用户名: 密码: 验证码:
船用高精度激光陀螺姿态测量系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国自主研制的激光陀螺精度逐步提高,以激光陀螺为核心惯性元器件的船用高精度姿态测量技术成为了研究热点。本文以船用高精度激光陀螺捷联姿态测量系统为研究对象,研究了制约进一步提高姿态测量精度的关键因素和解决方法,内容包括惯性测量单元(IMU)系统级标定方法研究、重力场异常对姿态测量系统的影响及补偿方法研究、重力场辅助惯性测量研究、动基座对准研究、滤波延迟补偿方法研究等。论文的主要工作和创新如下:
     1.系统级标定方法研究。推导了在圆锥运动条件下IMU标定误差的误差传播公式,指出陀螺非正交安装误差与刻度因子误差是标定误差中引发圆锥误差的主要因素;引入了系统级标定方法基准坐标系的约束条件,设计了基于27维Kalman滤波器且仅以速度误差为观测量的系统级标定算法;规划了系统级标定方法的标定路径,并基于分段线性定常系统可观测性分析理论(PWCS)与奇异值分解法(SVD)对其可观测性进行了分析,提出了基于可观测度分析的加权反馈算法;仿真和实验结果表明系统级标定法的标定精度优于基于高精度姿态基准的分立标定法,陀螺非正交安装误差角标定精度优于2。
     2.重力扰动对高精度姿态测量系统的影响及补偿研究。进行了重力扰动影响的单通道原理性分析,指出垂线偏差是主要误差因素;推导了由垂线偏差产生的解算误差的理论表达式,并应用全球重力扰动数据库进行了仿真研究;研究了重力扰动对系统初始对准的影响,得到了垂线偏差将导致等量的初始对准姿态误差的结论;利用垂线偏差数据库对航天测量船搭载试验中在某海域的试验数据进行了补偿分析,补偿后系统精度有较大幅度提高。
     3.针对纯惯性姿态测量系统误差随时间积累的问题,开展了基于UKF的重力场辅助惯性姿态测量技术研究。区别于以往基于图形相关匹配算法的间接融合算法,设计了一种直接利用重力异常值作为观测量的信息融合方法,由于重力异常信息具有强非线性特征,选用UKF作为信息融合算法;提出了一种基于重力异常梯度加权的多周期反馈UKF滤波算法,仿真结果表明应用此算法后系统的位置、速度以及姿态误差均得到了较好的抑制,且算法对测量噪声与初始定位误差不敏感,与EKF算法相比无需计算局部重力场模型并对其线性化,在不同重力异常梯度下均具有较强的鲁棒性;基于航天测量船搭载试验数据开展了半实物仿真研究,结果进一步验证了本算法的可行性与适应性。
     4.动基座对准研究。应用PWCS理论研究了单轴旋转调制姿态测量系统动基座对准的可观测性问题,指出旋转调制能提高系统动基座对准的可观测性,降低了高精度动基座对准对载体机动的要求,研究结果表明在简单机动的情况下,单轴旋转调制姿态测量系统动基座对准的精度和速度都有所提高;针对动基座大方位失准角对准问题,推导了其非线性误差传播方程,并在此基础上设计了基于UKF的动基座非线性对准算法,仿真和实验结果均表明,UKF能很好地解决姿态测量系统动基座大方位失准角的问题。
     5.FIR滤波延迟补偿方法研究。针对机抖激光陀螺系统中FIR滤波器延迟将导致姿态输出实时性降低的问题,采用基于运动跟踪预测模型的Kalman滤波器,直接对有时间延迟的姿态角输出信息进行时间序列上的一步预测,得到当前时刻真实姿态角的估计值;通过对实测数据的分析,表明本方法能有效预测出运动载体的即时姿态角,提高了姿态测量系统的实时性。
     6.系统软硬件实现及航天测量船搭载试验。论述了基于机抖激光陀螺的高精度姿态测量系统的软硬件实现方案,研究了基于Vxworks实时操作系统的姿态测量软件开发问题,详细规划了各任务模块设计;开展了为期近7个月、行程达3万多海里的远洋航天测量船搭载试验,对论文研究的重力补偿、重力场辅助惯性测量、动基座对准可观测性、系统级标定方法进行了充分的验证分析。
With the development of ring laser gyroscope’s (RLG) producing technology andthe improvement of its precision in our country, research on the attitude measurementsystem using RLG as the core component has became attractive. Taking the marinestrapdown attitude measurement system as a research object, the key factors restrictingthe improvement of attitude measurement system’s precision and the relevant solutionmethods are studied in this thesis. The content of this thesis includes systematiccalibration algorithm of inertial measurement unit(IMU), analysis of the system errorscaused by gravity disturbances and the compensation for them, gravity-aided inertialattitude measurement system, alignment on moving base, the filtering delaycompensation, the realization of system software and hardware and so on. The maincontents and contributions are as follows:
     1. Systematic calibration algorithm. The equations of coning errors caused bycalibration errors of IMU in the condition of a typical coning motion in strapdownsystem are derived. We draw the conclusion that the main error factors of attitudeupdating coning errors among calibration errors are gyro non-orthogonal misalignmentangles and scale factor errors; Firstly a restriction on the reference frame of RLGs andaccelerometers is added in order to make the calibration result exclusive; The systematiccalibration algorithm based on a kalman filter which includs27dimensional stateparameters is proposed, and this filter only uses the velocity errors as the observationalvectors; A programming of calibration route is proposed and its observability isanalyzed, then a weighted feedback arithmetic based on observability analysis is putforward. The simulation and experimentation indicate that the results of the systematiccalibration method are more precise than the conventional method.The verification testshows that the estimation accuracy of the gyros’ misalignment angles exceeds2.
     2. Research on the effects of gravity disturbances on high-precision attitudemeasurement system and its compensation method. The single channel theoreticalanalysis is carried out and it is pointed out that the vertical deflection is the primaryfactor; The theoretical expression of solution errors caused by vertical deflection isderived, and then a simulation based on global gravity disturbances database is made,which proves the accuracy of the theoretical analysis;The effects of gravity disturbanceson initial alignment are researched and we draw a conclusion that the vertical deflectionwill lead to equal magnitude initial attitude errors;The experimentation carried out in anoceangoing survey ship indicates that the precision can be improved obviously thanbefore, after compensated using global vertical deflection database.
     3. In order to restrain the increase of errors of the pure inertial attitude measurementsystem, a method that uses gravity information assisted inertial measurement system isproposed. A direct information fusion algorithm for gravity-aided inertial measurement system is designed, whereas the gravity anomaly information has strong nonlinearility,so UKF is selected as the information fusion algorithm. A weighted and multicyclefeedback UKF arithmetic based on gravity anomaly grads is put forward, and thesimulation results indicate that the proposed algorithm can improve the precision inposition, velocity and attitude greatly, and this algorithm is not sensitive to initialposition errors and measurement noise. It does not need the analytical local gravity fieldmodeling and linearization compared with EKF(expanded kalman filter), and itsrobustness is strong in different gravity anomaly gradients. Furthermore, ahardware-in-the-loop simulation based on the data of oceangoing survey ship isaccomplished, and the results validate the algorithm’s feasibility and adaptability.
     4. Research on the initial alignment on moving base. The observability duringinitial alignment of strapdown single-axis rotating attitude measurement system onmoving base is studied by the PWCS method. The results demonstrate that theadditional motion is not necessary for rotating system to improve alignment precision.In order to improve the performance of initial alignment under large azimuthmisalignment and on moving base, a detailed derivation of nonlinear error models underthese conditions is proposed and a nonlinear alignment arithmetic based on UKF isdesigned. The results show that the UKF arithmetic is a appropriate method for initialalignment under large azimuth misalignment.
     5. Study on the FIR filtering delay compensation method. A filtering delaycompensator which is based on attitude movement tracking model and kalman filter isdesigned. The compensator can obtain the estimation of the real attitude angles bypredicting the current output attitude results for a certain time.The experiments showthat, this method can estimate and predict the carrier attitude effectively and cancompensate the adverse effect caused by FIR filter delay.
     6. Research on the realization of the hardware&software and experiments boardedon oceangoing survey ship.The realization of software&hardware is discussed, while adetailed design planning of all task modules of attitude measurement software based onVxworks real-time operating system is put forward; The5months’ system experimentsboarded on the ship were completed and the voyage reached up to20000nautical miles,the verification and analysis on the gravity compensation, gravity-aided inertialmeasurement, initial alignment on moving base, and systematic calibration algorithmwere carried out adequately during the voyage.
引文
[1]高伯龙,李树棠.激光陀螺[M].长沙:国防科技大学出版社,1984.
    [2]秦永元编著.惯性导航[M].北京:科学出版社,2006.
    [3]袁信等.导航原理[M].北京:航空工业出版社,1993.
    [4]惯性技术手册编辑委员会.惯性技术手册[M].宇航出版社,1995.
    [5]王省书.激光陀螺捷联姿态路谱测量系统研究[D].国防科学技术大学,2006.
    [6]袁保伦.四频激光陀螺旋转式惯导系统研究[D].长沙:国防科学技术大学,2007.
    [7]张树侠,孙静.捷联式惯性导航系统[M],北京:国防工业出版社,1992.
    [8]郭秀中.惯导系统陀螺仪理论[M].北京:国防工业出版社,1996.
    [9] Richard L G. Inertial Navigation Technology from1970-1995. Journal of theInstitute Navigation, Vol42, No1,1995:165-185.
    [10] Beiter S, Poquette R, Filipo B S, Goetz W. Precision hybrid navigation system forvaried marine applications. Position Location and Navigation Symposium,IEEE,0-7803-4330-1,1998:316-323.
    [11] King A D. Inertial Navigation–Forty Years of Evolution.GEC REVIEW,Volume13, No3,1998:140-149.
    [12] Rice H, Mendelsohn L, Aarons R, Mazzola D. Next Generation Marine PrecisionNavigation System. In: IEEE2000Position Location and NavigationSymposium.New York, IEEE Inc,2000:200-206.
    [13] Hadfield M J, Leiser K E. Ring Laser Gyros Come Down to Earth: Field TestResults on the FLG Modular Azimuth Position System (MAPS)[C].//IEEEPositionLocation and Navigation Symposium1988.
    [14] Hadfield M J, Leiser K E. Application, Integration and Operational Aspects of anInertial Navigation/Survey/Pointing System[C].//Vehicle Navigation andInformation Systems Conference, Toronto, Ont., Canada,1989.
    [15] Curran G L, Engelken D J. Ring Laser Gyro Applications for TacticalMissiles[C].//Proceeding of IEEE Position Location and Navigation Symposium,1990,543-548.
    [16]缪玲娟,陈家斌.单激光陀螺捷联寻北系统[J].北京理工大学学报,1997,17(2):215-219.
    [17]龙兴武,于旭东,张鹏飞.激光陀螺单轴旋转惯性导航系统[J].中国惯性技术学报,2010,18(2):149-153.
    [18]张红良.陆用高精度激光陀螺捷联惯导系统误差参数估计方法研究[D].国防科学技术大学,2010.
    [19]杨培根,龚智炳.光电惯性技术[M].兵器工业出版社,1999.
    [20]简仕龙主编.航天测量船海上测控技术概论[M].国防工业出版社,2009.
    [21]潘良主编.航天测量船船姿船位测量技术[M].国防工业出版社,2009.
    [22]张忠华主编.航天测量船船姿数据处理方法[M].国防工业出版社,2009.
    [23] Paul G.Savage.Strapdown Inertial Navigation Integration Algorithm DesignPart1:Attitude Algorithms[J].Journal of Guidance,Control andDynamics,1998,21(1):19-28.
    [24] Kim Kwangjin,Lee Tae Gyoo.Analysis of the Two-Frequency Coning Motionwith.SDINS[A].AIAA Guidance,Navigation and Control Control Conference andExhibit,August2001:6-9.
    [25]徐景硕,耿昌茂,秦永元.捷联惯导系统圆锥误差分析[J].海军航空工程学院学报,2004,19(5):517-520.
    [26]张绪春,周纯杰.高动态环境中导弹捷联惯导系统圆锥误差[J].上海航天,2005,20(2):1-5.
    [27]潘献飞.基于机抖激光陀螺信号频域特性的SINS动态误差分析与补偿算法研究[D].长沙:国防科学技术大学,2008.
    [28]王宇.机抖激光陀螺捷联惯导系统的初步探索[D].国防科技大学工学博士论文,2005.10
    [29]严恭敏,秦永元.激光捷联惯组的双轴位置转台标定仿真[J].中国惯性技术学报,2007,15(1):123-127.
    [30]白雪峰,赵剡.单轴速率三轴位置惯性测试转台误差及传递分析[J].航天控制,2006,24(2):26-29.
    [31]邓志红,刘亚辰,王清哲.转台角位置基准误差对激光捷联惯导标定的影响分析[J].中国惯性技术学报,2009,17(4):498-504.
    [32]肖桂平.光学陀螺捷联惯导系统的标定精度分析[D].长沙:国防科学技术大学,2008.
    [33]周琪.激光捷联惯性组件精确标定方法研究[J].测控技术,2008,27(9):95-98.
    [34]李卓,闫海蛟.中国海及领域重力异常的惯性系统误差分析[J].青岛大学学报,2004.17(03).
    [35]郭恩志,房建成,俞文伯.一种重力异常对弹道导弹惯性导航精度影响的补偿方法[J].中国惯性技术学报,2005(3):30-33.
    [36] Chatfield A B. Fundamentals of High Accuracy Inertial Navigation[M].AmericanInstitute of Aeronautics and Astronautics, Inc,1997.
    [37]吴太旗,边少锋,勃,蒋.,勇,陈.重力场对惯性导航定位误差影响研究与仿真[J].测绘科学技术学报,2006,23(5):341-344.
    [38] Jekeli, C. Gravity on Precise, Short-Term,3-D Free-Inertial Navigation[J]. Journalof The Institute of Navigation,1997.
    [39]李斐,束蝉方,陈武.高精度惯性导航系统对重力场模型的要求[J].武汉大学学报信息科学版.2006,31(6):508-511.
    [40] Grejner-Brzezinska, D.A., Yi, Y., Toth, C. Enhanced Gravity Compensation forImproved Inertial Navigation Accuracy[J].2003.
    [41] Gleason, D.M. Extracting gravity vectors from the integration of Global ositioningSystem and Inertial Navigation System data[J]. Journal of eophsical Research,1992.97(B6):8853-8864.
    [42]陈永冰,边少锋,刘勇.重力异常对平台式惯性导航系统误差的影响分析[J].中国惯性技术学报,2005.12.13(6).
    [43] Anderson, R.C., Davenport, J.A., Jekeli, C. Determination of Gravity Data pacingRequired For Inertial Navigation[J]. Journal of The Institute of Navigation,2000.
    [44]Y.Hsu, D., J.Brockstein, A. GRAVITY VECTOR COMPENSATION SYSTEM[J].2001.6.19.
    [45]王志刚,边少锋.基于ICCP算法的重力场辅助惯性导航[J].测绘学报,2008,37(2):147-151
    [46]蔡小波,许大欣,戴全发.重力异常匹配导航的算法实现与仿真分析[J].大地测量与地球动力学,2007,27(3):60-63
    [47]程力,张雅杰,蔡体菁.重力辅助导航匹配区域选择准则[J].中国惯性技术学报,2007(10).
    [48]黄谟涛,翟国君,管铮,欧阳永忠, et al.,海洋重力场测定及其应用.2005,测绘出版社:北京.
    [49] Hays K.M, Schmidt R G, WilsonWA,et al.A submarine navigator for the21stcentury. Position Location and Navigation Symposium,2002IEEE,15-18April2002.179-188
    [50] Vajda S, Zorn A.Survey of existing and emerging technologies for strategicsubmarine navigation. Position Location and navigation Symposium, IEEE1998,20-23April1998.309-315
    [51] Rice H,Kelmenson S,Mendelsohn L.Geophysical navigation technologies andapplications. Position Loction and Navigation Symposium, PLANS2004,26-29April2004.618-624
    [52] Jircitano A,White J,Dosch D. Gravity based navigation of AUV’s AutonomousUnderwater Vehicle Technology,1990. AUV’90,Proceedings of the (1990)Symposiumon5-6June1990.177-180
    [53]袁保伦,饶谷音.光学陀螺旋转惯导系统原理探讨[J].国防科技大学学报,2006,28(6):76-80
    [54]Mk39.pdf.http://www.sperrymarine.northropgrumman.com/Admin/Downloads/354/Product%20Brochure.pdf.
    [55] Tucker T, Levison E. The AN/WSN-7B Marine Gyrocompass/Navigator. IONNTM2000, Anaheim, CA,26-28January,2000:348-357.
    [56] Curey R K, Ash M E, Thielman L O, et al..Proposed IEEE Inertial SystemsTerminology Standard and Other Inertial Sensor Standards. IEEE PositionLocation and Navigation Symposium,2004:83-90.
    [57] Hibbard R, Wylie B, Levison E. Sperry Marine MK-49, The World’s Best RingLaser Gyro Ship’s Inertial Navigation System. JSDE Proceedings, Orlando, FL,November1996.
    [58] Levinson E, Giovanni C S, Jr. Laser Gyro Potential for Long Endurance MarineNavigation. IEEE Position Location and Navigation Symposium,1980:115-129.
    [59] Levinson E, Majure R. Accuracy Enhancement Techniques Applied to the MarineRing Laser Inertial Navigator (MARLIN). Navigation: Journal of The Institute ofNavigation,1987,34(1):64-86.
    [60] Levison E,ter Horst J, Willcocks M. The Next Generation Marine InertialNavigator is Here Now. IEEE Position Location and Navigation Symposium,1994:121-127.
    [61] Adams G, Gokhale Dr M. Fiber Optic Gyro based precision navigation forsubmarines. In: AIAA Guidance, Navigation, and Control Conference and Exhibit.Denver, CO, UNITED STATES.2000:2-6.
    [62] Heckman D W, Baretela L M. Improved Affordability of High PrecisionSubmarine Inertial Navigation by Insertion of Rapidly Developing Fiber OpticGyro Technology. In: IEEE PLANS Position Location and NavigationSymposium.San Diego, CA, USA: IEEE, Piscataway, NJ, USA,2000:404-410.
    [63] Morrow R B Jr, Heckman D W. High Precision IFOG Insertion Into The StrategicSubmarine Navigation System. In: IEEE PLANS Position Location and NavigationSymposium. Palm Springs, CA: IEEE, Piscataway, NJ, USA,1998:332-338.
    [64]张树侠,闫威.激光陀螺捷联系统安装误差的标定[J].中国惯性技术学报,2000,8(1):47-49.
    [65] Thompson A A. Calibration of Inertial Sensors[R]. AD Report,2000.
    [66] Rogers R M. Applied Mathematics in Integrated Navigation Systems[M].AmericanInstitute of Aeronautics and Astronautics, Inc.,2007.
    [67] Camberlein L, Mazzanti F. Calibration technique for laser gyro strapdown inertialnavigation systems[C].//Symposium Gyro Technology, Stuttgart, West Germany,1985.
    [68]范胜林,孙永荣,袁信.捷联系统陀螺静态漂移参数标定[J].中国惯性技术学报,2000,8(1):42-46.
    [69]谷宏强,袁亚雄,摆卫兵.捷联惯性测量组合快速位置标定[J].南京理工大学学报,2007,31(6):719-722.
    [70]杨孟兴,徐兵华.激光陀螺捷联惯性导航系统的误差参数标定[J].中国惯性技术学报,2008,16(3):306-309.
    [71] Wang H, Ren S, Wang C. Research on Identifying the Dynamic Error Model ofStrapdown Gyro on3-axis Turntable[J]. Journal of Harbing Institute ofTechnology,2005,12(6):630-634.
    [72]孙宏伟,房建成,盛蔚.一种基于MEMS的微惯性测量单元标定补偿方法[J].北京航空航天大学学报,2008,34(4):439-442.
    [73]罗晶,苏宝库,王广雄.三轴精密测试台的指向误差[J].中国惯性技术学报,1993,1(3):50-53.
    [74]肖卫国,郝崇恩,李高风.三轴飞行模拟转台误差研究[J].系统仿真学报,2001,13(5):678-680.
    [75] Qu Z, Yao Y. Derovation of Error Models and Error Compensation Precedure forSimulation Turntable Using Multi-Body Kinematics[C].//IEEE InternationalConference on Mechatronics&Automation, Niagara Falls, Canada,2005.
    [76]李岩,范大鹏.基于多体系统运动学理论的三轴转台装配误差建模分析[J].兵工学报,2007,28(8):981-987.
    [77]刘延斌,金光,何惠阳.三轴仿真转台指向误差的建模研究[J].哈尔滨工业大学学报,2005,37(5):701-704.
    [78]任顺清,陈世杰,李玉华.论瞬时轴线垂直度、平均回转轴线垂直度与Wobble的关系[J].中国惯性技术学报,2002,10(1):55-59.
    [79]李艳波,曾鸣.三轴转台误差源对陀螺加速度表测试的影响[J].航空精密制造技术,2008,44(2):28-31.
    [80]林玉荣,邓正隆.激光陀螺捷联惯导系统中惯性器件误差的系统级标定[J].哈尔滨工业大学学报,2001,33(1):112-115.
    [81]杨晓霞,黄一.激光陀螺捷联惯导系统的系统级标定方法研究[C].//第26届中国控制会议,张家界,湖南,2007.
    [82] Pittman D N, Roberts C E. Determining Inertial Errors from Navigation-in-PlaceData[C].//IEEE Position Location and Navigation Symposium, Monterey, CA,USA,1992.
    [83] Grewal M S, Henderson V D, Miyasako R S. Application of Kalman Filtering tothe Calibration and Alignment of Inertial Navigation Systems[J]. IEEETransactions on Automatic Control,1991,36(1):4-13.
    [84] Baziw J, Leondes C T. In-Flight Alignment and Calibration of InertialMeasurement Units-Part1: General Formulation[J]. IEEE Transactions onAerospace and Electronic Systems,1972,8(4):439-449.
    [85] Baziw J, Leondes C T. In-Flight Alignment and Calibration of InertialMeasurement Units-Part II: Experimental Results[J]. IEEE Transactions onAerospace and Electronic Systems,1972,8(4):450-465.
    [86] Blanchard R L. High Accuracy Calibration of Electrostatic Gyro StrapdownNavigation Systems[C].//AIAA Guidance, Navigation and Control Conference,1978.
    [87] Schanzer G, Vieweg S. Inflight Calibration of Inertial Sensors with the Help ofGlobal Navigation Satellite Systems[C].//Symposium Gyro Technology,Stuttgart,Germany,1992.
    [88] Foxlin E, Naimark L. Miniaturization, Calibration&Accuracy Evaluation of aHybrid Self-Tracker[C].//the2nd IEEE and ACM International Symposium onMixed and Augmented Reality,2003.
    [89] Bar-Itzhack I Y, Berman N. Control Theoretic Approach to InertialNavigationSystems[J]. Journal of Guidance, Control and Dynamics,1988,11(3):237-245.
    [90] Saab S S, Gunnarsson K T. Automatic Alignment and Calibration of an InertialNavigation System[C].//IEEE Position Location and Navigation Symposium,LasVegas, NV, USA,1994.
    [91] Nebot E, Durrant-Whyte H. Initial Calibration and Alignment of Low-Cost InertialNavigation Units for Land Vehicle Applications[J]. Journal of RoboticSystems,1999,16(2):81-92.
    [92] Lee J G, Park C G, Park H W. Multiposition Alignment of Strapdown InertialNavigation System[J]. IEEE Transactions on Aerospace and ElectronicSystems,1993,29(4):1323-1328.
    [93] O'Halloran W F, JR., Warren R S. Design of a Reduced-State Suboptimal Filter forSelf-Calibration of a Terrestrial Inertial Navigation System[C].//AIAA Guidanceand Control Conference, Stanford, California,1972.
    [94] Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constantsystems-part I: Theroy. IEEE Transactions on Aerospace and Electronic systems,1992,18(4):1056-1067.
    [95] Ohtsu K. Initial Rapid Alignment/Calibration of a Marine Inertial NavigationSystem Under Motion[C].//Symposium Gyro Technology, Stuttgart, Germany,1993.
    [96] Heiskanen, Moritz. Physical Geodesy[J].1996.
    [97] Jekeli, C. Inertial Navigation Systems with Geodetic Applications[J]. Walter deGruyter,2001.
    [98] Grejner-Brzezinska, D.A., Wang, J. Gravity Modeling for High-AccuracyGPS/INS Integration[J]. Journal of The Institute of Navigation,1998.
    [99] Humphrey, I., Inertial System Requirements for Deflection of the VerticalCompensations.1999. p.82.
    [100]R.C.ANDERSON, J.A.DAVENPORT. Determination of Gravity Data SpacingRequired For Inertial Navigation[J]. Journal of The Institude of Navigation,1999:6.
    [101]B. A. Kriegsman*, Mahar, K.B. Gravity-Model Errors in MobileInertial-Navigation Systems[J]. Journal of Guidance and Control,2004.
    [102]Grejner-Brzezinska, D.A., Yi, Y., Toth, C. Enhanced Gravity Compensation forImproved Inertial Navigation Accuracy[C]. Department of Civil andEnvironmental Engineering and Geodetic Science. Ohio,2003,9.13.
    [103]张开东.激光陀螺捷联惯导系统连续自动标定技术[D].长沙:国防科技大学,2002.
    [104]刘百奇,房建成.光纤陀螺IMU的六位置旋转现场标定新方法[J].光电工程,2008,35(1):60-65.
    [105]Forsberg, R. A New Covariance Model for Inertial Gravimetry and Gradiometry[J].Journal of Geophsical Research,1987.
    [106]Kriegsman*, B.A., Mahar, K.B. Gravity-Model Errors in MobileInertial-Navigation Systems[J]. Journal of Guidance and Control,1985:10.
    [107]Edwards, R.M. Gravity Model Performance in Inertial Navigation[J]. Journal ofGuidance and Control,1982.
    [108]Forsberg, R. A New Covariance Model for Inertial Gravimetry and radiometry[J].Journal of Geophsical Research,1987.92(B2):1305-1310.
    [109]卢鑫.长航时高精度惯性导航系统重力补偿研究[D].长沙:国防科技大学,2010.
    [110]李滋刚,万德钧.捷联式惯性技术及系统[M].南京:东南大学先进技术与装备研究院,2010.
    [111]John L.Crassidis,F.Landis Markley.Unscented Filtering for Spacecraft AttitudeEstimation[J].Journal of Guidance and Dynamics,2003,26(4):536-542
    [112]潘泉,杨峰,叶亮等.一类非线性滤波器-UKF综述[J].控制与决策,2005,20(5):481-490.
    [113]何晓峰,胡小平,唐康华.无缝GPS/INS组合导航系统的设计与实现[J].国防科技大学学报,2008,30(1):83-88
    [114]马瑞平,魏东,张明廉.一种改进的自适应卡尔曼滤波及在组合导航中的应用[J].中国惯性技术学报,2006,14(6):37-40
    [115]高为广,杨元喜.神经网络辅助的GPS/INS组合导航故障检测算法[J].测绘学报,2008,37(4):403-409
    [116]Julier S J,Uhlmann J K and Durrant-Whyte H.A new approach for filteringnonlinear systems[C]//Proceedings of the American controlconference,Washington,1995:1628-1632.
    [117]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998,11.
    [118]张传斌.非线性滤波在惯导系统中的应用研究[D].哈尔滨:哈尔滨工业大学,2002.
    [119]叶剑西.基于Unscented变换的Kalman滤波的研究与应用[D].合肥:中国科技大学,2002.
    [120]李涛.非线性滤波方法在导航系统中的应用研究[D].长沙:国防科技大学,2003.
    [121]徐佳鹤. INS/GPS组合导航系统滤波算法的研究[D].东北大学,2006.
    [122] S rkk, S.(2006) Unscented Rauch-Tung-Striebel Smoother. Submitted.
    [123]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998.12
    [124]程向红,万德钧,仲巡.捷联惯导系统的可观测性和可观测度研究[J].东南大学学报,1997,27(6):6-11.
    [125]王运红,翟传润,战兴群.一种新的捷联惯导系统动基座对准中的可观测性分析法[J].上海交通大学学报,2008,42(5):846-850,855.
    [126]谢波,裴听国,万彦辉.捷联惯导系统动基座初始对准中的可观测性分析[J].战术导弹技术,2004,(4):58-65.
    [127]王新龙.惯导系统可观测性及最佳可观测子空间的定量研究[J].宇航学报,2006,27(3):345-348.
    [128]帅平,陈定昌,江涌. GPS/SINS组合导航系统状态的可观测度分析方法[J].宇航学报,2004,25(2):219-224.
    [129]李建文,张宗麟.基于伪距的北斗双星/SINS组合导航系统可观测度分析[J].中国惯性技术学报,2008,16(1):73-77.
    [130]Hong H S, Lee J G, Park C G. Performance improvement of inflight alignment forautonomous vehicle under large initial heading error[C]. I EE Proceedings ofRadar, Sonar and Navigation,2004:57-62.
    [131]Xiaoying Kong, Eduardo Mario Nebot, Hugh Durrant Whyte.Development of anonlinear psi angle model for large misalignment errors and it s application in INSalignment and calibration[C]//Proceeding of the1999I E EE I nternationalConference on Robotics&A utomation,1999:1430-1435.
    [132]顾冬晴,秦永元.船用捷联惯导系统运动中对准的UKF设计[J].系统工程与电子,2006,28(8):1218-1220.
    [133]孙昌跃,邓正隆.大方位失准角的舰载武器INS对准[J].中国惯性技术学报,2008,16(5):534-537.
    [134]程向红,李伯龙,王宇.基于PF的SINS动基座初始对准[J].中国惯性技术学报,2009,17(3):267-271.
    [135]谢元平,曾淳.机械抖动激光陀螺过锁区分析与处理[J],光电子.激光,2000,11(1):45-48
    [136]谢元平,张广发.抖动偏频激光陀螺抖动信号的自适应对消[J],应用激光,2000,20(3):121-123
    [137]高玉凯,林玉荣,邓正隆.改善激光陀螺输出特性的随机噪声注入方法[J],中国激光,2007,34(4):481-484
    [138]张岩,李廷志,罗兵.基于FPGA的抖动偏频激光陀螺高精度信号解调[J],计算机测量与控制.2006.14(7):950-952
    [139]Keith R.Fritze,Joseph E.Killpatrick,Dale F.Berndt.Ring laser gyro ditherstripper[P]U.S.Patent,5249031,Dec.1,1996
    [140]SINGER R A.Estimating optimal tracking filter per-formance for mannedmaneuvering targets[J].IEEE Transactions on Aerospace and ElecnicSystems,1970:6(4):473-483
    [141]虞旦,韦巍,张远辉.一种基于卡尔曼预测的动态目标跟踪算法研究[J],光电工程,2009,36(1),52-56
    [142]袁胜智,谢晓芳,李洪周.一种基于Kalman-mean shift的自适应跟踪算法[[J],激光与红外,2009,39(5):558-561
    [143]王晓天,贾宇,陈方斌.一种用于“蛇形”机动目标的跟踪方法研究[J],应用光学,2009,30(1),65-68
    [144]邓自立.卡尔曼滤波与维纳滤波[M].哈尔滨:哈尔滨工业大学出版社,2001.75-98
    [145]高玉凯,邓正隆.消除机械抖动激光陀螺闭锁误差的方法[J],中国激光,2007,34(3):354-358
    [146]胡广书编著.数字信号处理[M],清华大学出版社,2008.
    [147]王金刚,宫霄霖,杨锡劢等.基于VxWorks的嵌入式实时系统设计.北京:清华大学出版社,2004,10
    [148]周启平,张杨,吴琼.VxWorks开发指南与Tornado实用手册.中国电力出版社,2004
    [149]刘士伟.嵌入式实时操作系统VxWorks在激光陀螺姿态测量系统中的应用研究[D].国防科学技术大学,2010.
    [150]李军峰.VxWorks实时操作系统及其在PC104下以太网编程的应用.探测与定位,2004,l (4):87-90
    [151]刘锡祥,徐晓丹,冯丹琼,刘建娟.VxWorks环境下捷联惯导系统的软件设计.中国惯性技术学报,2006,14(2)
    [152]周启平,张杨.VxWorks下设备驱动程序及BSP开发指南.北京:中国电力出版社,2004
    [153]李刚,陶声详,赵大政.VxWorks环境中PCI设备驱动开发.计算机应用与软件,2008,25(3):273-285
    [154]WindRiver System. VxWorks Device Driver Developer’s Guide_6.0
    [155]程敬原.VxWorks软件开发项目实例完全解析.北京:中国电力出版社,2005
    [156]张宝山,蔡庆.VxWorks RTOS网络程序设计.嵌入式系统工程,2007,1:75-77
    [157]周启平,张扬.VxWorks程序员速查手册.北京:机械工业出版社,2005.2
    [158]孟育伟.VxWorks原理及其在通信中的应用.通信对抗,2004,3:26-29
    [159]陈养平,贺占庄.基于VxWorks的实时多任务软件设计.微电子学与计算
    [160]杨华波,蔡洪,张士峰.高精度惯性平台连续自标定自对准技术[J].宇航学报,2006,27(4):600-604.
    [161]Bekkeng J K. Calibration of a Novel MEMS Inertial Reference Unit[J]. IEEETransactions on Instrumentation and Measurement,2009,58(6):1967-1974.
    [162] Eissfeller, B., Spietz, P. Shaping filter design for the anomalous gravity field bymeans of spectral factorization[J]. Manuscripta Geodaetica,1989.
    [163] Kwon, J.H. Gravity Compensation Methods for Precision INS[C].2004.
    [164]Kopcha, P.D. NGA Gravity Support for Inertial Navigation[C]. NationalGeospatial-Intelligence Agency.2004.6.8.
    [165]刘繁明,成怡.重力/惯性匹配导航系统的仿真研究[J].中国惯性技术学报,2005,13(3):22-29.
    [166]罗斌,蔡体菁,陆勇.重力/惯性组合导航中的一种信息融合方法[J].仪器仪表学报,2003,24(4):42-43.
    [167]冯浩,晏磊,张飞舟等.基于辅助惯性导航的数据地图特征分析[J].北京邮电大学学报,2004,27(4):23-27.
    [168] Niu X. Micromachined attitude measurement unit with application in satelliteTVantenna stabilization[D]. Tsinghua University,2002.
    [169] Hung J C, Thacher J R, White H V. Calibration of Accelerometer Triad of anIMU with Drifting Z-Accelerometer Bias[C].//IEEE National Aerospace andElectronics Conference, Dayton, OH, USA,1989.
    [170]徐遵义,晏磊,宁书年等.海洋重力辅助导航的研究现状与发展[J].导地球物理学进展,2007,22(1):104-111.
    [171]BISHOP G C.Gravitational Field Maps and Navigational Errors[J].IEEE Journalof Oceanic Engineering,2002,27(3):726-737.
    [172] HOLLOWELL J. Heli/SITAN:A Terrain Referenced Navigation Algorithm forHelicopters[C].IEEE Position, Location, and Navigation Symposium1990(PLANS’90).Las Vegas:[s. n.],1990:616-625.
    [173]BEHZAD K P,BEHROOZ K P. Vehicle Location on Gravity Maps[C].Proceedings of SPIE-The International Society for OpticalEngineering.Orlando:[s. n.],1999:182-191.
    [174] MORYL J, RICE H, SHINNERS S. The Universal Gravity Module for EnhancedSubmarine Navigation[C].IEEE Position Location and Navigation Symposium.New York:Dept of Navigation&Gravity Syst, Lockheed Martin Fed Syst Inc,1998:324-331.
    [175]JIRCITANO A,DOSCH D.Gravity Aided Inertial NavigationSystem(GAINS)[C].ION47t h Annual Meeting Proceedings. Washington DC:Williamsburg VA,1991:212-229.
    [176]王志刚,边少锋,肖胜红.基于局部地球重力场模型的水下重力辅助惯性导航[J].测绘学报,2009,38(5):408-414
    [177]张卫东.激光陀螺捷联惯导系统自动标定技术研究[D].长沙:国防科技大学,2000.
    [178]孙岚,吴晓平,刘雁春,刘金胜. UKF在惯性/重力组合导航中的应用[J].测绘科学技术学报,2007,24(5):371-373.
    [179]刘百奇,房建成.一种基于可观测度分析的SINS/GPS空中对准新方法[J].系统仿真学报,2008,20(16):4302-4305.
    [180]谢波,秦永元,万彦辉.激光陀螺捷联惯导系统多位置标定方法[J].中国惯性技术学报,2011,19(2):157-162.
    [181]www.space.dtu.dk/English/Research/Scientific_data_and_models/downloaddata.aspx.
    [182]ftp://topex.ucsd.edu/pub/global_VD_2min.
    [183]张苗辉,辛明,刘先省.基于粒子滤波的机动目标跟踪改进算法[J].2008,30(5):949-951.
    [184]袁保伦,饶谷音.一种新的激光陀螺惯性测量组合标定方法[J].2007,15(1):32-34.
    [185]LinWu,JieMa,Jinwen Tian.A self-adaptive unscented Kalman filtering for underwater gravity aided navigation[C].IEEE/ION Position, Location and NavigationSymposium,2010:142-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700