用户名: 密码: 验证码:
汞、铅、锌对褐牙鲆(Paralichthys olivaceus)早期发育过程毒理作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取我国近海典型重金属污染物汞、锌、铅,在实验室条件下(温度18±1°C;盐度33‰)分别研究它们对褐牙鲆Paralichthys olivaceus早期生活(胚胎、仔稚鱼)阶段的毒理效应,揭示重金属污染对褐牙鲆早期生活阶段的致毒机制,为研究近海污染条件下鱼类资源衰退机理及利用其监测海洋重金属污染提供科学依据。
     胚胎、仔鱼急性毒理实验表明,Hg2+对褐牙鲆胚胎的24-h和48-h LC50值(半致死浓度)分别为75.8(70.1-81.5,95%置信区间)和48.1(32.8-63.6)μg L-1;对仔鱼的24-h,48-h和96-h LC50值分别为99.4(72.9-147.0),51.2(39.1-65.8)和46.6(33.3-64.8)μg L-1。Zn2+对褐牙鲆胚胎的24-h和48-h LC50值分别为22.3(16.1-26.7)和7.1(6.2-8.3)mg L-1;对仔鱼的48-h和96-h LC50值分别为10.06(7.89-12.88)和6.77(5.25-8.02)mg L-1。结果表明褐牙鲆胚胎比仔鱼对汞、锌暴露更为敏感。胚胎-仔鱼亚急性毒理实验分别将褐牙鲆胚胎置于0-60μg Hg2+ L-1和0-4 mg Zn2+ L-1的溶液中连续暴露6天,研究汞、锌对胚胎、仔鱼阶段生长和存活的影响。结果表明Hg2+浓度≥20μg L-1时会引起胚胎和仔鱼孵化率降低,延迟孵化,死亡率、畸形率增加,抑制生长和卵黄囊吸收率。另一方面,当Zn2+浓度≥1 mg L-1时会引起胚胎和仔鱼孵化率降低,延迟孵化,死亡率、畸形率增加,抑制生长。
     胚胎慢性毒理实验中,将褐牙鲆从胚胎期分别在0-10μg Hg2+ L-1和0-400μg Pb2+ L-1溶液中连续暴露80天。实验第20,35和80天分别取变态期仔鱼(18 dph),着底期仔鱼(33 dph)和稚鱼(78 dph)研究暴露对其组织中抗氧化防御系统和脂质过氧化作用的影响。实验结束时,取稚鱼测定其体内汞、铅的蓄积及生长情况。结果表明,汞暴露使变态期仔鱼的GSH(谷胱甘肽)含量增加,却使稚鱼的GSH含量减少。汞暴露对变态期仔鱼、着底期仔鱼和稚鱼三个阶段的GST(谷胱甘肽硫转移酶)活性无影响,却显著诱导了变态期仔鱼、着底期仔鱼和稚鱼的SOD(超氧化物岐化酶)、CAT(过氧化氢酶)活性,而且使稚鱼的MDA(丙二醛)含量显著增加。铅暴露减少了着底期仔鱼的GSH含量,却增加了变态期仔鱼和稚鱼的GSH含量。铅暴露显著诱导了稚鱼的GST活性,变态期仔鱼的SOD活性以及变态期仔鱼、稚鱼的CAT活性,并且使着底期仔鱼的MDA含量显著增加。另一方面,经80天的低浓度暴露,汞、铅在稚鱼组织中的蓄积量显著增加,同时它们对褐牙鲆的生长有显著抑制作用。上述结果表明重金属暴露下褐牙鲆(仔稚鱼)的抗氧化反应受其发育阶段,污染物种类、浓度及暴露时间等因素的影响。此外,褐牙鲆在变态期体内剧烈的生理变化,很可能也会影响其在这一阶段的氧化还原作用。
     幼鱼亚慢性毒理实验将褐牙鲆幼鱼在0-160μg Hg2+ L-1的溶液中连续暴露28天,研究汞暴露对幼鱼各组织中抗氧化防御系统和脂质过氧化作用的影响以及汞在不同组织中的蓄积情况。结果表明,暴露7天时,幼鱼鳃中SOD活性被诱导,GPx(谷胱甘肽过氧化物酶)活性却被抑制;肝脏中GSH含量显著增加,GST活性被抑制;肾脏中SOD、GPx活性同时被诱导。此外,汞暴露并未影响各组织中MDA含量。暴露28天时,幼鱼鳃中SOD、CAT活性都被诱导,而GST活性被抑制GSH含量则降低。肝脏中SOD、CAT活性都被诱导,GSH含量也显著增加。肾脏中SOD活性被诱导,GSH含量显著增加。此时幼鱼鳃和肾脏中MDA含量显著增加。另一方面,28天的汞暴露对褐牙鲆幼鱼的体长、体重和SGR(特定生长率)产生了显著抑制作用,却未影响幼鱼的CF(肥满度)。幼鱼肌肉、肝脏、肾脏、鳃和骨组织中汞的蓄积量随暴露溶液中Hg2+浓度的升高而显著增加,汞在各组织中蓄积量呈肾脏≈肝脏>鳃>骨骼>肌肉的趋势。结果表明汞暴露下褐牙鲆(幼鱼)的抗氧化反应在不同组织中表现各异,此外,暴露浓度和时间也会影响实验结果。
Mercury, zinc and lead represent typical heavy metal pollutants in the Chinese coastal waters. In the present study, the toxic effects of mercury, zinc and lead to early life stages (ELS) of flounder (Paralichthys olivaceus) was investigated under laboratory conditions (18±1°C; 33±1‰in salinity), respectively. The aim of the present study is to explore the mechanism underlying metals toxicity to early life stages of flounder, and provide data for using flounder at ELS in monitoring metal pollution of marine environments.
     The acute toxicity tests indicated that the 24-h and 48-h LC50 values (median lethal concentration) of Hg2+ to embryos were 75.8 (70.1-81.5, with 95% confidence interval) and 48.1 (32.8-63.6)μg L-1; while the 24-h, 48-h and 96-h LC50 values to larvae were 99.4 (72.9-147.0), 51.2 (39.1-65.8) and 46.6 (33.3-64.8)μg L-1. The 24-h and 48-h LC50 values of Zn2+ to embryos were 22.3 (16.1-26.7) and 7.1 (6.2-8.3) mg L-1; the 48-h and 96-h LC50 values to larvae were 10.06 (7.89-12.88) and 6.77 (5.25-8.02) mg L-1. This result indicated that embryos were more sensitive than larvae to mercury and zinc exposure. In the embryonic-larval toxicity tests, embryos were exposed to 0-60μg Hg2+ L-1 and 0-4 mg Zn2+ l-1 solutions for 6 days, respectively. The results indicated that mercury exposure at concentrations≥20μg Hg2+ L-1 would lead to low hatching rate, delay in time-to-hatch, high mortality and morphological abnormality, reduced growth and inhibited yolk absorption in embryos or/and larvae. Zinc exposure at concentrations≥1 mg Zn2+ L-1 would also induce low hatching rate, delay in time-to-hatch, high mortality and morphological abnormality, reduced growth to embryos or/and larvae.
     In the chronic toxicity tests, fish were exposed to 0-10μg Hg2+ L-1 and 0-300μg Pb2+ L-1 solutions from embryonic to the juvenile stages for 80 days, respectively. Responses of antioxidant defense system and lipid peroxidation to mercury exposure were studied in metamorphosing larvae (20th day; 18 days post hatching, dph), settling larvae (35th day; 33 dph) and juveniles (80th day; 78 dph). The results indicated that elevated mercury or lead concentration led to increased metal bioaccumulation and reduced growth after 80 days of low concentration exposures. On the other hand, mercury exposure elevated glutathione (GSH) level in metamorphosing larvae, but decreased that in juveniles. Glutathione-S-transferase (GST) activity did not significantly vary with mercury concentration in either larvae or juveniles. However, superoxide dismutase (SOD) and catalase (CAT) activities at the three developmental stages were increased with elevated mercury concentration. Moreover, malondialdehyde (MDA) content in juveniles was significantly increased. Lead exposure significantly decreased GSH level in settling larvae, increased those of the metamorphosing larvae and juveniles. GST activity in juveniles, SOD activity in metamorphosing larvae, CAT activity in metamorphosing larvae and juvenile were increased with increasing lead concentration. Meanwhile, MDA content in settling larvae was significantly increased in lead solutions. The results indicated that these antioxidative responses varied with the types of chemical, exposure concentration and duration. On the other hand, since flounder undergo drastic physiological transitions during their early life stages, this may cause differences in the antioxidative responses to metal exposures of the flounder at differental life phases.
     In toxicity test on juveniles, fish were exposed to 0-160μg Hg2+ L-1 solutions for 28 days. After 7 days of exposure, SOD activity was increased, but glutathione peroxidase (GPx) activity was decreased in the gill; GSH level was elevated, while GST activity was decreased in the liver; SOD and GPx activities were increased in the kidney. MDA content in all the three tissues did not significantly vary with mercury concentration. After 28 days of exposure, SOD and CAT activities were increased, GST activity and GSH level were decreased in the gill; SOD and CAT activities GSH level were significantly increased in the liver; SOD activity and GSH level were significantly increased in the kidney. MDA content in the gill and kidney were significantly increased. On the other hand, total length, body weight and specific growth rate (SGR) of juveniles were significantly reduced while condition factor (CF) was not affected by 28 days of mercury exposure. Moreover, mercury bioaccumulation in muscle, liver, kidney, gill and bone of juveniles significantly increased with elevating exposure Hg2+ concentration. The metal accumulation efficiency in these organs was in an order of kidney≈liver > gill > bone > muscle. The results indicated that the antioxidative responses of juveniles to mercury exposure varied with different tissue types. Moreover, exposure concentration and duration could also affect the responses of antioxidants and lipid peroxidation.
引文
Allen, P., 1996. Comparative and interactive effects of mercury, cadmium and lead on tissue GSH levels in Oreockrornis aureus (Steindachner): implications for monitoring heavy metal pollution. J. Appl. Ichthyol. 12, 21-26.
    Alvarez, M.D., Murphy, C.A., Rose, K.A., McCarthy, I.D., Fuiman, L.A., 2006. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus). Aquat. Toxicol. 80, 329-337.
    Ates, B., Orun, I., Talas, Z. S., Durmaz, G., Yilmaz, I., 2008. Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+. Fish Physiol. Biochem. 34, 53-59.
    Atli, G., Alptekin, O., Tükel, S., Canli, M., 2006. Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 143, 218-224.
    Beiras, R., Fernández, N., Bellas, J., Besada, V., González-Quijano, A., Nunes, T., 2003. Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 52, 1209-1224.
    Beiras, R., His, E., 1994. Effects of dissolved mercury on embryogenesis, survival, growth and metamorphosis of Crassostrea gigas oyster larvae. Mar. Ecol. Prog. Ser. 113, 95-103.
    Bengtsson, B.E., 1974. Vertebral damage to minnows Phoxinus phoxinus exposed to zinc. Oikos 25, 134-139.
    Benoit, D.A., Holcombe, G.W., 1978. Toxic effects of zinc on fathead minnows, Pimephales promelas, in soft water. J. Fish Biol. 13, 701-708.
    Bouquegneau, J.M., 1979. Evidence for the protective effect of metal- lothioneins against inorganic mercury injuries to fish. Bull. Environ. Contam. Toxicol. 23, 218-219.
    Brinkman, S.F., Hansen, D.L., 2007. Toxicity of cadmium to early life stages of brown trout (Salmo trutta) at multiple water hardnesses. Environ. Toxicol. Chem. 26, 1666-1671.
    Brinkman, S.F., Woodling, J., 2005. Zinc toxicity to the mottled sculpin (Cottus bairdi) in high-hardness water. Environ. Toxicol. Chem. 24, 1515-1517.
    Bringolf, R.B., Morris, B.A., Boese, C.J., Santore, R.C., Allen, H.E., Meyer, J.S., 2006. Influence of dissolved organic matter on acute toxicity of zinc to larval fathead minnows (Pimephales promelas). Arch. Environ. Contam. Toxicol. 51, 438-444.
    Brungs, W.A., 1969. Chronic toxicity of zinc to the fathead minnow Pimephales promelas Rafinesque. Trans. Am. Fish Soc. 98, 272-279.
    Calabrese, A., MacInnes, J.R., Nelson, D.A., Miller, J.E., 1977. Survival and growth of bivalve larvae under heavy-metal stress. Mar. Biol. 41, 179-184.
    Campana, O., Sarasquete, C., Blasco, J., 2003. Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicol. Environ. Saf. 55, 116-125.
    Carlsson, G., Norrgren, L., 2004. Synthetic musk toxicity to early life stages of zebrafish (Danio rerio). Arch. Environ. Contam. Toxicol. 46, 102-105.
    Chatterjee, S., Bhattacharya, S., 1984. Detoxication of industrial pollutants by the glutathione glutathione-S-transferase system in the liver of Anabas testudineus (Bloch). Toxicol. Lett. 22, 187-198.
    Chaurasia, S.S., Kar, A., 1999. An oxidative mechanism for the inhibition of iodothyronine 5’-monodeiodinase activity by lead nitrate in the fish, Heteropneustes fossilis. Water Air Soil Pollut. 111, 417-423.
    Chen, C.Y., Dionne, M., Mayes, B.M., Ward, D.M., Sturup, S., Jackson, B.P., 2009. Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environ. Sci. Technol. 43, 1804-1810.
    Chen, M.H., Chen, C.Y., Chou, H.Y., Wen, T.C., 2005. Gender and size effects of metal bioaccumulation on the rock crab, Thalamita crenata, in Dapeng Bay, southwestern Taiwan. Mar. Pollut. Bull. 50, 463-469.
    Dave, G., Damgaard, B., Grande, M., Martelin, J.E., Rosander, B., Viktor, T., 1987. Ring test of an embryo-larval toxicity test with zebrafish (Brachydanio rerio) using chromium and zinc as toxicants. Environ. Toxicol. Chem. 6, 61-71.
    Dave, G., Xiu, R.Q., 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 21, 126-134.
    Devlin, E.W., 2006. Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicol. 15, 97-110.
    Devlin, E.W., Mottet, N.K., 1992. Embryotoxic action of methyl mercury on coho salmon embryos. Bull. Environ. Contam. Toxicol. 49, 449-454.
    Di Giulio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W., Jewell, C.S., 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 8, 1103-1123.
    Dinnel, P.A., Link, J.M., Stober, Q.J., Letourneau, M.W., Roberts, W.E., 1989. Comparative sensitivity of sea urchin sperm bioassays to metals and pesticides. Arch. Environ. Contam. Toxicol. 18, 748-755.
    Elia, A.C., D?rr, A.J.M., Mantilacci, L., Taticchi, M.I., Galarini, R., 2000. Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.). In: Markert, B., Friese, K. (Eds.). Trace elements—their distribution and effects in the environment: trace metals in the environment, 4. Elsevier Science, Amsterdam, pp. 411-421.
    Elia, A.C., Galarini, R., Taticchi, M.I., D?rr, A.J.M., Mantilacci, L., 2003. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol. Environ. Saf. 55, 162-167.
    Ferrer, L., Andrade, S., Asteasuain, R., Marcovecchio, J., 2006. Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahía Blanca estuary, Argentina. Ecotoxicol. Environ. Saf. 65, 209-217.
    Giles M.A., Klaverkamp J.F., 1982. The acute toxicity of vanadium and copper to eyed eggs of rainbow trout (Salmo gairdneri). Water. Res. 16, 885-889.
    Gopalakrishnan, S., Thilagam, H., Raja, P.V., 2007. Toxicity of heavy metals on embryogenesis and larvae of the marine sedentary polychaete Hydroides elegans. Arch. Environ. Contam. Toxicol. 52, 171-178.
    Gopalakrishnan, S., Thilagam, H., Raja, P.V., 2008. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 71, 515-528.
    Gorski, J., Nugegoda, D., 2006. Sublethal toxicity of trace metals to larvae of theblacklip abalone, Haliotis rubra. Environ. Toxicol. Chem. 25, 1360-1367.
    Grosell, M., McDonald, M., Wood, C.M., Walsh, P.J., 2004. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products. Aquat. Toxicol. 68, 249-262.
    Guilherme, S., Válega, M., Pereira, M.E., Santos, M.A., Pacheco, M., 2008a. Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure– Relationship with mercury accumulation and implications for public health. Mar. Pollut. Bull. 56, 845-859.
    Guilherme, S., Válega, M., Pereira, M.E., Santos, M.A., Pacheco, M., 2008b. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol. Environ. Saf. 70, 411-421.
    Halliwell, B., Gutteridge, J.M.C., 1989. Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell, B., Gutteridge, J.M.C. (Eds.), Free radical in biology and medicine. Clarendon Press, Oxford, pp. 86-123.
    Heisinger, J.F., Green, W., 1975. Mercuric chloride uptake by eggs of the ricefish and resulting teratogenic effects. Bull. Environ. Contam. Toxicol. 14, 665-673. Holcombe, G.W., Benoit, D.A., Leonard, E.N., McKim, J.M., 1979. Long-term effects of zinc exposures on brook trout (Salvelinus fontinalis). Tran. Am. Fish. Soc. 108, 76-87.
    Jezierska, B., ?ugowska, K., Witeska, M., 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35, 625-640. Jezierska, B., Witeska, M., 2001. Metal Toxicity to Fish. University of Podlasie Publisher, Siedlce.
    Johnson, A., Carew, E., Sloman, K.A., 2007. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat. Toxicol. 84, 431-438.
    Kazlauskiene, N., Stasiunaite, P., 1999. The lethal and sublethal effect of heavy metal mixture on rainbow trout (Oncorhynchus mykiss) in its early stages of development. Acta Zool. Lituanica. Hydrobiol. 9, 47-54.
    Klein-Macphee, G., Cardin, J.A., Berry, W.J., 1984. Effects of silver on eggs andlarvae of the winter flounder. Trans. Am. Fish. Soc. 113, 247-251.
    Larose, C., Canuel, R., Lucotte, M., Di Giulio, R.T., 2008. Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 147, 139-149.
    Latif, M.A., Bodaly, R.A., Johnston, T.A., Fudge, R.J.P., 2001. Effects of environmental and maternally derived methylmercury on the embryonic and larval stages of walleye (Stizostedion vitreum). Environ. Pollut. 111, 139-148.
    Lavolpe, M., Greco, L.L., Kesselman, D., Rodríguez, E., 2004. Differential toxicity of copper, zinc, and lead during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae). Environ. Toxicol. Chem. 23, 960-967.
    Leland, H.V., 1983. Ultrastructural changes in the hepatocytes of juvenile rainbow trout and mature brown trout exposed to copper or zinc. Environ. Toxicol. Chem. 2, 353-368.
    Livingstone, D.R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656-666.
    Luo, Y., Su, Y., Lin, R.Z., Shi, H.H., Wang, X.R., 2006. 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere 65, 1064-1073.
    Monteiro, D.A., Rantin, F.T., Kalinin, A.L., 2010. Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinx?, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicol. 19, 105-123.
    Mori, 1979. Effects of Hg and Cd upon the eggs and fry of goldfish Carassius auratus (Linnaeus). Bull. Fac. Fish. Univ. Mie. 6, 173-180.
    Munkittrick, K.R., Dixon, D.G., 1989. Effects of natural exposure to copper and zinc on egg size and larval copper tolerance in white sucker (Catostomus commersoni). Ecotox. Environ. Saf. 18:15-26.
    Nebeker, A.V., Savonen, C., Stevens, D.G., 1985. Sensitivity of rainbow trout early life stages to nickel chloride. Environ. Toxicol. Chem. 4, 233-239.
    Norberg, T.J., Mount, D.I., 1985. A new fathead minnow (Pimephales promelas) subchronic toxicity test. Environ. Toxicol. Chem. 4, 711-718.
    Nu?ez-Nogueira, G., Rainbow, P.S., 2005. Cadmium uptake and accumulation by thedecapod crustacean Penaeus indicus. Mar. Environ. Res. 60, 339-354.
    OECD, 1998. Fish, short-term toxicity test on embryo and sac-fry stages. OECD Guidelines Testing Chem. pp. 1-20.
    Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358.
    Ojaveer, E., Annist, J., Jankowski, H., Palm, T., Raid, T., 1980. On effect of copper, cadmium and zinc on the embryonic development of Baltic spring spawning herring. Finn. Mar. Res. 247, 135-140.
    Oliveira, M., Pacheco, M., Santos, M.A., 2008. Organ specific antioxidant responses in golden grey mullet (Liza aurata) following a short-term exposure to phenanthrene. Sci. Total Environ. 396, 70-78.
    Osman, A., Mekkawy, I., Verreth, J., Kirschbaum, F., 2007. Effects of lead nitrate on the activity of metabolic enzymes during early developmental stages of the African catfish,. Clarias gariepinus (Burchell, 1822). Fish Physiol. Biochem. 33, 1-13.
    Ozoh, P.T.E., 1979. Malformations and inhibitory tendencies induced to Brachydanio rerio (Hamilton-Buchanan) eggs and larvae due to exposures in low concentrations of lead copper ions. Bull. Environ. Contam. Toxicol. 21, 668-675.
    Rabenstein, D.L., 1989. Metal complexes of glutathione and their biological significance. In: Dolphin, D., Avramovic, O., Poulson, R. (Eds.). Glutathione: chemical biochemical and medical aspects: coenzymes and cofactors, Wiley, New York, pp. 147-186.
    Rana, S.V.S., Singh, R., Verma, S., 1995. Mercury-induced lipid peroxidation in the liver, kidney, brain and gills of a fresh water fish Channa punctatus. Jpn. J. Ichthyol. 42, 255-259.
    Ritola, O., Livingstone, D.R., Peters, L.D., Lindstr?m-Sepp?, P., 2002. Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water. Aquaculture 210, 1-19.
    Sakaizumi, M., 1980. Effect of inorganic salts of mercury compound toxicity to the embryos of the medaka Oryzias latipes. J. Fac. Sci. Univ. Tokyo Sect. IV, Zool. 14, 369-384.
    Samson, J.C., Shenker, J., 2000. The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquat. Toxicol. 48, 343-354.
    Schmitt, C.J., Whyte, J.J., Roberts, A.P., Annis, M.L., May, T.W., Tillitt, D.E., 2007. Biomarkers of metals exposure in fish from lead-zinc mining areas of southeastern Missouri, USA. Ecotoxicol. Environ. Saf. 67, 31-47.
    Sharp, J.R., 1992. The effect of exposure duration to mercury on the development of the orangethroat darter, Etheostoma spectabile. Trans. Mo. Acad. Sci. 26, 116 (abstract).
    Sharp, J.R., Neff, J.M., 1980. Effects of the duration of exposure to mercuric-chloride on the embryogenesis of the estuarine teleost, Fundulus heteroclitus. Mar. Environ. Res. 3, 195-213.
    Sharp, J.R., Neff, J.M., 1982. The toxicity of mercuric chloride and methylmercuric chloride to Fundulus heteroclitus embryos in relation to exposure conditions. Environ. Biol. Fish. 7, 277-284.
    Sinley, J.R., Goettl, J.P., Davies, P.H., 1974. The effects of zinc on rainbow trout (Salmo gairdneri) in hard and soft water. Bull. Environ. Contain. Toxicol. 12, 193-201.
    Somasundaram, B., King, P.E., Shackley, S.E., 1984. Some morphological effects of zinc upon the yolk-sac larvae of Clupea harengus L. J. Fish Biol. 25, 333-343.
    Speranza, A.W., Seeley, R.J., Seeley, V.A., Perlmutter, A., 1977. The effect of sublethal concentrations of zinc on reproduction in the zebrafish Brachydanio rerio Hamilton Buchanan. Environ. Pollut. 12, 217-222.
    Stevens, J.L., Jones, D.P., 1989. The mercapturic acid pathway: biosynthesis, intermediary metabolism, and physiological disposition. In: Dolphin, D., Poulson, R., Avramovic, O. (Eds.). Glutathione: chemical, biochemical and medicinal aspects, Part B. Wiley, New York, pp. 45-84.
    Tanaka, M., Kawai, S., Seikai, T., Burke, J.S., 1996. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement. Mar. Freshw. Behav. Physiol. 28, 19-31.
    Thomas, P., Wofford, H.W., 1984. Effects of metal and organic compounds on hepatic glutathione, cysteine and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicol. Appl. Pharmacol. 76, 172-182.
    Trudel, M., Rasmussed, J.B., 2006. Bioenergetics and mercury dynamics in fish: a modelling perspective. Can. J. Fish. Aquat. Sci. 63, 1890-1902.
    Tsou, T.C., Yeh, S.C., Tsai, F.Y., Chang, L.W., 2004. The protective role ofintracellular GSH status in the arsenite-induced vascular endothelial dysfunction. Chem. Res. Toxicol. 17, 208-217.
    U. S. EPA, 1996. Fish early-life stage toxicity test. US Environmental Protection Agency, Washington, D.C., pp. 1-13.
    van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57-149.
    Verlecar, X.N., Jena, K.B., Chainy, G.B.N., 2007. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem. Biol. Interact. 167, 219-226.
    Verlecar, X.N., Jena, K.B., Chainy, G.B.N., 2008. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures. Chemosphere 71, 1977-1985.
    Vieira, L.R., Gravato, C., Soares, A.M.V.M., Morgado, F., Guilhermino, L., 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: Linking biomarkers to behaviour. Chemosphere 76, 1416-1427.
    Watling, H.R., 1982. Comparative study of the effects of zinc, cadmium, and copper on the larval growth of three oyster species. Bull. Environ. Contam. Toxicol. 28, 195-201.
    Weber, D.N., 2006. Dose-dependent effects of developmental mercury exposure on C-start escape responses of larval zebrafish Danio rerio. J. Fish Biol. 69, 75-94.
    Weis, J.S., Weis, P., 1989. Effects of environmental pollutants on early fish development. Rev. Aquat. Sci. 1, 45-73.
    Weis, J.S., Weis, P., 1995. Effects of embryonic exposure to methylmercury on larval prey-capture ability in the mummichog, Fundulus heteroclitus. Environ. Toxicol. Chem. 14, 153-156.
    Weis, J.S., Weis, P., Heber, M., Vaidya, S., 1981. Methylmercury tolerance of killifish (Fundulus heteroclitus) embryos from a polluted vs non-polluted environment. Mar. Biol. 65, 283-287.
    Williams, N.D., Holdway, D.A., 2000. The Effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environ. Toxicol. 15, 165-173.
    Winston, G.W., Di Giulio, R.T., 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19, 137-161.
    Witeska, M., Jezierska, B., Chaber, J., 1995. The influence of cadmium on common carp embryos and larvae. Aquaculture 129, 129-132.
    Woodworth, J., Pascoe, D., 1982. Cadmium toxicity to rainbow trout, Salmo gairdneri Richardson: a study of eggs and alevins. J. Fish. Biol. 21, 47-57.
    Zha, J.M., Wang, Z.J., 2005. Assessing technological feasibility for wastewater reclamation based on early life stage toxicity of Japanese medaka (Oryzias latipes). Arg. Ecosyst. Environ. 107, 187-198.
    Zha, J.M., Wang, Z.J., 2006. Acute and early life stage toxicity of industrial effluent on Japanese medaka (Oryzias latipes). Sci. Total Environ. 357, 112-119.
    Zhang, J.F., Shen, H., Wang, X.R., Wu, J.C., Xue, Y.Q., 2004. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55, 167-174.
    Zhou, T., Scali, R., Weis, J.S., 2001. Effects of methylmercury on ontogeny of prey capture ability and growth in three populations of larval Fundulus heteroclitus. Arch. Environ. Contam. Toxicol. 41, 47-54.
    Zillioux, E.J., Porcella, D.B., Benoit, J.M., 1993. Mercury cycling and effects in freshwater wetland ecosystems. Environ. Toxicol. Chem. 12, 2245-2264.
    卜志国,郑琳,崔文林,袁媛,2009.渤海海洋环境污染现状与管理对策研究.海洋开发与管理. 26,34-36.
    陈亮,郭红岩,沈红,王晓蓉,2002.低浓度铅暴露对鲫鱼肝脏抗氧化系统的影响.环境化学. 21,485-489.
    程济生,2004.黄渤海近岸水域生态环境与生物群落.中国海洋大学出版社.
    成嘉,符贵红,刘芳,唐建洲,李基光,张建设,2006.重金属铅对鲫鱼乳酸脱氢酶和过氧化氢酶活性的影响.生命科学研究. 10,372-376.
    戴伟,金成官,傅玲琳,杜华华,许梓荣,2009.饲料铅暴露对罗非鱼肝胰脏抗
    氧化防御系统及显微结构的影响.浙江大学学报(农业与生命科学版). 35, 350-354.
    丁小波,文利新,牛同利,2007.微量元素锌的毒性研究.微量元素与健康研究.24,64-66.
    胡秀芝,周春景,吴亚,武贤莉,唐正义,2009.铅铜离子对鲫鱼的急性毒性研究.内江师范学院院报. 24,45-48.
    金显仕,2001.渤海主要渔业生物资源变动的研究.中国水产科学. 7,22-26.
    金显仕,唐启升,1998.渤海渔业资源结构、数量分布及其变化.中国水产科学. 5,18-24.
    金显仕,赵宪勇,孟田湘,崔毅等,2005.黄、渤海生物资源与栖息环境.科学出版社.
    雷霁霖,2005.海水鱼类养殖理论与技术.中国农业出版社.
    李冠国、范振刚,2003.海洋生态学.高等教育出版社.
    李丽娜,陈振楼,张亚雷,李建华,2008.长江口滨岸潮滩底栖动物泥螺受锌污染的急性毒理试验研究. 12,373-376.
    刘成,王兆印,何耘,吴永胜. 2003.环渤海诸河口水质现状的分析.环境污染与防治. 25,222-225.
    柳学周,徐永江,兰功刚,2006.几种重金属离子对半滑舌鳎胚胎发育和仔稚鱼的毒性效应.海洋水产研究. 27,33-42.
    单秀娟,2008.鮸早期生长存活过程和消化生理机制的研究.中国科学院研究生院学位论文.
    田金,李超,宛立,杜牛,赵海勃,2009.海洋重金属污染的研究进展.水产科学. 28,413-418.
    王长友,2008.东海Cu、Pb、Zn、Cd重金属环境生态效应评价及环境容量估算研究.中国海洋大学学位论文.
    王春凤,方展强,2005.汞和硒对箭尾鱼的急性毒性极其安全浓度评价.环境科学与技术. 28,32-35.
    王凡,赵元凤,吕景才,刘才发,2008.铅污染对牙鲆GSH-Px酶活性的影响.海洋水产研究. 29,20-23.
    王晓蓉,罗义,施华宏,张景飞,2006.分子生物标志物在污染环境早期诊断和生态风险评价中的应用.环境化学. 25,320-325.
    吴鼎勋,洪万树,1999.四种重金属对鮸状黄姑鱼胚胎和仔鱼的毒性.台湾海峡.18,186-190.
    吴海一,2008.重金属对扁额细首纽虫抗氧化防御系统及脂质过氧化作用的影响. 中国海洋大学学位论文.
    吴继法,2005.典型有机污染物胁迫对鲈鱼生物标志物系统影响的研究.中国科学院研究生院学位论文.
    肖红,2004.乙草胺、尿素过量使用对黑土农田的生态毒理效应及机理研究.中国科学院研究生院博士学位论文.
    辛鹏举,2008.铅的毒性效应及作用机制研究进展.国外医学. 35,70-74.
    修瑞琴,1997.生态毒理学环境生物技术.中国药理学与毒理学杂志. 11, 95-96.
    徐海生,赵元凤,吕景才,张兰,袁健,刘长发,邢殿楼,刘靖,2006.铜、铅、
    镉单一及复合污染对牙鲆组织酶活性的影响.山东农业大学学报(自然科学版). 37, 521-524.
    徐立红,张甬元,陈宜瑜,1995.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报. 19,171-185.
    杨纪明,1991.我国的海洋渔业资源.海洋科学消息. 2,44-45.
    杨纪明,杨伟祥,王新成,成贵书,1990.渤海底层鱼类的生物量估计.海洋学报. 12,359-365.
    殷名称,1993.鱼类生态学.中国农业出版社,北京,pp.11-13.
    战玉杰,2005.渤海重金属污染状况及对典型浮游植物生长影响的初步分析.中国海洋大学学位论文.
    张红梅,2009.低浓度铅染毒对黄河鲤血清抗氧化性的影响.动物医学进展. 30, 29-30.
    张秀梅,朱杰,高天翔,柳广东,2001.褐牙鲆受精卵及仔稚鱼生理生态学研究进展.青岛海洋大学学报. 31,495-500.
    周启星,孔繁翔,朱琳,2004.生态毒理学.科学出版社.
    朱鑫华,杨纪明,唐启升,1996.渤海鱼类种群结构特征的研究. 27,6-13.
    Aagaard, A., Styrishave, B., Warman, C.G., Depledge, M.H., 2000. The use of cardiacmonitoring in the assessment of mercury toxicity in the subtropical pebble crab Gaetice depressus (Brachyura: Grapsidae: Varuninae). Sci. Mar. 64, 381-386.
    Adema-Hannes, R., Shenker, J., 2008. Acute lethal and teratogenic effects of tributyltin chloride and copper chloride on mahi mahi (Coryphaena hippurus) eggs and larvae. Environ. Toxicol. Chem. 27, 2131-2135.
    Alam, M.K., Maughan, O.E., 1992. The effect of malathion, diazinon, and various concentrations of zinc, copper, nickel, lead, iron, and mercury on fish. Biol. Trace Elem. Res. 34, 225-236.
    Alsop, D.H., McGeer, J.C., McDonald, D.G., Wood, C.M., 1999. Costs of chronic waterborne zinc exposure and the consequences of zinc acclimation on the gill/zinc interactions of rainbow trout in hard and soft water. Environ. Toxicol. Chem. 18, 1014-1025.
    Bengtsson, B.E., 1974. Vertebral damage to minnows Phoxinus phoxinus exposed to zinc. Oikos 25, 134-139.
    Benoit, D.A., Holcombe, G.W., 1978. Toxic effects of zinc on fathead minnows, Pimephales promelas, in soft water. J. Fish Biol. 13, 701-708.
    Bieniarz, K., Epler, P., Soko?owska-Miko?ajczyk, M., Popek, W., 1997. Reproduction of fish in conditions disadvantageously altered with the salts of zinc and copper. Arch. Pol. Fish 5, 21-30.
    Bringolf, R.B., Morris, B.A., Boese, C.J., Santore, R.C., Allen, H.E., Meyer, J.S., 2006. Influence of dissolved organic matter on acute toxicity of zinc to larval fathead minnows (Pimephales promelas). Arch. Environ. Contam. Toxicol. 51, 438-444.
    Brinkman, S.F., Woodling, J., 2005. Zinc toxicity to the mottled sculpin (Cottus bairdi) in high-hardness water. Environ. Toxicol. Chem. 24, 1515-1517.
    Brungs, W.A., 1969. Chronic toxicity of zinc to the fathead minnow Pimephales promelas Rafinesque. Trans. Am. Fish Soc. 98, 272-279.
    Calabrese, A., Nelson, D.A., 1974. Inhibition of embryonic development of the hard clam, Mercenaria mercenaria, by heavy metals. Bull. Environ. Contam. Toxicol. 11, 92-97.
    Calabrese, A., MacInnes, J.R., Nelson, D.A., Miller, J.E., 1977. Survival and growth of bivalve larvae under heavy-metal stress. Mar. Biol. 41, 179-184.
    Cheng, S.H., Wai, A.W.K., So, C.H., Wu, R.S.S., 2000. Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ. Toxicol. Chem.19, 3024-3031.
    Chibunda, R.T., 2008. Comparative sensitivity of Caridina nilotica, Haplochromis nubilus, Bulinus africanus and Bulinus forskalii from Lake Victoria, Tanzania to mercury chloride. Chem. Ecol. 24, 207-212.
    Couillard, C.M., Lebeuf, M., Légaré, B., Trottier, S., 2008. Effects of diazinon on mummichog (Fundulus heteroclitus) larvae produced from eggs differentially treated with PCB126. Arch. Environ. Contam. Toxicol. 54, 283-291.
    Craik, J.C.A., Harvey, S.M., 1988. A preliminary account of metal levels in eggs of farmed and wild Atlantic salmon and their relation to egg viability. Aquaculture 73, 309-321.
    Cusimano, R.F., Brakke, D.F., Chapman, G.A., 1986. Effects of pH on the toxicities of cadmium, copper, and zinc to steelhead trout (Salmo gairdneri). Can. J. Fish Aquat. Sci. 43, 1497-1503
    Damiens, G., Mouneyrac, C., Quiniou, F., His, E., Gnassia-Barelli, M., Roméo, M., 2006. Metal bioaccumulation and metallothionein concentrations in larvae of Crassostrea gigas. Environ. Pollut. 149, 492-499.
    Dave, G., Damgaard, B., Grande, M., Martelin, J.E., Rosander, B., Viktor, T., 1987. Ring test of an embryo-larval toxicity test with zebrafish (Brachydanio rerio) using chromium and zinc as toxicants. Environ. Toxicol. Chem. 6, 61-71.
    Dave, G., Xiu, R.Q., 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 21, 126-134.
    Denton, G.R.W., Burdon-Jones, C., 1986. Environmental effects on toxicity of heavy metals to two species of tropical marine fish from Northern Australia. Chem. Ecol. 2, 233-249.
    Devlin, E.W., 2006. Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicol. 15, 97-110.
    Devlin, E.W., Mottet, N.K., 1992. Embryotoxic action of methyl mercury on Coho salmon embryos. Bull. Environ. Contam. Toxicol. 49, 449-454.
    Dinnel, P.A., Link, J.M., Stober, Q.J., Letourneau, M.W., Roberts, W.E., 1989. Comparative sensitivity of sea urchin sperm bioassays to metals and pesticides. Arch. Environ. Contam. Toxicol. 18, 748-755.
    Dou, S.Z., Masuda, R, Tanaka, M, Tsukamoto, K., 2005. Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. J.Fish Biol. 66, 362-377.
    Fernández, N., Beiras, R., 2001. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10, 263-271.
    Ferrer, L., Andrade, S., Asteasuain, R., Marcovecchio, J., 2006. Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahía Blanca estuary, Argentina. Ecotox. Environ. Saf. 65, 209-217.
    Finlayson, B.J., Verrue, K.M., 1982. Toxicities of copper, zinc, and cadmium mixtures to juvenile Chinook salmon. Trans. Am. Fish Soc. 111, 645-650.
    Finney, D., 1971. Probit Analysis (third edition). Cambridge University Press, London, p 702.
    Franco, J.L., Posser, T., Mattos, J.J., Sánchez-Chardi, A., Trevisan, R., Oliveira. C.S., Carvalho, P.S.M., Leal, R.B., Marques, M.R.F., Bainy, A.C.D., Dafre, A.L., 2008. Biochemical alterations in juvenile carp (Cyprinus carpio) exposed to zinc: glutathione reductase as a target. Mar. Environ. Res. 66, 88-89.
    Furuta, T., Iwata, N., Kikuchi, K., 2007. Effects of fish size and water temperature on the acute toxicity of boron to Japanese flounder Paralichthys olivaceus and red sea bream Pagrus major. Fish. Sci. 73, 356-363.
    Furuta, T., Iwata, N., Kikuchi, K., 2008. Effects of fish size and water temperature on the acute toxicity of copper for Japanese flounder, Paralichthys olivaceus, and Red sea bream, Pagrus major. J. World Aquacult. Soc. 39, 766-773.
    Gopal, V., Maheswari, D.K., 1991. Influence of nutritional status on the median tolerance limits (LC50) of Ophiocephalus striatus for certain heavy metal and pesticide toxicants. Indian J. Environ. Health 33, 393-394.
    Gopalakrishnan, S., Thilagam, H., Raja, P.V., 2007. Toxicity of heavy metals on embryogenesis and larvae of the marine sedentary polychaete Hydroides elegans. Arch. Environ. Contam. Toxicol. 52, 171-178.
    Gopalakrishnan, S., Thilagam, H., Raja, P.V., 2008. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 71, 515-528.
    Gorski, J., Nugegoda, D., 2006. Sublethal toxicity of trace metals to larvae of the blacklip abalone, Haliotis rubra. Environ. Toxicol. Chem. 25, 1360-1367.
    Guy, C.P., Pinkney, A.E., Taylor, M.H., 2006. Effects of sediment-bound zinc contamination on early life stages of the mummichog (Fundulus heteroclitus L.) inthe Christina Watershed, Delaware, USA. Environ. Toxicol. Chem. 25, 1305-1311.
    Hallare, A.V., Schirling, M., Luckenbach, T., K?hler, H.R., Triebskorn, R., 2005. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J. Therm. Biol. 30, 7-17.
    Hamza-Chaffai, A., Amiard-Triquet, C., El Abed, A., 1997. Metallothionein-like protein: is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast. Arch. Environ. Contam. Toxicol. 33, 53-62.
    Harper, D.D., Farag, A.M., Brumbaugh, W.G., 2008. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile Cutthroat trout. Arch. Environ. Contam. Toxicol. 54, 697-704.
    Hattink, J., De Boeck, G., Blust, R., 2006. Toxicity, accumulation, and retention of zinc by carp under normoxic and hypoxic conditions. Environ. Toxicol. Chem. 25, 87-96.
    Heisinger, J.F., Green, W., 1975. Mercuric chloride uptake by eggs of the Ricefish and resulting teratogenic effects. Bull. Environ. Contam. Toxicol. 14, 665-673.
    Holcombe, G.W., Benoit, D.A., Leonard, E.N., McKim, J.M., 1979. Long-term effects of zinc exposures on brook trout (Salvelinus fontinalis). Tran. Am. Fish. Soc. 108, 76-87.
    Holdway, D.A., Lok, K., Semaan, M., 2001. The acute and chronic toxicity of cadmium and zinc to two hydra species. Environ. Toxicol. 16, 557-565.
    Hughes, G.M., 1981. Effects of low oxygen and pollution on the respiratory systems of fish. In: Pickering, A.D. (Eds.). Stress and fish. pp. 121-146.
    Ishikawa, N.M., Ranzani-Paiva, M.J.T., Lombardi, J.V., 2007. Acute toxicity of mercury (HgCl2) to Nile tilapia, Oreochromis niloticus. B. Inst. Pesca S?o Paulo 33, 99-104.
    Jagadeesan, G., Vijayalakshmi, S., 1998. Evaluation of mercury toxicity on the fish Labeo rohita (Ham.) fingerlings in a calendar year. Environ. Ecol. 16, 885-890.
    James, R., Sampath, K., Jancy Pattu, V., Devakiamma, G., 1992. Utilization of eichhornia crassipes for the reduction of mercury toxicity on food transformation in Heteropneustes fossilis. J. Aquac. Trop. 7, 189-196.
    Jezierska, B., ?ugowska, K., Witeska, M., 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35, 625-640.
    Jezierska, B., Witeska, M., 2001. Metal Toxicity to Fish. University of Podlasie Publisher, Siedlce.
    Kaur, K., Bajwa, K., 1987. Effect of zinc and cadmium on early life stages of common carp, Cyprinus carpio. Linn. Ann. Biol. 3, 28-33.
    Kazlauskiene, N., Stasiunaite, P., 1999. The lethal and sublethal effect of heavy metal mixture on rainbow trout (Oncorhynchus mykiss) in its early stages of development. Acta Zool. Lituanica. Hydrobiol. 9, 47-54.
    Khangarot, B.S., Ray, P.K., 1987. Studies on the acute toxicity of copper and mercury alone and in combination to the common guppy Poecilia reticulata (Peters). Arch. Hydrobiol. 110, 303-314.
    Klauning, J., Koepp, S., McCormick, M., 1975. Acute toxicity of a native mummichog population (Fundulus heteroclitus) to mercury. Bull. Environ. Contam. Toxicol. 14, 534-536.
    Krishnani, K.K., Azad, I.S., Kailasam, M., Thirunavukkarasu, A.R., Gupta, B.P., Joseph, K.O., Muralidhar, M., Abraham, M., 2003. Acute toxicity of some heavy metals to Lates calcarifer fry with a note on its histopathological manifestations. J. Environ. Sci. Health A 38, 645-655.
    Latif, M.A., Bodaly, R.A., Johnston, T.A., Fudge, R.J.P., 2001. Effects of environmental and maternally derived methylmercury on the embryonic and larval stages of walleye (Stizostedion vitreum). Environ. Pollut. 111, 139-148.
    Lavolpe, M., Greco, L.L., Kesselman, D., Rodríguez, E., 2004. Differential toxicity of copper, zinc, and lead during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae). Environ. Toxicol. Chem. 23, 960-967.
    Leland, H.V., 1983. Ultrastructural changes in the hepatocytes of juvenile rainbow trout and mature brown trout exposed to copper or zinc. Environ. Toxicol. Chem. 2, 353-368.
    Mallatt, J., Barron, M.G., McDonough, C., 1986. Acute toxicity of methyl mercury to the larval lamprey, Petromyzon marinus. Bull. Environ. Contam. Toxicol. 37, 281-288.
    Martin, M., Osborn, K.E., Billig, P., Glickstein, N., 1981. Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Mar. Pollut. Bull. 12, 305-308.
    Munkittrick, K.R., Dixon, D.G., 1989. Effects of natural exposure to copper and zinc on egg size and larval copper tolerance in white sucker (Catostomus commersoni). Ecotox. Environ. Saf. 18:15-26.
    Nammalwar, P., 1987. Pollution impact and management of the coastal estuariesaround Madras, India. In: Nair, N.B. (Eds.), Proc.of the Natl.Semin.on Estuarine Manage. Trivandrum, India, pp. 190-193.
    Nehring, R.B., Jr Goettl, J.P., 1974. Acute toxicity of zinc-polluted stream to four species of salmonids. Bull. Environ. Contain. Toxicol. 12, 464-469.
    Norberg, T.J., Mount, D.I., 1985. A new fathead minnow (Pimephales promelas) subchronic toxicity test. Environ. Toxicol. Chem. 4, 711-718.
    OECD, 1998. Fish, short-term toxicity test on embryo and sac-fry stages. OECD Guidelines Testing Chem. pp. 1-20.
    Ojaveer, E., Annist, J., Jankowski, H., Palm, T., Raid, T., 1980. On effect of copper, cadmium and zinc on the embryonic development of Baltic spring spawning herring. Finn. Mar. Res. 247, 135-140.
    Oliveira, R., Domingues, I., Grisolia, C.K., Soares, A.M.V.M., 2009. Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. 16, 679-688.
    Oruc, E.O., Uner, N., Sevgiler, Y., Usta, D., Durmaz, H., 2006. Sublethal effects of organophosphate diazinon on the brain of Cyprinus carpio. Drug. Chem. Toxicol. 29, 57-67.
    Ozoh, P.T.E., 1979. Malformations and inhibitory tendencies induced to Brachydanio rerio (Hamilton-Buchanan) eggs and larvae due to exposures in low concentrations of lead copper ions. Bull. Environ. Contam. Toxicol. 21, 668-675.
    Pandey, S., Kumar, R., Sharma, S., Nagpure, N.S., Srivastava, S.K., Verma, M.S., 2005. Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicol. Environ. Saf. 61, 114-120.
    Peebua, P., Kruatrachue, M., Pokethitiyook, P., Singhakaew, S., 2008. Histopathological alterations of Nile tilapia, Oreochromis niloticus in acute and subchronic alachlor exposure. J. Environ. Biol. 29, 325-331.
    Pickering, Q.H., Vigor, W.N., 1965. The acute toxicity of zinc to eggs and fry of the fathead minnow. Prog. Fish Cult. 27, 153-157.
    Rehwoldt, R., Menapace, L.W., Nerrie, B., Alessandrello, D., 1972. The effect of increased temperature upon the acute toxicity of some heavy metal ions. Bull. Environ. Contam. Toxicol. 8, 91-96.
    Sakaizumi, M., 1980. Effect of inorganic salts of mercury compound toxicity to the embryos of the medaka Oryzias latipes. J. Fac. Sci. Univ. Tokyo Sect. IV, Zool. 14,369-384.
    Samson, J.C., Shenker, J., 2000. The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquat. Toxicol. 48, 343-354.
    Selvi, M., Sarikaya, R., 2004. Investigation of the acute toxic effect of mercury (II) chloride on Corydoras paleatus and its behavioral changes. Fresen. Environ. Bull. 13, 1398-1401.
    Shah, S.L., Altindag, A., 2005. Effects of heavy metal accumulation on the 96-h LC50 values in tench Tinca tinca L., 1758. Turk. J. Vet. Anim. Sci. 29, 139-144.
    Sharp, J.R., 1992. The effect of exposure duration to mercury on the development of the orangethroat darter, Etheostoma spectabile. Trans. Mo. Acad. Sci. 26, 116 (abstract).
    Sharp, J.R., Neff, J.M., 1980. Effects of the duration of exposure to mercuric-chloride on the embryogenesis of the estuarine teleost, Fundulus heteroclitus. Mar. Environ. Res. 3, 195-213.
    Sharp, J.R., Neff, J.M., 1982. The toxicity of mercuric chloride and methylmercuric chloride to Fundulus heteroclitus embryos in relation to exposure conditions. Environ. Biol. Fish. 7, 277-284.
    Sinley, J.R., Goettl, J.P., Davies, P.H., 1974. The effects of zinc on rainbow trout (Salmo gairdneri) in hard and soft water. Bull. Environ. Contain. Toxicol. 12, 193-201.
    Skidmore, J.F., 1966. Resistance to zinc sulphate on zebrafish, Brachydanio rerio, embryos after removal or rupture of the outer egg membrane. J. Fish Res. Bd. Can. 23, 1037-1041.
    Somasundaram, B., King, P.E., Shackley, S.E., 1984. Some morphological effects of zinc upon the yolk-sac larvae of Clupea harengus L. J. Fish Biol. 25, 333-343.
    Spehar, R.L., 1976. Cadmium and zinc toxicity to flagfish Jordanella floridae. J. Fish Res. Bd. Can. 33, 1939-1945.
    Speranza, A.W., Seeley, R.J., Seeley, V.A., Perlmutter, A., 1977. The effect of sublethal concentrations of zinc on reproduction in the zebrafish Brachydanio rerio Hamilton Buchanan. Environ. Pollut. 12, 217-222.
    Takayanagi, K., 2001. Acute toxicity of waterborne Se(IV), Se(VI), Sb(III), and Sb(V) on red seabream (Pargus major). Bull. Environ. Contam. Toxicol. 66, 808-813.
    US EPA, 1985. Ambient water quality criteria for mercury-1984, EPA 440/5-84-026. Office of Water Regulations and Standards, Criteria and Standards Division, USEPA, Washington, D.C., pp. 33-35.
    Watling, H.R., 1982. Comparative study of the effects of zinc, cadmium, and copper on the larval growth of three oyster species. Bull. Environ. Contam. Toxicol. 28, 195-201.
    Weis, J.S., Weis, P., 1989. Effects of environmental pollutants on early fish development. Rev. Aquat. Sci. 1, 45-73.
    Weis, J.S., Weis, P., 1995. Effects of embryonic exposure to methylmercury on larval prey-capture ability in the mummichog, Fundulus heteroclitus. Environ. Toxicol. Chem. 14, 153-156.
    Weis, J.S., Weis, P., Heber, M., Vaidya, S., 1981. Methylmercury tolerance of killifish (Fundulus heteroclitus) embryos from a polluted vs non-polluted environment. Mar. Biol. 65, 283-287.
    Westerman, A.G., 1984. The chronic effects of low-level mercury and cadmium to goldfish (Carassius auratus). Diss. Abstr. Int. B Sci. Eng.45:1096/Ph.D.Thesis, University of Kentucky, Lexington, KY, pp. 263.
    Williams, N.D., Holdway, D.A., 2000. The Effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environ. Toxicol. 15, 165-173.
    Witeska, M., Jezierska, B., Chaber, J., 1995. The influence of cadmium on common carp embryos and larvae. Aquaculture 129, 129-132.
    Woodling, J., Brinkman, S., Albeke, S., 2002. Acute and chronic toxicity of zinc to the mottled sculpin Cottus bairdi. Environ. Toxicol. Chem. 21, 1922-1926.
    Yang, J., Kunito, T., Tanabe, S., Amano, M., Miyazaki, N., 2002. Trace elements in skin of Dall's porpoises (Phocoenoides dalli) from the northern waters of Japan: an evaluation for utilization as non-lethal tracers. Mar. Poll. Bull. 45, 230-236.
    Yang, J.M., 1984. Fish biomass estimates at the bottom layer of the Bohai Sea in July, 1982 and their methods. Kexue Tongbao 29, 683-687.
    Zar, J.H., 1999. Biostatistical Analysis (fourth edition). Prentice-Hall Inc, New Jersey. Zha, J.M., Wang, Z.J., 2005. Assessing technological feasibility for wastewater reclamation based on early life stage toxicity of Japanese medaka (Oryzias latipes). Arg. Ecosyst. Environ. 107, 187-198.
    Zha, J.M., Wang, Z.J., 2006. Acute and early life stage toxicity of industrial effluenton Japanese medaka (Oryzias latipes). Sci. Total Environ. 357, 112-119.
    Zhou, T., Scali, R., Weis, J.S., 2001. Effects of methylmercury on ontogeny of prey capture ability and growth in three populations of larval Fundulus heteroclitus. Arch. Environ. Contam. Toxicol. 41, 47-54.
    雷霁霖,2005.海水鱼类养殖理论与技术.中国农业出版社.
    李嗣新,汪红军,周连凤,梁友光,2008.水环境监测的生物早期预警系统研究与应用技术初探.环境污染与防治. 30, 96-98.
    柳学周,徐永江,兰功刚,2006.几种重金属离子对半滑舌鳎胚胎发育和仔稚鱼的毒性效应.海洋水产研究. 27,33-42.
    曲克明,陈民山,马绍赛,辛福言,2002.几种工业废水对牙鲆仔稚鱼的急性毒性及联合毒性作用.海洋水产研究. 23, 40-45.
    王凡,赵元凤,吕景才,刘才发,2008.铅污染对牙鲆GSH-Px酶活性的影响.海洋水产研究. 29, 20-23.
    吴鼎勋,洪万树,1999.四种重金属对鮸状黄姑鱼胚胎和仔鱼的毒性.台湾海峡. 18,186-190.
    修瑞琴,1997.生态毒理学环境生物技术.中国药理学与毒理学杂志. 11, 95-96.
    徐海生,赵元凤,吕景才,张兰,袁健,刘长发,邢殿楼,刘靖,2006.铜、铅、
    镉单一及复合污染对牙鲆组织酶活性的影响.山东农业大学学报(自然科学版). 37, 521-524.
    赵元凤,吴益春,宋晓阳,王凡,吕景才,刘长发,赵冲,郑伟,2004.牙鲆对海水中铜的吸收、积累和排放规律.大连水产学院院报. 19, 81-86.
    周启星,孔繁翔,朱琳,2004.生态毒理学.科学出版社.
    Allen, P., 1996. Comparative and interactive effects of mercury, cadmium and lead on tissue GSH levels in Oreockrornis aureus (Steindachner): implications for monitoring heavy metal pollution. J. Appl. Ichthyol. 12, 21-26.
    Alvarez, M.D.C., Murphy, C.A., Rose, K.A., McCarthy, I.D., Fuiman, L.A., 2006. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus). Aquat. Toxicol. 80, 329-337.
    Alves, L.C., Glover, C.N., Wood, C.M., 2006. Dietary Pb accumulation in juvenile freshwater rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 51, 615-625.
    Ates, B., Orun, I., Talas, Z. S., Durmaz, G., Yilmaz, I., 2008. Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+. Fish Physiol. Biochem. 34, 53-59.
    Atli, G., Alptekin, O., Tükel, S., Canli, M., 2006. Response of catalase activity to Ag+,Cd~(2+), Cr~(6+), Cu~(2+) and Zn~(2+) in five tissues of freshwater fish Oreochromis niloticus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 143, 218-224.
    Beers, R.F., Sizer, I.W., 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133-140.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
    Burden, V.M., Sandheinrich, M.B., Caldwell, C.A., 1998. Effects of lead on the growth and delta-aminolevulinic acid dehydratase activity of juvenile rainbow, Oncorhynchus mykiss. Environ. Pollut. 101, 285-289.
    Chatterjee, S., Bhattacharya, S., 1984. Detoxication of industrial pollutants by the glutathione glutathione-S-transferase system in the liver of Anabas testudineus (Bloch). Toxicol. Lett. 22, 187-198.
    Chaurasia, S.S., Kar, A., 1999. An oxidative mechanism for the inhibition of iodothyronine 5’-monodeiodinase activity by lead nitrate in the fish, Heteropneustes fossilis. Water Air Soil Pollut. 111, 417-423.
    Couillard, C.M., Lebeuf, M., Légaré, B., Trottier, S., 2008. Effects of diazinon on mummichog (Fundulus heteroclitus) larvae produced from eggs differentially treated with PCB126. Arch. Environ. Contam. Toxicol. 54, 283-291.
    Dave, G., Xiu, R.Q., 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 21, 126-134.
    Devlin, E.W., 2006. Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicol. 15, 97-110.
    Di Giulio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W., Jewell, C.S., 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 8, 1103-1123.
    Elia, A.C., D?rr, A.J.M., Mantilacci, L., Taticchi, M.I., Galarini, R., 2000. Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.). In: Markert, B., Friese, K. (Eds.). Trace elements—their distribution and effects in the environment: trace metals in the environment, 4. Elsevier Science, Amsterdam, pp. 411-421.
    Elia, A.C., Galarini, R., Taticchi, M.I., D?rr, A.J.M., Mantilacci, L., 2003. Antioxidantresponses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol. Environ. Saf. 55, 162-167.
    Essington, T.E., Houser, J.N., 2003. The effect of whole-lake nutrient enrichment on mercury concentration in age-1 yellow perch. Trans. Am. Fish. Soc. 132, 57-68.
    Fjeld, E., Haugen, T.O., V?llestad, L.A., 1998. Permanent impairment in the feeding behavior of grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. Sci. Total Environ. 213, 247-254.
    Friedmann, A.S., Watzin, M.C., Brinck-Johnsen, T., Leiter, J.C., 1996. Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquat. Toxicol. 35, 265-278.
    Gallagher, E.P., Canada, A.T., Di Giulio, R.T., 1992. The protective role of glutathione in chlorothalonil-induced toxicity to channel catfish. Aquat. Toxicol. 23, 155-168.
    Gopalakrishnan, S., Thilagam, H., Raja, P.V., 2007. Toxicity of heavy metals on embryogenesis and larvae of the marine sedentary polychaete Hydroides elegans. Arch. Environ. Contam. Toxicol. 52, 171-178.
    Guilherme, S., Válega, M., Pereira, M.E., Santos, M.A., Pacheco, M., 2008a. Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure– Relationship with mercury accumulation and implications for public health. Mar. Pollut. Bull. 56, 845-859.
    Guilherme, S., Válega, M., Pereira, M.E., Santos, M.A., Pacheco, M., 2008b. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol. Environ. Saf. 70, 411-421.
    Gwak, W.S., Tanaka, M., 2002. Changes in RNA, DNA and protein contents of laboratory-reared Japanese flounder Paralichthys olivaceus during metamorphosis and settlement. Fish. Sci. 68, 27-33.
    Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
    Halliwell, B., Gutteridge, J.M.C., 1989. Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell, B., Gutteridge, J.M.C. (Eds.), Free radical in biology and medicine. Clarendon Press, Oxford, pp. 86-123. Henery, R.E., Sommer, T.R., Goldman, C.R., 2010. Growth and methylmercury accumulation in juvenile Chinook salmon in the Sacramento river and itsfloodplain, the Yolo bypass. Trans. Am. Fish. Soc. 139, 550-563.
    Hissin, P.J., Hilf, R., 1976. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74, 214-226.
    Houck, A., Cech, J.J., 2004. Effects of dietary methylmercury on juvenile Sacramento blackfish bioenergetics. Aquat. Toxicol. 69, 107-123.
    Kasthuri, J., Chandran, M.R., 1997. Sublethal effect of lead on feeding energetics, growth performance, biochemical composition and accumulation of the estuarine catfish, Mystus gulio (Hamilton). J. Environ. Biol. 18, 95-101.
    Kong, K.Y., Cheung, K.C., Wong, C.K.C., Wong, M.H., 2005. Residues of DDTs, PAHs and some heavy metals in fish (Tilapia) collected from Hong Kong and mainland China. J. Environ. Sci. Health. A 40, 2105-2116.
    Laporte, J.M., Andres, S., Mason, R.P., 2002. Effect of ligands and other metals on the uptake of mercury and methylmercury across the gills and the intestine of the blue crab (Callinectes sapidus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 131, 185-196.
    Larose, C., Canuel, R., Lucotte, M., Di Giulio, R.T., 2008. Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 147, 139-149.
    Latif, M.A., Bodaly, R.A., Johnston, T.A., Fudge, R.J.P., 2001. Effects of environmental and maternally derived methylmercury on the embryonic and larval stages of walleye (Stizostedion vitreum). Environ. Pollut. 111, 139-148.
    Liang, L.N., Shi, J.B., He, B., Jiang, G.B., Yuan, C.G., 2003. Investigation of methylmercury and total mercury contamination in mollusk samples collected from coastal sites along the Chinese Bohai Sea. J. Agric. Food Chem. 51, 7373-7378.
    Livingstone, D.R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656-666.
    Luo, Y., Su, Y., Lin, R.Z., Shi, H.H., Wang, X.R., 2006. 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere 65, 1064-1073.
    Macdonald, A., Silk, L., Schwartz, M., Playle, R.C., 2002. A lead-gill binding modelto predict acute lead toxicity to rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 133, 227-242.
    Marklund, S., Marklund, G., 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474.
    Niimi, A.J., Kissoon, G.P., 1994. Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 26, 169-178. doi:10.1007/BF00224801
    OECD, 1998. Fish, short-term toxicity test on embryo and sac-fry stages. OECD Guidelines Testing Chem. pp. 1-20.
    Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358.
    Oruc, E.?.,üner, N., Sevgiler, Y., Usta, D., Durmaz, H., 2006. Sublethal effects of organophosphate diazinon on the brain of Cyprinus carpio. Drug Chem. Toxicol. 29, 57-67.
    Rabenstein, D.L., 1989. Metal complexes of glutathione and their biological significance. In: Dolphin, D., Avramovic, O., Poulson, R. (Eds.). Glutathione: chemical biochemical and medical aspects: coenzymes and cofactors, Wiley, New York, pp. 147-186.
    Rana, S.V.S., Singh, R., Verma, S., 1995. Mercury-induced lipid peroxidation in the liver, kidney, brain and gills of a fresh water fish Channa punctatus. Jpn. J. Ichthyol. 42, 255-259.
    Ritola, O., Livingstone, D.R., Peters, L.D., Lindstr?m-Sepp?, P., 2002. Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water. Aquaculture 210, 1-19.
    Stevens, J.L., Jones, D.P., 1989. The mercapturic acid pathway: biosynthesis, intermediary metabolism, and physiological disposition. In: Dolphin, D., Poulson, R., Avramovic, O. (Eds.). Glutathione: chemical, biochemical and medicinal aspects, Part B. Wiley, New York, pp. 45-84.
    Tanaka, M., Kawai, S., Seikai, T., Burke, J.S., 1996. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement. Mar. Freshw. Behav. Physiol. 28, 19-31.
    Thomas, P., Wofford, H.W., 1984. Effects of metal and organic compounds on hepaticglutathione, cysteine and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicol. Appl. Pharmacol. 76, 172-182.
    Trudel, M., Rasmussed, J.B., 2006. Bioenergetics and mercury dynamics in fish: a modelling perspective. Can. J. Fish. Aquat. Sci. 63, 1890-1902.
    Verlecar, X.N., Jena, K.B., Chainy, G.B.N., 2007. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem. Biol. Interact. 167, 219-226.
    Verlecar, X.N., Jena, K.B., Chainy, G.B.N., 2008. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures. Chemosphere 71, 1977-1985.
    Vieira, L.R., Gravato, C., Soares, A.M.V.M., Morgado, F., Guilhermino, L., 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: Linking biomarkers to behaviour. Chemosphere 76, 1416-1427.
    Weis, J.S., Weis, P., 1995. Effects of embryonic exposure to methylmercury on larval prey-capture ability in the mummichog, Fundulus heteroclitus. Environ. Toxicol. Chem. 14, 153-156.
    Winston, G.W., Di Giulio, R.T., 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19, 137-161.
    Witeska, M., Jezierska, B., Chaber, J., 1995. The influence of cadmium on common carp embryos and larvae. Aquaculture 129, 129-132.
    Zar, J.H., 1999. Biostatistical Analysis, 4th ed. Prentice-Hall Inc, New Jersey, pp. 66. Zhang, L., Wong, M.H., 2007. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 33, 108-121.
    Zhou, T., Scali, R., Weis, J.S., 2001. Effects of methylmercury on ontogeny of prey capture ability and growth in three populations of larval Fundulus heteroclitus. Arch. Environ. Contam. Toxicol. 41, 47-54.
    Zillioux, E.J., Porcella, D.B., Benoit, J.M., 1993. Mercury cycling and effects in freshwater wetland ecosystems. Environ. Toxicol. Chem. 12, 2245-2264.
    陈亮,郭红岩,沈红,王晓蓉,2002.低浓度铅暴露对鲫鱼肝脏抗氧化系统的影响.环境化学. 21, 485-489.
    戴家银,郑微云,洪丽玉,刘琼玉,1997.铜、铅、镉在真鲷幼鱼组织的积累与分布.海洋科学. 6, 8-9.
    戴伟,金成官,傅玲琳,杜华华,许梓荣,2009.饲料铅暴露对罗非鱼肝胰脏抗
    氧化防御系统及显微结构的影响.浙江大学学报(农业与生命科学版). 35, 350-354.
    胡秀芝,周春景,吴亚,武贤莉,唐正义,2009.铅铜离子对鲫鱼的急性毒性研究.内江师范学院院报. 24,45-48.
    刘成,王兆印,何耘,吴永胜,2003.环渤海湾诸河口水质现状的分析.环境污染与防治. 25, 222-225.
    苏庆梅,秦伟,2009.海水中重金属铅的检测方法研究进展.海洋科学. 33, 105-111.
    王晓蓉,罗义,施华宏,张景飞,2006.分子生物标志物在污染环境早期诊断和生态风险评价中的应用.环境化学. 25,320-325.
    张红梅,2009.低浓度铅染毒对黄河鲤血清抗氧化性的影响.动物医学进展. 30, 29-30.
    周启星,孔繁翔,朱琳,2004.生态毒理学.科学出版社.
    Alvarez, M.D., Murphy, C.A., Rose, K.A., McCarthy, I.D., Fuiman, L.A., 2006. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus). Aquat. Toxicol. 80, 329-337.
    Atli, G., Alptekin, O., Tükel, S., Canli, M., 2006. Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 143, 218-224.
    Beers, R.F., Sizer, I.W., 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133-140.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
    Carta, P., Flore, C., Alinovi, R., Ibba, A., Tocco, M.G., Aru, G., Carta, R., Girei, E., Mutti, A., Lucchini, R., Randaccio, F.S., 2003. Sub-clinical neurobehavioral abnormalities associated with low level of mercury exposure through fish consumption. Neurotoxicology 24, 617-623.
    Chatterjee, S., Bhattacharya, S., 1984. Detoxication of industrial pollutants by the glutathione-S-transferase system in the liver of Anabas testudineus (Bloch). Toxicol. Lett. 22, 187-198.
    Chen, C.Y., Dionne, M., Mayes, B.M., Ward, D.M., Sturup, S., Jackson, B.P., 2009. Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environ. Sci. Technol. 43, 1804-1810.
    Chen, M.H., Chen, C.Y., Chou, H.Y., Wen, T.C., 2005. Gender and size effects of metal bioaccumulation on the rock crab, Thalamita crenata, in Dapeng Bay, southwestern Taiwan. Mar. Pollut. Bull. 50, 463-469.
    Dave, G., Xiu, R.Q., 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 21, 126-134.
    Devlin, E.W., 2006. Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicol. 15, 97-110.
    Dou, S,Z,, Masuda, R., Tanaka, M., Tsukamoto, K., 2004. Size hierarchies affecting the social interactions and growth of juvenile Japanese flounder, Paralichthysolivaceus. Aquaculture 233, 237-249
    Elia, A.C., D?rr, A.J.M., Mantilacci, L., Taticchi, M.I., Galarini, R., 2000. Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.). In: Markert, B., Friese, K. (Eds.). Trace elements—their distribution and effects in the environment: trace metals in the environment, 4. Elsevier Science, Amsterdam, pp. 411-421.
    Elia, A.C., Galarini, R., Taticchi, M.I., D?rr, A.J.M., Mantilacci, L., 2003. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol. Environ. Saf. 55, 162-167.
    Essington, T.E., Houser, J.N., 2003. The effect of whole-lake nutrient enrichment on mercury concentration in age-1 yellow perch. Trans. Am. Fish. Soc. 132, 57-68.
    Faria, M., Carrasco, L., Diez, S. Riva, M.C., Bayona, J.M., Barata, C., 2009. Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 281-288.
    Fjeld, E., Haugen, T.O., V?llestad, L.A., 1998. Permanent impairment in the feeding behavior of grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. Sci. Total Environ. 213, 247-254.
    Friedmann, A.S., Watzin, M.C., Brinck-Johnsen, T., Leiter, J.C., 1996. Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile Walleye (Stizostedion vitreum). Aquat. Toxicol. 35, 265-278.
    Furuta, T., Iwata, N., Kikuchi, K., 2007. Effects of fish size and water temperature on the acute toxicity of boron to Japanese flounder Paralichthys olivaceus and Red sea bream Pagrus major. Fish. Sci. 73, 356-363.
    Furuta, T., Iwata, N., Kikuchi, K., 2008. Effects of fish size and water temperature on the acute toxicity of copper for Japanese flounder, Paralichthys olivaceus, and Red sea bream, Pagrus major. J. World Aquacult. Soc. 39, 766-773.
    Gallagher, E.P., Canada, A.T., Di Giulio, R.T., 1992. The protective role of glutathione in chlorothalonil-induced toxicity to channel catfish. Aquat. Toxicol. 23, 155-168. doi:10.1016/0166-445X(92)90049-S
    Gonzalez, P., Dominique, Y., Massabuau, J.C., Boudou, A., Bourdineaud, J.P., 2005. Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle and brain of the zebra fish (Danio rerio), Environ. Sci. Technol. 39, 3972-3980.
    Guilherme, S., Válega, M., Pereira, M.E., Santos, M.A., Pacheco, M., 2008a. Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure– Relationship with mercury accumulation and implications for public health. Mar. Pollut. Bull. 56, 845-859.
    Guilherme, S., Válega, M., Pereira, M.E., Santos, M.A., Pacheco, M., 2008b. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol. Environ. Saf. 70, 411-421.
    Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
    Hissin, P.J., Hilf, R., 1976. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74, 214-226. Jezierska, B., Witeska, M., 2001. Metal toxicity to fish. University of Podlasie, Siedlce, Poland.
    Larose, C., Canuel, R., Lucotte, M., Di Giulio, R.T., 2008. Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 147, 139-149.
    Liang, L.N., Shi, J.B., He, B., Jiang, G.B., Yuan, C.G., 2003. Investigation of methylmercury and total mercury contamination in mollusk samples collected from coastal sites along the Chinese Bohai Sea. J. Agric. Food Chem. 51, 7373-7378.
    Livingstone, D.R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656-666.
    Luo, Y., Su, Y., Lin, R.Z., Shi, H.H., Wang, X.R., 2006. 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere 65, 1064-1073.
    Marklund, S., Marklund, G., 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474.
    Matta, M.B., Linse, J., Cairncross, C., Francendese, L., Kocan, R.M., 2001. Reproductive and transgenerational effects of methylmercury or aroclor 1268 on Fundulus heteroclitus. Environ. Toxicol. Chem. 20, 327-335.
    Monteiro, D.A., Rantin, F.T., Kalinin, A.L., 2010. Inorganic mercury exposure:toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinx?, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicol. 19, 105-123.
    Niimi, A.J., Kissoon, G.P., 1994. Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 26, 169-178.
    OECD, 1998. Fish, short-term toxicity test on embryo and sac-fry stages. OECD Guidelines Testing Chem. pp. 1-20.
    Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358.
    Oliveira, M., Pacheco, M., Santos, M.A., 2008. Organ specific antioxidant responses in golden grey mullet (Liza aurata) following a short-term exposure to phenanthrene. Sci. Total Environ. 396, 70-78.
    P?rt, P., 1990. The perfused fish gill preparation in studies of the bioavailability of chemicals. Ecotoxicol. Environ. Saf. 19, 106-115.
    Rabenstein, D.L., 1989. Metal complexes of glutathione and their biological significance. In: Dolphin, D., Avramovic, O., Poulson, R. (Eds.). Glutathione: chemical biochemical and medical aspects: coenzymes and cofactors, Wiley, New York, pp. 147-186.
    Rana, S.V.S., Singh, R., Verma, S., 1995. Mercury-induced lipid peroxidation in the liver, kidney, brain and gills of a fresh water fish Channa punctatus. Jpn. J. Ichthyol. 42, 255-259.
    Ritola, O., Livingstone, D.R., Peters, L.D., Lindstr?m-Sepp?, P., 2002. Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water. Aquaculture 210, 1-19.
    Rodgers, D.W., Beamish, F.W.H., 1982. Dynamics of dietary methylmercury in rainbow trout, Salmo gairdneri. Aquat. Toxicol. 2, 271-290.
    Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., Hoekstra, W.G., 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-590.
    Snarski, V.M., Olsen, G.F., 1982. Chronic toxicity and bioaccumulation of mercuric chloride in the fathead minnow (Pimephales promelas). Aquat. Toxicol. 2, 143-156.
    Thomas, P., Wofford, H.W. 1984. Effects of metal and organic compounds on hepaticglutathione, cysteine and acid soluble thiol levels in mullet (Mugil cephalus L.). Toxicol. Appl. Pharmacol. 76, 172-182.
    Thomaz, J.M., Martins, N.D., Monteiro, D.A., Rantin, F.T., Kalinin, A.L., 2009. Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON). Ecotoxicol. Environ. Saf. 72, 1413-1424.
    Tsou, T.C., Yeh, S.C., Tsai, F.Y., Chang, L.W., 2004. The protective role of intracellular GSH status in the arsenite-induced vascular endothelial dysfunction. Chem. Res. Toxicol. 17, 208-217.
    üner, N., Oru?, E., Sevgiler, Y., 2005. Oxidative stress-related and ATPase effects of etoxazole in different tissues of Oreochromis niloticus. Environ. Toxicol. Pharma- col. 20, 99-106.
    van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57-149.
    Verlecar, X.N., Jena, K.B., Chainy, G.B.N., 2007. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem. Biol. Interact. 167, 219-226.
    Verlecar, X.N., Jena, K.B., Chainy, G.B.N., 2008. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures. Chemosphere 71, 1977-1985.
    Vieira, L.R., Gravato, C., Soares, A.M.V.M., Morgado, F., Guilhermino, L., 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: Linking biomarkers to behaviour. Chemosphere 76, 1416-1427.
    Weis, J.S., Khan, A.A., 1990. Effects of mercury on the feeding behavior of the mummichog, Fundulus heterociitus, from a polluted habitat. Mar. Environ. Res. 30, 243-249.
    Winkaler, E.U., Santos, T.R., Machado-Neto, J.G., Martinez, C.B., 2007. Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 145, 236-244.
    Winston, G.W., Di Giulio, R.T., 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19, 137-161.
    Yediler, A., Jacobs, J., 1995. Synergistic effects of temperature; oxygen and waterflow on the accumulation and tissue distribution of mercury in carp (Cyprinus carpio L.). Chemosphere 31, 4437-4453.
    Zar, J.H., 1999. Biostatistical Analysis, 4th ed. Prentice-Hall Inc, New Jersey, pp. 66.
    李锋民,胡洪营,门玉洁,洪喻,郭美婷,2006.化感物质对小球藻抗氧化体系酶活性的影响.环境科学. 27,2091-2094.
    沈盎绿,沈新强,邵留,姚维志,2005.汞对水生生物的危害及机理.水利渔业. 25,105-107.
    王春凤,方展强,2005.汞和硒对箭尾鱼的急性毒性极其安全浓度评价.环境科学与技术. 28,32-35.
    王凡,赵元凤,吕景才,刘才发,2008.铅污染对牙鲆GSH-Px酶活性的影响.海洋水产研究. 29, 20-23.
    王晶,周启星,张倩茹,张颖,2007.沙蚕暴露于石油烃、Cu2+和Cd2+毒性效应及乙酰胆碱酯酶活性的响应.环境科学. 28,1796-1801.
    徐海生,赵元凤,吕景才,张兰,袁健,刘长发,邢殿楼,刘靖,2006.铜、铅、镉单一及复合污染对牙鲆组织酶活性的影响.山东农业大学学报(自然科学版). 37, 521-524.
    徐立红,张甬元,陈宜瑜,1995.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报. 19,171-185.
    张秀梅,朱杰,高天翔,柳广东,2001.褐牙鲆受精卵及仔稚鱼生理生态学研究进展.青岛海洋大学学报. 31,495-500.
    赵元凤,吴益春,宋晓阳,王凡,吕景才,刘长发,赵冲,郑伟,2004.牙鲆对海水中铜的吸收、积累和排放规律.大连水产学院院报. 19, 81-86.
    周启星,孔繁翔,朱琳,2004.生态毒理学.科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700