用户名: 密码: 验证码:
大气压冷等离子体射流实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压冷等离子体射流是近年来兴起的一种新的大气压低温等离子体放电技术,是目前国际上等离子体科学与技术领域的研究热点之一。其等离子体空间富集的离子、电子、激发态原子、分子及自由基等都是活泼的反应性物种,这些活性粒子数量大、种类多、活性强,易于和所接触的材料表面发生反应,因此在材料表面处理方面有许多重要应用。和传统方法相比,大气压冷等离子体射流表面处理具有操作简单快捷、成本低廉、无废弃物、无污染等显著优点,无论在传统的材料制造、加工和改性等应用领域,还是在新兴的生物医学工程、环境工程、等离子体化工等领域都表现出了良好的应用前景,特别是在温度敏感材料(如生物材料)、复杂形状工件等的表面处理方面,更是显示出了独特的技术优势。
     发展等离子体源、诊断等离子体参数、研究等离子体产生与发展的基本物理过程一直都是等离子体科学与技术研究中的重要方向。本文以大气压冷等离子体射流为重点,开展了以下工作:
     1.发展了一种毫米量级毛细管针-环电极大气压冷等离子体射流装置,通过考察其电学、光学特性,研究了放电发展过程及等离子体性质。结果表明:由于在电极设计上采用了曲率较大的毛细管针电极,因此在功率电极附近易于产生较强电场,可明显降低等离子体射流产生及维持电压;此外,由于环电极的引入,放电区间将同时存在两种不同的放电模式(即毛细管针电极尖端附近发生的放电以及毛细管针电极和接地环电极之间发生的介质阻挡放电),与此同时,在下游端环电极的作用下,放电区将形成一个纵向电场,更利于将放电区产生的等离子体引出,形成等离子体射流。与传统的毛细管针电极射流装置及单环电极射流装置相比,该混合型结构可有效降低射流源工作电压,增强放电强度,提高活性粒子数量。
     2.设计了一种简易的大气压悬浮电极冷等离子体射流发生器,并对其等离子体特性进行了研究。实验以氩气为工作气体,在常压开放空气环境中获得了均匀稳定的冷等离子体射流,具有温度低、长度长、产生及维持电压低、连续工作时间长等特点。结果表明:悬浮电极的引入可有效优化射流特性,由于不需使用外接器件,在简化电路构造的同时,更降低了能量在外回路的损耗,使能量更易集中在射流产生通道,提高了能量利用率;此外,悬浮电极还可通过控制电荷积累有效控制放电强度,增强射流稳定性,防止射流热化等。
     3.在小尺度毛细管针-环电极射流源基础上,研制了一种增强型双频大气压冷等离子体射流装置。该射流装置由上游毛细管针电极、中间区接地环电极以及下游平板电极组成,采用双频电源驱动。其主要物理机制为:上游毛细管针电极与5.5 MHz射频电源相连,能够在放电开启时为放电系统提供足够高的种子电子密度,下游平板电极与30kHz交流电源相连,可有效延伸射频等离子体空间区域,在不显著改变等离子体温度的同时可明显增强下游端等离子体密度。这一研究有望为大气压冷等离子体射流密度、温度分别独立控制提供一种可能。
     4.发现了一维较大尺度大气压冷等离子体射流的三种放电模式:弥散放电、自组织斑图、丝状放电;研究了外加电压、电源频率、介质管尺度、以及气体流量对放电模式和斑图演化的影响;探讨了这一现象产生的物理机制。这一发现进一步丰富了气体放电斑图理论,同时该斑图的近似一维排列及随特定参数稳定演化过程可以为斑图演化的自组织理论分析提供一个简化模型。
     5.开展了多管阵列化初步实验,以小尺度毛细管针-环电极大气压冷等离子体射流装置为基本单元,研究了一种适用于不规则复杂形状材料表面处理的“类蜂巢”结构较大面积冷等离子体射流阵列,具有宏观温度低、均匀性好、稳定性强、有效面积大、活性粒子数量多、适用面广、安全可靠等特点。在此基础上,以七针六角阵列为基本模型,通过光学、电学诊断及灭菌实验,深入研究了射流阵列的放电演化过程及其物理机理,为今后进一步开展大规模冷等离子体射流阵列研究打下了良好基础。
Cold plasma jets generated in atmospheric pressure discharges represent a rapidly developing technology of non-thermal atmospheric pressure plasma sources, which have attracted much attention in recent years. Their desirable properties, including high reactive chemical species (e.g. ions, electrons, excited atoms, molecules, and free radicals), low temperature, simplicity of operation, faster treatment, lower cost, and chemical waste free, have made them unique and promising for a number of important industrial applications, such as biomedical engineering, environmental engineering, plasma chemistry, and material processing, especially materials which are sensitive to temperature. Besides, due to the spatial separation of their generation from their application regions, cold plasma jets are less influenced by the downstream sample, which make them ideally applicable for material with uneven surfaces particularly. To improve the performance of atmospheric pressure cold plasma jets and understand their characteristics better, the following work is done in this paper:
     1. A hybrid capillary-ring cold atmospheric jet is proposed, in which the barrier-jet discharge plasma is initiated between a powered capillary electrode with a helium flow and a downstream concentric grounded ring electrode. The characteristics of the jet discharge are studied by means of the electrical and spectroscopic diagnosis. And the results demonstrate that low breakdown voltage and high atomic oxygen production are achieved simultaneously, and these features are mainly attributed to the hybrid configuration of capillary-ring electrodes.
     2. A simple device with a floating electrode configuration to generate a cold atmospheric argon plasma jet is studied. The floating electrode plasma jet has identified a number of desirable features including low gas temperature, low operation voltage, and high stability. The results show that the improvement of the electrode configuration is effective in concentrating efficiently electrical energy into the discharge channel as well as controlling directly the discharge intensity of the jet, therefore making the generation of the argon plasma jet simpler and more effective.
     3. A dual-frequency cold atmospheric pressure plasma jet is studied as a possible route to separate control of basic plasma parameters particularly plasma density, plasma plume length and gas temperature. With spatially separate application of two excitation frequencies, one at 5.5 MHz and the other at 30 kHz, plasma dynamics exhibit interaction between influences by the two individual excitation frequencies. It is shown that the upper stream discharge at 5.5 MHz feeds abundant electrons to the downstream plasma plume sustained at 30 kHz for the latter to acquire high plasma density and long plume length without much increase in its gas temperature.
     4. A hitherto unreported class of self-organized pattern is observed in a wide atmospheric pressure plasma jet with a dielectric barrier discharge (DBD) configuration established in a helium flow. Under different experimental conditions, the plasma jet has been shown to evolve through three modes having diffuse, regularly self-organized and completely disordered discharges respectively. The influences of experimental conditions on the mode transition are investigated, and the reason for the pattern formation is discussed. These observations will enrich the understanding of pattern formation in DBDs and give additional information for developing a physical model of pattern formation in DBD systems.
     5. The jet array with a group of atmospheric pressure cold plasma jets densely arranged in a honeycomb-like configuration is studied, in which a hybrid capillary-ring cold atmospheric jet is used as the element component. It is shown that the jet array is applicable to produce uniform plasma over a larger area and presents high jet density, good jet-jet uniformity, and robust plasma stability. Besides, a 7 jet array is especially studied by means of the electrical and spectroscopic diagnosis as well as the test of sterilization, which provides possible insights to better control the jet-jet interactions and further the study of scalable plasma jet array.
引文
[1]刘万东.等离子体物理导论.合肥:中国科学技术大学近代物理系讲义,2002.
    [2]Chen F F著.林光海译.等离子体物理学导论.北京:人民教育出版社,1980.
    [3]Annemie Bogaerts, Erik Neyts, Renaat Gijbels, and Joost van der Mullen. Gas discharge plasmas and their applications. Spectrochimica Acta Part B.2002,57:609-658.
    [4]赵化侨.等离子体化学与工艺.合肥:中国科技大学出版社,1993.
    [5]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996.
    [6]Raizer Y P. Gas Discharge Physics. Berlin, Springer Pr.,1991.
    [7]马腾才,胡希伟,陈银华.等离子体物理原理.合肥:中国科技大学出版社,1988.
    [8]Kanazawa S, Kogoma M, Moriwaki T, and Okazaki S. Stable glow plasma at atmospheric pressure. J. Phys. D:Appl. Phys.1988,21:838-840.
    [9]Yokoyama T, Kogoma M, Moriwaki T, and Okazaki S. The mechanism of the stabilization of glow plasma at atmospheric pressure. J. Phys. D:Appl. Phys.1990,23:1125-1128.
    [10]Okazaki S, Kogoma M, Uehara M, and Kimura Y. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. J. Phys. D:Appl. Phys.1993,26:889-892.
    [11]Spence P and Roth J R. Electrical and plasma characteristics of a one atmosphere glow discharge plasma reactor. IEEE Conference on Plasma Science, Santa Fe, NM,1994, June 6-8.
    [12]Roth J R, Rahel Jozef, and Dai Xin. The physics and phenomenology of One Atmospheric Uniform Glow Discharge Plasma (OAUGDPTM) reactors for surface treatment applications. J. Phys. D:Appl. Phys.2005,38:555-567.
    [13]Roth J R. Prospective industrial applications of the one atmosphere uniform glow discharge plasma. IEEE IAS.2004,1:216-223.
    [14]Thomas C M, Kimberly K W, and Roth J R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci.2000,28:41-50.
    [15]Massines F, Rabehi A, Decomps P, Gadri R B, Segur P, and Mayoux C. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J. Appl. Phys.1998,83:2950-2957.
    [16]Massines F, Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. J. Phys. D:Appl. Phys.1998,31:3411-3420.
    [17]Kogelschatz U, Eliasson B, and Egli W. Dielectric-barrier discharges:Principle and applications. J. Phys. Ⅳ.1997,7:47-66.
    [18]Kogelschatz U. Filamentary, Pattern, and Diffuse Barrier Discharge. IEEE Trans. Plasma Sci.2002,30:1400-1408.
    [19]Kogelschatz U. Dielectric-barrier Discharges:Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process.2003,23:1-46.
    [20]Golubovskii Y, Maiorov V, Behnke J, et al. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure. J. Phys. D:Appl. Phys.2003,36:39-49.
    [21]Golubovskii Y, Maiorov V, Behnke J, et al. Study of the homogeneous glow-like discharge in nitrogen at atmospheric pressure. J. Phys. D:Appl. Phys.2004,37:1346-1356.
    [22]Bartnikas R, Radu I, and Wertheimer M R. Dielectric Electrode Surface Effects on Atmospheric Pressure Glow Discharges in Helium. IEEE Trans. Plasma Sci.2007,35: 1437-1447.
    [23]Radu I, Bartnikas R, Czeremuszkin G, and Wertheimer M R. Diagnostics of Dielectric Barrier Discharges in Noble Gases:Atmospheric Pressure Glow and Pseudoglow Discharges and Spatio-Temporal Patterns. IEEE Trans. Plasma Sci.2003,31:411-421.
    [24]Wagnera H E, Brandenburg R, Kozlov K V, et al. The Barrier Discharge:Basic Properties and Applications to Surface Treatment. Vacuum.2003,71:417-436.
    [25]Napartovich A P. Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasma Process Polym.2001,6:1-14.
    [26]Gherardi N, Gouda G, Gat E, Ricard A, and Massines F. Transition from glow discharge to micro-discharge in nitrogen gas. Plasma Sources Sci.Technol.2000,9:340-346.
    [27]Naude N, Cambronne J, Gherardi N, et al. Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge. J. Phys. D:Appl. Phys.2005,38:530-538.
    [28]Rahel Jozef, Sherman Daniel M. The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. J. Phys. D:Appl. Phys.2005,38:547-554.
    [29]Bartnikas R. Note on discharges in helium under ac conditions. Brit. J. Appl. Phys. 1968,1:659-661.
    [30]Palmer A J. A physical model on the initiation of atmospheric-pressure glow discharges. Appl. Phys. Lett.1974,25:138-140.
    [31]Roth J R. Industrial Plasma Engineering:Vol.1. Principles. Philadelpha, PA:Inst. Of Physics Publ.,1995.
    [32]Muller I, Punset C, Ammelt E, et al. Self-Organized Filaments in Dielectric Barrier Glow Discharges. IEEE Trans. Plasma Sci.1999,27:20-21.
    [33]Shirafuji T, Kitagawa T, Wakai T, and Tachibana K. Observation of self-organized filaments in a dielectric barrier discharge of Ar gas. Appl. Phys. Lett.2003,83: 2309-2311.
    [34]Gurevich E, Zanin A, Moskalenko S, and Purwins H. Concentric-Ring Patterns in a Dielectric Barrier Discharge System. Phys. Rev. Lett.2003,91:154501.
    [35]Dong L, Liu F, Liu S, et al. Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure. Phys. Rev. E.2005,72:046215.
    [36]Dong L, He Y, Liu W, et al. Hexagon and square patterned air discharges, Appl. Phys. Lett.2007,90:031504.
    [37]董丽芳,李树锋,刘峰等.大气压氩气介质阻挡放电中的四边形斑图和六边形斑图.物理学报.2006,55:362-365.
    [38]Vardelle A, Fauchais P, Dussoubs B, and Themelis N J. "Heat Generation and Particle Injection in a Thermal Plasma Torch. Plasma Chem. Plasma Process.1998,18:551-574.
    [39]Fauchais P. Understanding plasma spraying. J. Phys. D:Appl. Phys.2004,37:R86-R108.
    [40]Pan WX, Meng X, Chen X, and Wu CK. Experimental Study on the Thermal Argon Plasma Generation and Jet Length Change Characteristics at Atmospheric Pressure. Plasma Chem Plasma Process.2006,26:335-345.
    [41]Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS and Hicks RF. The atmospheric-pressure plasma jet:A review and comparison to other plasma sources, IEEE Trans. Plasma Sci.1998,26:1685-1694.
    [42]Laroussi M and Akan T. Arc-free atmospheric pressure cold plasma jets:a review. Plasma Process Polym.2007,4:777-788.
    [43]Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas:A review. Spectrochimica Acta Part B.2006,61:2-30.
    [44]Koinuma H, Ohkubo H, Hashimoto T, Inomata K, Shiraishi T, Miyanaga A and Hayashi S Development and application of a microbeam plasma generator. Appl. Phys. Lett.1992, 60:816-817.
    [45]Selwyn G. S. Atmospheric pressure plasma jet, U. S. Patent 5-961-772, January 23,1997.
    [4b]Guerra-Mutis MH, Pelaez CV, and Cabanzo R. Glow plasma jet-experimental study of a transferred atmospheric pressure glow discharge. Plasma Sources Sci. Technol.2003, 12:165-169.
    [47]Forster S, Mohr C and Viol W. Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy. Surf. Coat. Technol.2005,200:827-830.
    [48]Chen Q, Zhang YF, Han E and Ge YJ. Atmospheric pressure DBD gun and its application in ink printability. Plasma Sources Sci. Technol.2005,14:670-675.
    [49]Xu L, Liu P, Zhan RJ, Wen XH, Ding LL and Nagatsu M. Experimental study and sterilizing application of atmospheric pressure plasmas. Thin Solid Films.2006,506-507: 400-403.
    [50]Shakir S, Mynampati S, Pashaie B and Dhali SK. rf-generated ambient-afterglow plasma. J. Appl. Phys.2006,99:073303.
    [51]Benedikt J, Focke K, Yanguas-Gil A, and von Keudell A. Atmospheric pressure microplasma jet as a depositing tool. Appl. Phys. Lett.2006,89:251504.
    [52]Raballand V, Benedikt J and von Keudell A. Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric plasma jet. Appl. Phys. Lett. 2008,92:091502.
    [53]Zhang J, Sun J, Wang D and Wang X. A novel cold plasma jet generated by atmospheric dielectric barrier capillary discharge. Thin Solid Films.2006,506-507:404-408.
    [54]Suga Y and Sekiguchi H. Epoxidation of carbon double bond using atmospheric non-equilibrium oxygen plasma. Thin Solid Films.2006,506-507:427-431.
    [55]Foest R, Bindemann T, Brandenburg R, Kindel E, Lange H, Stieber M and Weltmann KD. On the vacuum ultraviolet radiation of a miniaturized non-thermal atmospheric pressure plasma jet. Plasma Processes Polym.2007,4:S460-S464.
    [56]Xu GM, Ma Y and Zhang GJ. DBD plasma jet in atmospheric pressure argon. IEEE Trans. Plasma Sci.2008,36:1352-1353.
    [57]Ni TL, Ding F, Zhu XD, Wen XH and Zhou HY. Cold microplasma plume produced by a compact and flexible generator at atmospheric pressure. Appl. Phys. Lett.2008,92:241503.
    [58]Walsh JW and Kong MG. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets. Appl. Phys. Lett.2008,93:111501.
    [59]Lu XP, Jiang ZH, Xiong Q, et al. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl. Phys. Lett.2008,92:081502.
    [60]Grund K E, Straub T, and Farin G. New haemostatic techniques:argon plasma coagulation. Best. Pract. Res. Clin. Gastroenterol.1999,13:67-84.
    [61]Kim DB, Rhee JK, Gweon B, Moon SY and Choe W. Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration. Appl. Phys. Lett.2007,91:151502.
    [62]Kieft IE, van der Laan EP and Stoffels E. Electrical and optical characterization of the plasma needle. New J. Phys.2004,6:149.
    [63]Goree J, Liu B and Drake D. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria. J. Phys. D:Appl. Phys.2006,39:3479-3486.
    [64]Shin DH, Hong YC, and Uhm HS. Generation of Needle Injection Plasma at Atmospheric Pressure. IEEE Trans. Plasma Sci.2006,34:2464-2465.
    [65]Hong YC, Cho SC, Kim JH, and Uhm HS. A long plasma column in a flexible tube at atmospheric pressure. Phys. Plasmas.2007,14:074502.
    [66]Hong YC, Cho SC, and Uhm HS. Twin injection-needle plasmas at atmospheric pressure. Appl. Phys. Lett.2007,90:141501.
    [67]Lu XP, Jiang ZH, Xiong Q, Tang ZY and Pan Y. A single electrode room-temperature plasma jet device for biomedical applications. Appl. Phys. Lett.2008,92:151504.
    [68]Lu XP, Cao YG, Yang P, et al. An RC Plasma Device for Sterilization of Root Canal of Teeth. IEEE Trans. Plasma Sci.2009,37:668-673.
    [69]Hubicka Z, Cada M, Sicha M, et al. A Barrier-torch discharge plasma source for surface treatment technology at atmospheric pressure. Plasma Sources Sci. Technol.2002,11: 195-202.
    [70]Deng XT, Shi J, Chen HL and Kong MG. Protein destruction by atmospheric pressure glow discharges. Appl. Phys. Lett.2007,90:013903.
    [71]Olejnicek J, Hubicka Z, Virostko P, Churpita A and Jastrabik L. Interferometry and modeling of interferograms of atmospheric barrier-torch discharge. Plasma Process Polym.2007,4:S1022-S1025.
    [72]Perni S, Liu DW, Shama G and Kong MG. Cold atmospheric plasma decontamination of the pericarps of fruit. J. Food Protect.2008,71:302-308.
    [73]Walsh JL, Shi JJ and Kong MG. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl. Phys. Lett.2006,88:171501.
    [74]Michels A, Tombrink S, Vautz W, Miclea M and Franzke J. Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry. Spectrochimica Acta Part B.2007,62:1208-1215.
    [75]Teschke M, Kedzierski J, Finantu-Dinu EG, Korzec D and Engemann J. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans. Plasma Sci.2005,33:310-311.
    [76]Sands BL, Ganguly BN and Tachibana K. A streamer-like atmospheric pressure plasma jet. Appl. Phys. Lett.2008,92:151503.
    [77]Walsh JW and Kong MG. Frequency effects of plasma bullets in atmospheric glow discharges. IEEE Trans. Plasma Sci.2008,36:954-955.
    [78]Ye R and Zheng W. Temporal-spatial-resolved spectroscopic study on the formation of an atmospheric pressure microplasma jet. Appl. Phys. Lett.2008,93:071502.
    [79]Nagasaki Y, Umeyama M, Iijima M, Kitano K and Hamaguchi S. Design of biointerface by nonequilibrium plasma jets-approach from plasma susceptible polymers. J. Photopolym Sci. Technol.2008,21:267-270.
    [80]Laroussi M and Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett.2005,87:113902.
    [81]Hong YC and Uhm HS. Microplasma jet at atmospheric pressure. Appl. Phys. Lett.2006, 89:221504.
    [82]Hong YC and Uhm HS. Air plasma jet with hollow electrodes at atmospheric pressure, Phys. Plasmas.2007,14:053503.
    [83]Kolb JF, Mohamed AAH, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M and Schoenbach KH. Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett.2008,92:241501.
    [84]Kuo SP, Bivolaru D, Williams S and Carter CD. A microwave-augmented plasma torch module. Plasma Source Sci. Technol.2006,15:266-275.
    [85]Park BJ, Lee DH, Park JC, et al. Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Phys. Plasmas.2003,10:4539-4544.
    [86]Stonies R, Schermer S, Voges E and Broekaert JAC. A new small microwave plasma torch, Plasma Sources Sci. Technol.2004,13:604-610.
    [87]Walsh JL and Kong MG. Room-temperature atmospheric argon plasma jet sustained with sub-microsecond high-voltage pulses. Appl. Phys. Lett.2007,91:221502.
    [88]Paduraru C, Becker KH, Belkind A, Lopez JL and Gonzalvo YA. Characterization of the remote plasma generated in a pulsed-dc gas-flow hollow-cathode discharge, IEEE Trans. Plasma Sci.2007,35:527-533.
    [89]Lu XP, Xiong Q, Xiong ZL, at al. Effect of Nano-to Millisecond Pulse on Dielectric Barrier Discharges. IEEE Trans. Plasma Sci.2009,37:647-652.
    [90]Li G, Li HP, Wang LY, et al. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl. Phys. Lett.2000,92:221504.
    [91]Tachibana K. Current status of microplasma research. IEEJ Trans.2006,1:145-155.
    [92]Becker K, Koutsospyros A, Yin SM, et al. Environmental and biological applications of microplasmas. Plasma Phys. Control Fusion.2005,47:B513-B523.
    [93]Iza F, Kim G J, Lee S M, Lee J K, Walsh J W, Zhang Y T and Kong M G. Microplasmas: sources, particle kinetics and biomedical applications. Plasma Process Polym.2008, 5:322-344.
    [94]Broc A, De Benedictis S and Dilecce G. LIF investigations on NO,0 and N in a supersonic N2/O2/NO RF plasma jet. Plasma Sources Sci. Technol.2004,13:504-514.
    [95]Niemi K, Schulz-von der Gathen V and Dobele HF. Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet. Plasma Sources Sci. Technol.2005,14: 375-386.
    [96]Schulz-von der Gathen V, Buck V, Gans T, Knake N, Niemi K, Reuter S, Schaper L and Winter J. Optical diagnostics of micro discharge jets. Contrib. Plasma Phys.2007, 47:510-519.
    [97]Zhu WC, Wang BR, Yao ZX, and Pu YK. Discharge characteristics of an atmospheric pressure radio-frequency plasma jet. J. Phys. D:Appl. Phys.2005,38:1396-1401.
    [98]Li SZ, Huang WT, Zhang JL, and Wang DZ. Optical diagnosis of an argon/oxygen needle plasma generated at atmospheric pressure. Appl. Phys. Lett.2009,94:111501.
    [99]Tang DT, Ren CS, Wang DZ, et al. The Interactions of Two Cold Atmospheric Plasma Jets. Plasma Sci. Technol.2009,11:293-296.
    [100]Lu XP and Laroussia M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J. Appl. Phys.2006,100:063302.
    [101]Hong YC, Uhm HS and Yi WJ. Atmospheric pressure nitrogen plasma jet:observation of striated multilayer discharge patterns. Appl. Phys. Lett.2008,93:051504.
    [102]Naoki Shirai, Shinji Ibuka, and Shozo Ishii. Self-Organization Pattern in the Anode Spot of an Atmospheric Glow Microdischarge using an Electrolyte Anode and Axial Miniature Helium Flow. Appl. Phys. Express.2009,2:036001.
    [103]Selwyn GS, Herrmann HW, Park J, and Henins I. Materials Processing Using an Atmospheric Pressure, RF-Generated Plasma Source. Contrib. Plasma Phys.2001,6:610-619.
    [104]Kment, S.; Kluson, P.; Zabova, H Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces. Surf. Coat. Technol.2009,204:667-675.
    [105]Foest R, Kindel E, Ohl A, Stieber M and Weltmann KD. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys. Controlled Fusion.2005,47: B525-B536.
    [106]Choi YH, Kim JH, Paek KH, Ju WT and Hwang YS. Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification. Surf. Coat. Technol.2005,193:319-324.
    [107]Cheng C, Zhang LY and Zhan RJ. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surf. Coat. Technol.2006,200:6659-6665.
    [108]Wang CX and Qiu YP. Two sided modification of wool fabrics by atmospheric pressure plasma jet:Influence of processing parameters on plasma penetration. Surf. Coat. Technol.2007,201:6273-6277.
    [109]Shashurin A, Keidar M, Bronnikov S, Jurjus RA and Stepp MA. Living tissue under treatment of cold plasma atmospheric jet. Appl. Phys. Lett.2008,93:181501.
    [110]Deng XT, Shi J, Chen HL and Kong MG. Protein destruction by atmospheric pressure, glow discharges. Appl. Phys. Lett.2007,90:013903.
    [111]Deng XT, Shi JJ and Kong MG. Protein inactivation by atmospheric pressure glow discharges:capability and mechanisms. J. Appl. Phys.2007,101:074701.
    [112]Deng XT, Shi J and Kong MG. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans. Plasma Sci.2006,34:1310-1316.
    [113]Deng XT, Shi J, Shama G and Kong MG. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores. Appl. Phys. Lett.2005,87:153901.
    [114]Birmingham J G and Hammerstrom D J. Bacterial Decontamination Using Ambient Pressure Nonthermal Discharges J. IEEE Trans. Plasma Sci.2000,28:51-55.
    [115]Perni S, Shama G, Hobman JL, et al. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants. Appl. Phys. Lett.2007,90:073902.
    [116]Stoffels E, Flikweert AJ, Stoffels WW and Kroesen GMW. Plasma needle:a non-destructive atmospheric plasma source for fine surface treatment of (Bio)materials. Plasma Source Sci. Technol.2002,11:383-388.
    [117]Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN and Fridman A. Applied plasma medicine. Plasma Processes Polym.2008,5:503-533.
    [118]Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontamination. Plasma Processes Polym.2008,5:577-582.
    [119]Laroussi M and Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett.2005,87:113902.
    [120]Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A and Brooks A. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem. Plasma Process.2006,26:425-442.
    [121]Yu H, Perni S, Shi JJ, Wang DZ, Kong MG and Shama G. Effects of cell surface loading and phase of growth in cold atmospheric plasma inactivation of Escherichia coli K12. J. Appl. Microbio.2006,101:1323-1330.
    [122]Zhang RB, Wang LM, Wu Y, et al. Bacterial Decontamination of Water by Bipolar Pulsed Discharge in a Gas-Liquid-Solid Three-Phase Discharge Reactor. IEEE Trans. Plasma Sci.2006,34:1370-1374.
    [123]Chen GL, Zhao WJ, and Chen SH, et al. Preparation of nanocones for immobilizing DNA probe by a low-temperature plasma plume. Appl. Phys. Lett.2006,89:121501.
    [124]Chen GL, Chen SH, Chen WX and Yang SZ. Biofilm deposited by the atmospheric plasma liquid sputtering. Surf. Coat. Technol.2008,202:4741-4745.
    [125]Feng H, Sun P, Chai Y, Tong G, Zhang J, Zhu W and Fang J. The Interaction of a direct-current cold atmospheric-pressure air plasma with bacteria. IEEE Trans. Plasma Sci.2009,37:121-127.
    [126]Park J, Henins I, Herrmann H W, et al. An atmospheric pressure plasma source. Appl. Phys. Lett.2000,76:288-290.
    [127]Panousis E, Clement F, Loiseau JF, et al. An electrical comparative study of two atmospheric pressure dielectric barrier discharge reactors. Plasma Sources Sci. Technol.2006,15:828-839.
    [128]Se Youn Moon, W. Choe and B. K. Kang. A uniform glow discharge plasma source at atmospheric pressure. Appl. Phys. Lett.2004,84:188-190.
    [129]Cao Z, Walsh JL and Kong MG. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment. Appl. Phys. Lett.2009,94: 021501.
    [130]Foest R, Kindel E, Ohl A, Stieber M and Weltmann KD. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys. Controlled Fusion.2005,47: B525-B536.
    [131]Guo YB and Hong FCN. RF microdischarge arrays for large-area cold atmospheric plasma generation. Appl. Phys. Lett.2003,82:337-339.
    [132]Sakai 0, Kishimoto Y, and Tachibana K. Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure. J. Phys. D:Appl. Phys.2005,38:431-441.
    [133]Shimizu K, Sugiyama T, and Samaratunge, MNL. Study of air pollution control by using micro plasma filter. IEEE Trans. Industrial Appl.2008,44:462-467.
    [134]Ossler F, Larsson J, and Alden M. Measurements of the effective lifetime of 0 atoms in atmospheric premixed flames. Chem. Phy. Lett.1996,250:287-292.
    [135]李雪辰,赵娜,刘志辉.介质阻挡放电不同模式下的光电信号比较.光谱学与光谱分析.2009,29:297-299
    [136]赫兹堡.分子光谱与分子结构第一卷.北京:科学出版社,1983.
    [137]http://www. nist. gov/srd/atomic. htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700