61.
    [28]余雷,薛惠锋,高晓燕.基于元胞自动机的传染病传播模型研究[J].计算机工程与应用,2007,43(2):196-198.
    [29]余雷,薛惠锋.基于复杂网络的传染病传播模型研究[J].陕西科技大学学报,2007,25(3):126-129.
    [30]刘德海,工维国,孙康.基于演化博弈的重大突发公共卫生事件情景预测模型与防控措施[J].系统工程理论与实践,2012,32(5):937-946.
    [31]陈之强,马祖军.人工干扰下重大传染病扩散演化的仿真研究[J].西南交通大学学报(社会科学版,2011,12(4):131-136.
    [32]范珉,苏巨诗,王建军.我国公共场所突发事件演化机理实证分析[J].中国安全生产科学技术,2009,5(4):85-90.
    [33]罗成琳.突发群体事件演化及其应对预案构建研究[D]:博士学位论文.哈尔滨:哈尔滨工业大学,2009.
    [34]孙康,廖貅武.群体性突发事件的演化博弈分析[J].系统工程,2006,24(11):59-62.
    [35]刘德海.政府不同应急管理模式下群体性突发事件的演化分析[J].系统工程理论与实践,2010,30(11):1968-1976.
    [36]刘德海,王维国.维权型群体性突发事件社会网络结构与策略的协同演化机制[J].中国管理科学,2012,20(3):185-192.
    [37]刘尚亮,沈惠璋,李峰,等.突发危机事件中群体性事件产生的动态博弈分析[J].系统管理学报,2012,21(2):201-205.
    [38]吕楠,罗军勇,刘尧,等.一种有效的事件演化分析算法[J].计算机应用研究,2009,26(11):4101-4103.
    [39]卞曰瑭,何建敏,庄亚明.基于复杂网络的非常规突发事件的传播演化模型与仿真[J].统计与决策,2011,4:22-24.
    [40]Seth D. Guikema. Natural disaster risk analysis for critical infrastructure systems:An approach based on statistical learning theory [J]. Reliability Engineering and System Safety,2009,94(4):885-860.
    [41]石勇,许世远,石纯,等.沿海区域水灾脆弱性及风险的的初步分析[J].地理科学,2009,29(6):853-857.
    [42]赵霞,王平,龚亚丽,等.基于GIS的内蒙古中部区域洪水灾害风险评价[J].北京师范大学学报(自然科学版),2007,43(6):666-669.
    [43]翟志宏,姜会飞,叶彩华,等.基于概率分布模型的北京地区冰雹灾害风险区划[J].中国农业大学学报,2008,13(6):49-53.
    [44]Pelling M, Maskrey A, Ruiz P, et al. United Nations Development Programme. A global report reducing disaster risk:A challenge for development[R]. New York:UNDP,2004:1-14.6.
    [45]Pelling M. Visions of Risk:A Review of International Indicators of Disaster Risk and its Management [R]. ISDR/UNDP:King's College, University of London,2004:1-56.
    [46]Dilley M, Chen R S, Deichmann U, et al. Natural Disaster Hotspots:A Global Risk Analysis [R]. Washington DC:Hazard Management Unit, World Bank,2005:1-132.
    [47]Cardona O D, Hurtado J E, Chardon A C, et al. Indicators of disaster risk and risk management Summary report for WCDR[R]. Program for Latin America and the Caribbean IADB*UNC/IDEA, 2005:1-47.
    [48]Chung-Hung Tsai, Cheng-Wu Chen. The establishment of a rapid natural disaster risk assessment model for the tourism industry [J]. Tourism Management,2011,32(1):185-171.
    [49]蒋卫国,李京,陈云浩,等.区域洪水灾害风险评估体系(Ⅰ)——原理与方法[J].自然灾害学报,2008,17(6):53-59.
    [50]李世奎,霍治国,王素艳,等.农业气象灾害风险评估体系及模型研究[J].自然灾害学报,2004,13(1):77-87.
    [51]文世勇,赵冬至,张丰收,等.赤潮灾害风险评估方法[J].自然灾害学报,2009,18(1):106-111.
    [52]丁晖,石碧清,徐海根.外来物种风险评估指标体系和评估方法[J].生态与农村环境学报,2006,22(2):92-96.
    [53]李全明,张兴凯,王云海,等.尾矿库溃坝风险指标体系及风险评价模型研究[J].水利学报,2009,40(8):989-994.
    [54]孙研,王绍玉.基于自然和社会属性的堰塞湖风险评估[J].四川大学学报(工程科学版),2011,43(S1):24-28.
    [55]L. S. Iliadis, S. I. Spartalis. Fundamental Fuzzy Relation Concepts of a D.S.S. for the Estimation of Natural Disasters1 Risk [J]. Mathematical and Computer Modelling,2005,42(7):747-758.
    [56]Qiong Li, Jianzhong Zhou, Donghan Liu, et al. Research on flood risk analysis and evaluation method based on variable fuzzy sets and information diffusion [J]. Safety Science,2012,50(5):1275-1283.
    [57]Hexiang Liu, Da-Lin Zhang. Analysis and prediction of hazard risks caused by tropical cyclones in Southern China with fuzzy mathematical and grey models [J]. Applied Mathematical Modeling,2012, 36(2):626-637.
    [58]徐尚仲,朱传杰,高玉成,等.煤矿瓦斯爆炸重大危险源辨识与风险评价[J].煤矿安全,2002,2:11-14.
    [59]吴钢,蔡井伟,付海威,等.模糊综合评价在大伙房水库下游水污染风险评价中应用[J].环境科学,2007,28(11):2438-2441.
    [60]丁燕,史培军.台风灾害的模糊风险评估模型[J].自然灾害学报,2002,11(1):34-43.
    [61]邹强,周建中,周超等.基于可变模糊集理论的洪水灾害风险分析[J].农业工程学报,2012,28(5):126-132.
    [62]王文圣,金菊良,李跃清.基于集对分析的自然灾害风险度综合评价研究[J].四川大学学报(工程科学版),2009,41(6):6-12.
    [63]朱海涛.集对分析在洪水灾害风险分析中的应用研究[D]:硕士学位论文.合肥:合肥工业大学,2010.
    [64]张志镇,高峰,许爱斌,等.冲击地压危险性的集对分析评价模型[J].中国矿业大学学报,2011,40(3):379-384.
    [65]胡国华,夏军.风险分析的灰色-随机风险率方法研究[J].水利学报,2001,4:1-6.
    [66]卢兆明,胡宝清,陆君安,等.高层建筑火灾风险灰关联评估[J].武汉大学学报(工学版),2004,37(5):62-66.
    [67]桂祥友,郁钟铭.基于灰色关联分析的瓦斯突出危险性风险评价[J].采矿与安全工程学报,2006,23(4):464-467.
    [68]孙金凤,陈国华.重大危险源事故风险预警技术研究[J].中国安全生产科学技术,2010,6(2):44-50.
    [69]丁文波,王剑平.基于BP神经网络的城市区域火灾风险评估[J].云南大学学报(自然科学版),2009,31(S2):232-235.
    [70]吴益平,唐辉明,葛修润.BP模型在区域滑坡灾害风险预测中的应用[J].岩土力学,2005,26(9):1409-1413.
    [71]张松柏,田东风,伍钧.核恐怖事件相对风险评估的简易概率方法[J].核动力工程,2006,27(6):74-81.
    [72]丁继新,杨志法,尚彦军,等.区域泥石流灾害的定量风险分析[J].岩土力学,2006,27(7):1071-1076.
    [73]Guzzetti F, Reichenbach P, Ardizzone F, et al. Estimating the quality of landslide susceptibility models [J]. Geomorphology,2006,81(1/2):166-184.
    [74]马占新,任慧龙,戴仰山.DEA方法在多风险事件综合评价中的应用研究[J].系统工程与电子技术,2001,23(8):7-11.
    [75]贾增科.城市燃气管道风险评价研究[D]:硕士学位论文.邯郸:河北工程大学,2008.
    [76]文庭孝,侯经川,龚蛟腾,等.中文文本知识元的构建及其现实意义[J].中国图书馆学报,2007,33(172):91-95.
    [77]李荫涛.布鲁克斯认识地图初探[J].情报学报,1988,7(4):267-269.
    [78]温有奎,赖伯年.网格技术将带来知识管理革命[J].情报资料工作,2002,5:31-34.
    [79]刘植惠.知识基因理论的由来、基本内容及发展[J].情报理论与实践,1998,21(2):71-76.
    [80]赵红洲,蒋国华.知识单元与指数规律[J].科学学与科学技术管理,1984,9:39-41.
    [81]文庭孝,罗贤春,刘晓英,等.知识单元研究述评[J].中国图书馆学报,2011,37(195):75-86.
    [82]史丽萍,唐书林.基于玻尔原子模型的知识创新新解[J].科学学研究,2011,29(12):1797-1806.
    [83]赵蓉英.知识网络及其应用研究[D]:博士学位论文.武汉:武汉大学,2006.
    [84]温有奎.知识元挖掘[M].西安:西安电子科技大学出版社,2005.
    [85]文庭孝.知识单元的演变及其评价研究[J].图书情报工作,2007,51(10):72-76.
    [86]孙成江,吴正荆.知识服务战略:创建增值联盟[J].情报科学,2002,20(10):1028-1029,1035.
    [87]姜永常,杨宏岩,张丽波.基于知识元的知识组织及其系统服务功能研究[J].情报理论与实践,2007,30(1):37-40.
    [88]Ling Jiang, Zongkai Yang, Jixin Wang. Knowledge Indexing of Chinese Text Based Knowledge Element[C].2008 International Symposiumon Knowledge Acquisition and Modeling,2008:35-38.
    [89]周宁,余肖生,刘玮,等.基于XML平台的知识元表示与抽取研究[J].中国图书馆学报,2006,32(163):41-45.
    [90]于洋,党延忠.组织人才培养的超网络模型[J].系统工程理论与实践,2009,29(4):154-160.
    [91]温有奎,温浩,徐端颐,等.基于知识元的文本知识标引[J].情报学报,2006,25(3):282-288.
    [92]张静.刘延_申.卫金磊.论中小学多媒体知识元库的建设[J].现代教育技术,2005,15(5):68-71
    [93]温有奎,徐端颐,潘龙法.基于XML平台的知识元本体推理[J].情报学报,2004,23(6):643-648.
    [94]温有奎,徐国华.知识元链接理论[J].情报学报,2003,22(12):665-670.
    [95]毕经元,顾新建,吕艳,等.基于知识元链接的汽车零部件知识管理系统[J].浙江大学学报(工学版),2009,43(12):2208-2212.
    [96]肖洪,薛德军.基于大规模真实文本的数值知识元挖掘研究[J].计算机工程与应用,2008,44(30):150-152,222.
    [97]仲秋雁,郭艳敏,王宁,等.基于知识元的非常规突发事件情景模型研究[J].情报科学,2012,30(1):115-120.
    [98]陈雪龙,董恩超,王延章,等.非常规突发事件应急管理的知识元模型[J].情报杂志,2011,30(12):22-26,17.
    [99]裘江南,师花艳,叶鑫,等.基于事件的定性知识表示模型[J].系统工程,2009,27(10):1-8.
    [100]王涛,王延章,鲁艳霞.突发公共事件基于本体的元事件模型研究[J].大连理工大学学报,2012,52(3):458-463.
    [101]廖开际,熊会会,叶东海.基于知识元理论的应急文档结构化建模[J].计算机应用研究,2011,28(1):175-178.
    [102]仇宝艳.面向领域本体的知识建模问题研究[D]:硕士学位论文.济南:山东师范大学,2009.
    [103]杨建林.知识表示与知识相关性度量研究[J].情报理论与实践,2011,34(5):1-5.
    [104]王延章.模型管理的知识及其表示方法[J].系统工程学报,2011,26(6):850-856.
    [105]沈维道.工程热力学(第三版)[M].北京:高等教育出版社,2000.
    [106]王彬.熵与信息[M].西安:西安交通大学出版社,1994.
    [107]阎康年.热力学第二定律和热寂说的起源与发展[J].物理,1986,15(2):121-126.
    [108]周善东.熵与热力学定律的关系[J].广西物理,1996,17(2):11-13.
    [109]汤蓉蓉.熵和信息:多学科的概观[J].江西大学学报(自然科学版),1983,4:87-96.
    [110]梁灿彬.广义热力学第二定律[J].大学物理,1983,12:24-26.
    [111]成思危.管理科学的现状与展望[J].管理科学学报,1998,1(1):8-14.
    [112]方兆烓.熵概念的泛化[J].自然杂志,1989,12(2):90-97.
    [113]冯端,冯步云.熵[M].北京:科学出版社,1992.
    [114]Cover TM, Thomas J A,阮吉寿,张华译.信息论基础[M].北京:机械工业出版社,2005
    [115]朱雪龙.应用信息论基础[M].北京:清华大学出版社,2001.
    [116]沈世镒,吴忠华.信息论基础与应用[M].北京:高等教育出版社,2004.
    [117]雷内·托姆.结构稳定性与形态发生学[M].成都:四川教育出版社,1992.
    [118]Arnold V. Catastrophe Theory[M].Berlin:Springer-Verlag,1984,34-40.
    [119]赵松年,于允贤.突变理论及其在生物医学中的应用[M].北京:科学出版社,1987:36-60.
    [120]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1997.
    [121]祁明亮,池宏,赵红,等.突发公共事件应急管理研究现状与展望[J].管理评论,2006,4:44-45.
    [122]Day Brennan, Ruth Burnice Mckay, Michael Ishman, et al. "It will happen again" What SARS taught businesses about crisis management[J]. Management Decision,2004,42.
    [123]Hearit Keith Michael, Jeffrey L Courtright. A social constructionist approach to crisis management: Allegations of sudden [J]. Communication Studies, Spring,2003,54.
    [124]Coady. Terrorism, Morality and Supreme Emergency [J]. Ethics, Jul,2004,114.
    [125]秦启文.突发事件的管理与应付[M].北京:新华出版社,2004.
    [126]龙娟.基于耗散结构理论的我国政府突发事件应急管理系统研究[D]:硕士学位论文.秦皇岛:燕山大学,2009.
    [127]孙香勤.三峡坝区突发事件的多主体应急联动组织优化研究[D]:硕士学位论文.武汉:武汉理工大学,2007.
    [128]郭兴旺.突发公共事件:绕不开的话题[J].中国发展观察,2005,5:4-8.
    [129]郝国庆.建立和完善我国突发事件应对机制[J].党政干部论坛,2003,6:20-22.
    [130]李明强,张凯,岳晓.突发事件的复杂科学理论研究[J].中南财经政法大学学报,2005,6:23-26.
    [131]孟笋.突发公共事件的政府应急管理研究[D]:硕士学位论文.南京:南京航空航天大学,2008.
    [132]齐善鸿,乐国林,刘金岩,等.基于熵与自组织理论的突发事件分析模型[J].科技管理研究,2006,10:238-241.
    [133]国家突发公共事件总体应急预案,http://www.gov.cn/yjgl/2005-08/07/content_21048.htm.
    [134]范维澄,刘奕.城市公共安全体系架构分析[J].城市管理与科技,2009,5:38-41.
    [135]于海峰,王延章,王宁等.基于情境的突发事件演化网络约简研究[J].情报杂志,2012,31(11):1-4,10.
    [136]Merle Jacob, Tomas Hellstrom. Policy understanding of science, public trust and the BSE-CJD crisis [J]. Journal of Hazardous Materials,2000(78):303-317.
    [137]马建华,陈安.突发事件的演化模式分析[J].安全,2009,12:1-4.
    [138]陈伟珂,向兰兰.基于熵及耗散结构的公共安全突发事件的过程分析研究[J].中国软科学,2007,10:149-154.
    [139]于伟佳,许志晋.熵理论的跨学科功能[J].自然辩证法研究,1994,10(7):48-54.
    [140]桑博德著,凌复华译.突变理论入门[M].上海:上海科学技术文献出版社,1983.
    [141]Guzzetti F, Reichenbach P, ARDIZZONE F, et al. Estimating the quality of landslide susceptibility models [J]. Geomorphology,2006,81(1/2):166-184.
    [142]Seth D. Guikema. Natural disaster risk analysis for critical infrastructure systems:An approach based on statistical learning theory [J]. Reliability Engineering and System Safety,2009,94(4): 885-860.
    [143]L. S. Iliadis, S. I. Spartalis. Fundamental Fuzzy Relation Concepts of aD.S.S. for the Estimation of Natural Disasters'Risk [J]. Mathematical and Computer Modelling,2005,42(7):747-758.
    [144]Hexiang Liu, Da-Lin Zhang. Analysis and prediction of hazard risks caused by tropical cyclones in Southern China with fuzzy mathematical and grey models [J]. Applied Mathematical Modeling,2012, 36(2):626-637.
    [145]王文圣,金菊良,李跃清.基于集对分析的自然灾害风险度综合评价研究[J].四川大学学报(工程科学版),2009,41(6):6-12.
    [146]吴益平,唐辉明,葛修润.BP模型在区域滑坡灾害风险预测中的应用[J].岩土力学,2005,26(9):1409-1413.
    [147]金菊良,张欣莉,丁晶.评估洪水灾情等级的投影寻踪模型[J].系统工程理论与实践,2002,22(2):140-144.
    [148]Wang Shunjiu, Zhang Xinli, Yang Zhifeng, et al. Projection pursuit cluster model based on genetic algorithm and its application in karstic water pollution evaluation [J]. International Journal of Environment and Pollution,2006,28(34):253-260.
    [149]Huang Chongfu. Principle of information diffusion[J]. Fuzzy Sets and Systems,1997,91(1):69-90.
    [150]Xingpeng Liu, Jiquan Zhang, Weiying Cai, et al. Information diffusion-based spatio-temporal risk analysis of grassland fire disaster in northern China[J]. Knowledge-Based Systems,2010,23(1):53-60.
    [151]王洪德,郑玉钱.基于网格划分及信息扩散的化工园区安全风险评价技术[J].系统工程理论与实践,2010,30(7):1286-1292.
    [152]张晶晶,何幼桦,王巧兰,等.改进的二维最优信息扩散方法[J].上海大学学报(自然科学版),2006,14(4):371-375.
    [153]黄崇福.自然灾害风险分析的信息矩阵方法[J].自然灾害学报,2006,15(1):1-10.
    [154]朱再春,陈联裙,张锦水,等.基于信息扩散和关键期遥感数据的冬小麦估产模型[J].农业工程学报,2011,27(2):187-193.
    [155]赵小勇.投影寻踪模型及其在水土资源中的应用[D]:硕士学位论文.哈尔滨:东北农业大学,2006.
    [156]Kruscal J B. Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new index of condensation[M]. New York:In Statistical Computer Academic,1969.
    [157]Switzer P. Numerical Classification In Geostatistics[M]. New York:Plenum Press,1970.
    [158]Friedman J.H., Tukey J. W. A projection pursuit algorithm for exploratory data analysis[J]. IEEE Transactions on Computer,1974, C-23:881-890.
    [159]Friedman J. H. Stuetzle W. Projection pursuit regression[J]. J. Amer. Statist. Assoc,1981,76: 817-823.
    [160]Hall P. On polynomial-based projection indices for exploratory projection pursuit[J]. The Annals of Statistics,1989,17(2):589-605.
    [161]Friedman J. H. Projection pursuit density estimation[J]. J. Amer. Statist. Assoc,1984,79:599-608.
    [162]Huber P. J. Projection pursuit (with discussions) [J]. The Annals of Statistics,1985,13(2):435-475.
    [163]付强,赵小勇.投影寻踪模型原理及其应用[M].北京:科学出版社,2006:79.
    [164]付强,金菊良,梁川.基于实码加速遗传算法的投影寻踪分类模型在水稻灌溉制度优化中的应用[J].水利学报,2002,10:39-45.
    [165]付强,李晓秋,肖建民.基于实数编码的加速遗传算法在推求流量水深关系中的应用[J].东北水利水电,2001,19(10):1-4.
    [166]毛熙彦,蒙吉军,康玉芳.信息扩散模型在自然灾害综合风险评估中的应用与扩展[J].北京大学学报(自然科学版),2012,48(3):513-518.
    [167]黄崇福,张俊香,刘静.模糊信息优化处理技术应用简介[J].信息与控制,2004,33(1):61-66.
    [168]黄崇福.自然灾害风险评价——理论与实践[M].北京:科学出版社,2005:152-158.
    [169]王遵娅,张强,陈峪,等.2008年初我国低温雨雪冰冻灾害的气候特征[J].气候变化研究进展,2008,4(2):63-67.
    [170]专家称雨雪冰冻灾害强度已达百年一遇,http://news.cnnb.com.cn/system/2008/02/21/005483248. shtml.
    [171]民政部通报近期低温雨雪冰冻灾情和救灾工作情况,http://www.mca.gov.cn/article/zwgk/ mzyw/200802/20080200011960.shtml.
    [172]黄小玉,黎祖贤,李超,等.2008年湖南极端冰冻特大灾害天气成因分析[J].气象,2008,34(11):47-53.
    [173]叶成志,吴贤云,黄小玉.湖南省历史罕见的一次低温雨雪冰冻灾害天气分析[J].气象学报,2009,67(3):488-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700