用户名: 密码: 验证码:
珩磨加工中在线气动测量与尺寸控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珩磨是磨削加工中一种特殊高效的精加工方法,国产珩磨机无论制造水平、加工精度、还是控制方式等与国外珩磨机相比都存在着较大差距,难以满足高尺寸精度、高形状精度和高度自动化的实际要求,高加工精度、高自动化的数控珩磨机研发及其关键技术的研究成为我国先进制造装备领域的重要研究内容之一。在线测量是数控珩磨机的重要组成部分,是形成珩磨机闭环控制系统的必需环节,也是控制珩磨孔加工尺寸分散度、提高形状精度,保证加工质量的有效手段。
     本文以流体力学理论为基础,结合珩磨加工的特点,提出了基于差压式在线气动测量的珩磨加工精度控制的思想,重点研究了测量元件及实际工况对测量精度的影响,在获得高精度测量结果的基础上,通过尺寸预报和在线圆柱度监控分别保证珩磨加工的尺寸精度和形状精度,实现珩磨加工全过程测量。主要研究内容如下:
     1.以流体力学理论中的流体运动基本方程为基础,针对珩磨气动测量的特殊应用条件,建立了曲面挡板机构测量模型,提出了当量间隙的概念,建立了差压式气动测量时测量腔的背压在四种工况下的数学模型;确定了当被测工件直径和测量喷嘴外径与测量精度在曲率阈值范围内时,采用本文推导所得方程能够有效提高测量精度;同时,从提高珩磨加工尺寸精度和形状精度的角度,制定了基于气动在线测量的加工尺寸控制策略,明确了将圆柱度作为珩磨加工中形状精度控制的指标。曲面挡板条件下的气动测量数学模型和珩磨加工精度控制策略的建立是本文后续研究的基础。
     2.以双进给珩磨头为研究对象,采用理论分析和FLUNT仿真相结合的方法,研究了珩磨头的结构参数和护板参数对测量精度的影响。研究结果表明,主喷嘴的直径影响测量范围,而测量喷嘴直径影响测量系统的分辨率;测量喷嘴外径和长度选择不当会造成测量不稳定,测量喷嘴下沉量与加工余量、测量系统的初始间隙有关;护板倒圆角后能够明显改善测量过程中流场的稳定性。本文提出的珩磨头测量元件结构参数的设计原则,为高精度测量珩磨头优化设计提供了理论依据。
     3.利用流体仿真软件FLUENT,对珩磨实际工况下气动测量的精度与珩磨液之间的关系进行了仿真研究,验证了在湿珩状态下,珩磨液在环形窄缝中为层流状态;通过仿真获得了珩磨液在不同温度和粘度条件下的△p-S曲线,确定了当工况温度小于35℃,珩磨液运动粘度在5-8cst(40℃)范围内,可以取得放大倍数和线性范围的最佳值;气动测量的精度与珩磨液参数之间关系的确定为珩磨加工中合理地确定珩磨液,提高测量精度提供了理论依据。
     4.从珩前工件宏观形状误差和粗珩加工中引起圆柱度误差的原因入手,研究了珩前工艺、加工余量、珩磨进给速度、冲程、工件装卡方式等因素对工件圆柱度的影响,提出了珩磨加工中控制工件圆柱度误差的整体策略;提出了三截面法和斜率法判定珩前工件宏观形状;提出了在全行程珩磨中结合最小二乘法和二分法、基于投影的圆度最小二乘法两种圆柱度评定模型,并通过仿真验证了两种模型的优缺点和适用范围,确定了结合最小二乘法和二分法模型可以用于珩磨加工在线圆柱度监控。通过珩前宏观形状判定和粗珩中圆柱度监控实现了对珩磨加工中工件形状误差的有效控制。
     5.以珩磨加工中加工尺寸序列为研究对象,验证了等维递补预报的预报精度较高,并确定珩磨加工条件下预报模型的最优维数为15维;提出了采用去除畸数据的方法抑制维数对精度的影响,有效解决了灰色预报模型维数不易确定的困难;提出了基于灰色模型和时间序列预报模型的组合预报模型SGM(αt,S0,t,1,1),有效避免了单一模型的局限性,抑制了单一模型的参数对预报精度的过多影响。仿真结果表明在本文所列各种预报模型中,组合预报模型最具有实际使用价值,为珩磨加工尺寸预报模型的建立提供了理论依据。
Honing process is a special grinding efficient finishing method. There is a big gap between domestic honing machine and foreign honing machine both in the level of manufacturing, processing accuracy, and control mode. It is difficult to meet the actual requirements of the high dimensional accuracy, high shape precision and a high degree of automation.High machining accuracy, highly automated CNC honing machine and its key technology has become one of the important research content of the field of advanced manufacturing equipment. On-line measurement is an important part of the CNC honing machine. It is a necessary link to form closed loop control system of the honing machine and the effective means of controlling honing Holes dispersity, improving shape accuracy, and ensuring the quality of processing.
     In this paper, based on the elementary theory of fluid dynamics and combining the characteristics of the honing processing, a general idea of the honing machining precision control based on the on-line pneumatic measuring is proposed. This idea focused on the impact of measuring element and the actual conditions on the measurement accuracy in the honing process. On the basic of accurate measurement results, ensure the dimensional accuracy and shape accuracy by size forecast and online cylindricity monitoring to achieve the whole process measurement of honing process.The following are the main content of the research.
     (1) According to the basic equations of fluid dymamics theory and the special applications conditions for honing aerodynamic measurements, a curved baffle institutions measurement model is established and the concept of equivalent clearance is put forward, the mathematical model for measurement chamber backpressure in four kinds of difference conditions is established. Meanwhile, for the purpose of rising the honing processing dimensional accuracy and shape accuracy, the strategy of size control in the whole process of honing processing. These are theoretical basis for the honing of on-line measurement system for improving the precision and realize quality control in the whole honing process.
     (2) Using Double-feed honing head as the research object, a combination of theoretical analysis and FLUNT simulation as the method to study the structural parameters of the honing head and shield parameter measurement accuracy. The results show that the nozzle diameter and length has relations with the measurement range and precision, and the nozzle settlement should be less than0.035mm, retaining plate fillet can improve the measurement accuracy. These are theoretical basis for the optimization design in design of high precision honing tool.
     (3) Study the relationship between the measuring accuracy and the actual conditions of honing liquid based on simulation. First, the flow state of honing liquid in narrow annular gap is laminar flow. And the relationship between the viscosity and temperature of the honing liquid and the magnification and range of the measurement is discussed. The optimum working temperature and viscosity of the honing liquid is determined after the simulation in the different conditions. This is theoretical basis for the reasonable choice for honing liquid.
     (4) By systematic analyzing the factors on workpiece cylindricity, the strategy of cylindricity error control for inner honing is proposed for the first time. The three section method and slope method is used for confirming the macroscopic shape error before the honing processing. A new concept of control the shape precision is put forward based on the method of on-line cylindricity monitoring in the course of full area honing. Aiming at the requirement of high accuracy and rapid decision in the cylinder monitoring, two models of cylindricity evaluation are put forward. One is combined with the least square and dichotomy, the other is based on the projection of the least square method for roundness evaluation model. Through the simulation of the two models, the combination of the least square method and dichotomy model can be used for the cylindricity on-line monitoring in the honing process.
     (5) Based on the studied of time sequence model and grey model, with the honing machining dimensions for the study object, the essay verified the forecasting has higher accuracy with grey numbers of identical dimensions, and determined the optimal dimension under the condition of honing machining. The method of removal of abnormal data is used to inhibit the effect of dimension on accuracy. It has solved the problem effectively that grey forecasting model dimension is not easy to determine. A novel forecasting model SGM(a1,S0,t,1,1)is proposed, which is the combination based on gray model and time series forecasting model. And the new model can avoided single modle limitations effectively, inhibited the excessive influence of the model parameters of a single model of forecasting accuracy. The essay used honing size deviation to verify the applicability of the various forecasting models, the results show that in the essay lists various forecasting models, and the combination model has the most practical value in forecasting for honing precess.
引文
[1]张宏军.“高档数控机床与基础制造装备”科技重大专项课题可行性研究报告[R].宁夏:宁夏银川大河数控机床有限公司,2009,3
    [2]苏达智.珩磨工艺技术[M].宁夏:中国计量出版社,2001
    [3]Zhao Yong. Research and manufacturing of honing tool for small deep hole machining in super hard material [J]. Journal of Zhengzhou University,1998, 30(4):49-54
    [4]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003
    [5]Gasanov R F, Ruvinov Sh R, Albert L M. Improvement of the design of honing equipment for the treatment of the entire cylinders of oil-well pumps[J]. Chemical and Petroleum Engineering,986,22, (3):165-167
    [6]Weigmann U-P. Connecting rods finish-honed instead of reamed[J]. Werkstatt und Betrieb,2001,134, (5):36-38
    [7]Muralikrishnan B, Raja J. Functional filtering and performance correlation of Plateau honed surface profiles [J]. Journal of Manufacturing Science and Engineering,2005,1:193-197
    [8]沈明均,唐晓芸.小型汽油机缸孔平顶珩磨技术简介[J].汽车研究与开发,2001,(2):14-16
    [9]Yevdokimov Yu A, Zubkov Ye N, Golovchenko I P, ectl. Using liquid glass as the base of coolants for metals honing. Trenie i Iznos,1992,13 (2):378-382
    [10]Amini N, Westberg H, Klocke F. Experimental study on the effect of power honing on gear surface topography[J]. Doktorsavhandlingar vid Chalmers Tekniska Hogskola,1999:1498-1502
    [11]Shcherbina V I, Belobragin Yu A, Usov S V. Stochastic model of the electrochemical honing process[J]. Soviet surface engineering and applied electrochemistry,1986,5:1-7
    [12]Guo Dongming. Computer-integrated field-controlled electrochemical honing Metal removal law along axial direction for cylindrical workpiece[C]. In: Proceedings of the International Conference on Manufacturing Science and Technology,1990,39-43
    [13]Dubey A K, Shan H S, Jain N K. Precision micro-finishing by electro-chemical honing[C]. In:Proceedings of the International Conference on Manufacturing Science and Technology,2006,173-176
    [14]Malburg Mark C, Raja Jay, Whitehouse David J. Characterization of surface texture generated by plateau honing process[J]. Manufacturing Technology, 1993,42 (1):637-639
    [15]Guo Y B, Zhang Y, Zhong J A. Optimization of honing wheel structure parameters in ultra-precision plane honing[J]. Materials Processing Technology,2002,129 (1-3):96-100
    [16]Zhu X J. Study on the technology of new ultrasonic honing[J]. Key Engineering Materials,2001,202-203:407-410
    [17]Zhang Y K, Kong D J, Fu Y H. Study on mechanism and experiment of engine cylinder by laser honing[J]. Key Engineering Materials,2007,329:315-322
    [18]Zhang Yundian, Wang Chun, Yu Jiaying. Ultrasonic vibration Honing technology[C]. In:Proceeding of the Transformation of Science and Technology into Productive Power,1991,28-34
    [19]Flores Gerhard. Brush honing-a variation of the honing method[J]. Werkstatt und Betrieb,1988,121 (12):989-992
    [20]符永宏,叶云霞.用于显著改善摩擦副润滑状态的激光珩磨技术[J].机械工程学报,2002,(8):115-11
    [21]Klink Ulrich, Flores Gerhard. New technologies of honing[J]. Technical Paper-Society of Manufacturing Engineers, MR,1998
    [22]上海善能机械有限公司[J].制造技术与机床,2004,(9):91-93
    [23]王明华.国外珩磨机采用的新技术[J].机床与液压,1997,(4):56-59
    [24]GMBH G, MASCHF C. Method of finishing a surface of a work piece:US, 5441439[P].1995-08-15
    [25]GMBH G, MASCHF C. Method of fine-machining a Work piece surface to be supplied with lubricant during operation of the work piece:US 5630953[P].1997-05-20
    [26]石淼森.气动测量[M].北京:中国计量出版社,1992
    [27]王仁富.精密气动计量仪器[M].北京:中国计量出版社,1992
    [28]Liu J Wang. Study on automatic measurement of valve orifice characteristic based on pneumatic flow method[J]. Key Engineering Materials,2009,392-394, 240-244
    [29]立伟,王道顺,李世全.数字化气动测量技术的研究及其应用[J].组合机床与自动化加工技术,2000,(1):39-41
    [30]王清明,卢泽生,董中,等.机械加工在线测量技术综述[J].计量技术,1999, (4): 88-91
    [31]Hui z, Shan C, Shanxi D, et al. Ultra-precision air-pin sensor and its dynamic characteristic research[C]. In:Proceedings of the 41th SICE Annual Conference, 2002:2150-2154
    [32]Shanxi Deng. New Development to the Pneumatic Measurement Technical[C]. In: 1st International Symposium on Instrumentation Science and technology.1999: 241-248
    [33]Shanxi Deng, Hui Zhang, QianCheng Zhao, ectl. Research on the Precison Pneumatic Measurement Technique with Multi-fine-nozzles and its Application [C]. In:5th International Conference on Manufacturing Technology.1999: 324-331
    [34]介铁良.珩磨气动测量系统特性方程的探讨[J].测量与检测,2003,(4):3-6
    [35]赵帅,孙宝元,黄爱芹.基于FLUENT的喷嘴挡板机构的仿真实验[J].机床与液压,2006,(12):189-191
    [36]陈霞.气动量仪的研究[D].合肥工业大学硕士学位论文.1999
    [37]杨洪涛,吴天凤.智能气动测量系统的研究[J].煤矿机械,2003,(2):21-25
    [38]王广林,陶崇德.单片机控制气动数显量仪[J].哈尔滨理工大学学报,1997,2(3): 13-17
    [39]王广林.滑阀轴向闭环控制配磨专用高精度自动化加工系统[D].哈尔滨工业大学博士学位论文.2005
    [40]陈继业.伺服阀叠合量自动化测量系统的研究[D].哈尔滨工业大学硕士学位论文.2004
    [41]GB/T1182-1996形状和位置公差通则、定义、符号和图样表示法
    [42]张铁犁,刘晓旭,印朝辉.基于网格搜索法的圆柱度误差评定[J].宇航测量技术,2010,30(2):9-13
    [43]温秀兰,宋爱国.基于改进遗传算法评定圆柱度误差[J].计量学报,2004,25(2):115-118.
    [44]Li Min Zhu, Han Ding. Application of kinematic geometry to computational metrology:distance function based hierarchical algorithms for cylindricity evaluation[J]. Machine Tools and Manufacture,2003,43(2):203-215
    [45]茅健,郑华文,曹衍龙,等.基于粒子群算法的圆柱度误差评定方法[J].农业机械学报,2007,38(2):146-149
    [46]王伯平,景大英.基于免疫算法的圆柱度误差的测量.仪器仪表学报[J].2006,27(6):1286-1288
    [47]Roy J, Xu Y X. Form and orientation tolerance analysis for cylindrical surfaces incomputer-aided inspection[J]. Computers in Industry,1995,26:127-134
    [48]Hodgson T J, Kay M G, Mittal R, et al[J]. Evaluation of cylindricity using combinatorics [J]. Transactions,1999,31:39-47
    [49]Chou S Y, Sun C W. Assessing cylindricity for oblique cylindrical features[J]. Machine Tools & Manufacture.2000,40:327-341
    [50]Lai H, Jywe W, Chen C K, et al. Precision modelingerrors for cylindricity evaluation using genetic algorithms [J]. International Societies for Precision Engineering and Nanotechnology,2000,24:310-319
    [51]Carr K, Ferreira P. Verification of form tolerances Part Ⅱ:Cylindricity and straightness of a median line[J]. Prec Eng,1995,17(2):144-156
    [52]Murthy T S R. A comparison of different algorithms for cylindricity evaluation [J]. Machnical Tools & Manufacture,1982,22 (2):283-292
    [53]Lai J Y, Chen I H. Minimum zone evaluation of circles and cylinders [J]. Machnical Tools & Manufacture,1996,36 (4):435-451
    [54]Chen C K, Wu S C. A method for measuring and separating cylindrical and spindle errors in machine tool rotational parts[J]. Measurement Science Technology,1999,10:76-83
    [55]Carr K, Ferreira P. Verification of form tolerances Part Ⅰ:Basicissues, flatness, and straightness [J]. Preceding Engineer,1995,17 (2):131-141
    [56]张娇娜,郭伟伟,曹衍龙,等.圆柱度误差评价方法研究[J].机床与液压,2008,36(2):106-108
    [57]熊有伦.精密测量的数学方法[M].北京:中国计量出版社,1989
    [58]雷贤卿,李言,李济顺,等.圆柱度的三点法测量技术[J].仪器仪表学报,2007,28(5):944-951
    [59]岳晓斌,陈永鹏.一种深孔尺寸、圆度、同轴度及直线度测量方[J].工具技术,2008,42(1):111-113
    [60]林志熙,黄富贵,周景亮.具有最少采样点的圆度误差测量研究[J].福建工程学院学报,2006,4(4):455-458
    [61]曾新勇.最小包容区域法处理圆度误差的程序算法[J].常州工学院学报,2008,21(2):62-65
    [62]贝广霞,楼佩煌,叶文华,等.精密加工中圆柱度在机检测关键技术[J].山东大学学报,2007,37(5):65-67
    [63]刘军,王广林,潘旭东.滑阀内孔圆柱度误差气动测量系统的研究[J].组合机床与自动化加工技术,2010,1:53-55
    [64]珩磨加工中采用的自动检测技术[J].内燃机,1998,(1):6-9
    [65]时轮.汽车机油泵综合性能智能测试技术与装备与与数控立式高精度珩磨技术与装备[D].上海交通大学博士后出站工作报告.2005
    [66]朱正德.自动测量技术在珩磨中的应用[J].江苏机械制造与自动化,1998,4:17-22
    [67]Jim Lorincz. CNC honing makes production agile[J]. Tooling & Production, 2003(2):32-34
    [68]于保华,胡小平,叶红仙.内孔珩磨尺寸在线气动测量系统[J].农业机械学报,2008,39(10):202-208
    [69]Hu Xiaoping, Yu Baohua. Analysis of the characteristic curve in the backpressure gas path based on MATLAB[J]. China Mechanical Engineering,2006,17:1790~ 1792
    [70]薛君英. PULCOMV4主动测量控制仪在数控珩磨加工中的应用[J].机电信息,2010, (30): 12-13
    [71]Changqing Xi, Xiaoping Hu, Zhichuang Zhang. Reaearch for Cylindrricity Prediction Model of Inner-hole honing[C]. In:2011 Second Intenational Conference on Mechanic and Control Engineering,2011:1506-1509
    [72]德国GERRING公司.Quality Testing,2000
    [73]韩昌满.缸孔珩磨工艺的发展与应用[D].哈尔滨工程大学硕士学位论文:2006
    [74]Bemd Hieber. system MS-U3 2000
    [75]S Jack Hu, Chinmo Roan. Change patterns of time series based control charts[J]. Quality Technology,1996,28 (3):302-312
    [76]Rao S B, Wu S M. Compensatory Control of Roundness Error in Cylindrical Chuck Grinding[J]. Engineering for Industry,1982:104
    [77]Jeng-Shyong Chen. Computer-aided Accuracy Enhancement for Multi-maxis CNC Machine tool[J]. Machnical Tools Manufacture,1995,35 (4):593-605
    [78]Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag,1995
    [79]杨金芳,翟永杰,王东风,徐大平.基于支持向量回归的时间序列预测[J].中国电机工程学报,2005,25(17):110-113
    [80]乐清洪,赵骥,朱名铨.人工神经网络在产品质量控制中的应用研究[J].机械科学与技术,2000,19(3):433-435
    [81]周家林.镗孔加工尺寸误差预测与补偿系统的研究与实践[D].华中科技大学博士学位论文.2005
    [82]李作清,周济,陈志祥.精密内圆磨削过程的灰色系统模型研究与质量控制系统设计[J].中国机械工程,1994,5(3):18-20
    [83]甘丽珍,张铭鑫,刘明周,等.基于傅里叶变换的质量预测动态残差修正模型[J].合肥工业大学学报,2009,32(6):806-810
    [84]晓怀,程真英,刘春山.动态测量误差的贝叶斯建模预报[J].仪器仪表学报,2004,25(4):771-772
    [85]钱学森.气体动力学诸方程[M].北京:科学出版社,1966:3-5
    [86]温正,石良辰,任毅如. FLUENT流体计算应用教程[M].北京:清华大学出版社,2009:26
    [87]刘京国.气动量仪静特性曲线及其应用分析[J].太原科技,1997,1:19-21
    [88]刘飞.圆柱度误差的测量与评价[D].河南科技大学学位论文.2008
    [89]VENKAIAH N, SHUNMUGAM M S. Evaluation of form data using computational geometric techniques-part 1I:cylindricity error[J]. Machine Tools and Manufacture,2007,47 (7):1237~1245
    [90]山良涛,李卫东.基于MATLAB的圆柱度误差评定方法[J].机械工程与自动化,2011,18(4):112-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700