用户名: 密码: 验证码:
反应诱导相分离法制备多孔聚合物材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反应诱导相分离法(Chemically induced phase separation)制备多孔聚合物材料,是在固化反应开始之前,溶剂或热塑性塑料与热固性树脂混合均匀后,体系处于均相状态。随着固化反应的进行,热固性树脂的分子量逐渐增加,与溶剂或热塑性塑料之间的相容性逐渐变差,体系在热力学上不再相容,相分离开始发生,相结构逐步演化并粗大化。固化产物经洗涤干燥将溶剂去除后或使热塑性塑料高温降解即可得到多孔结构的聚合物材料。与其它制备多孔材料方法相比,工艺简单易操作,可以控制孔径大小及分布。本文主要工作如下:
     1.利用反应诱导相分离法,以环氧大豆油为溶剂,双酚A环氧树脂为单体,4,4-二氨基二苯甲烷为固化剂制备多孔环氧树脂。研究了环氧树脂最终相态取决于环氧基体与环氧大豆油的组成,并通过光学显微镜对其相分离过程进行跟踪。在相态由分散孔向相反转结构转变时,体系均遵循旋节线降解机理;当环氧大豆油浓度较低时,得到了环氧树脂的闭孔结构。研究了溶剂浓度、固化剂用量,固化温度对多孔结构的影响,环氧大豆油浓度增加,孔径增大,分布变宽,密度降低,孔隙率增大。增加固化剂用量,提高固化温度,加快固化反应速率,得到较大孔径的环氧结构。
     2.采用热塑性塑料通过反应诱导相分离法制备了多孔环氧树脂。脂肪族聚碳酸酯作为热塑性塑料,与环氧树脂制得复合材料,使脂肪族聚碳酸酯高温降解即得到环氧树脂多孔结构。利用固化时间-脂肪族聚碳酸酯质量浓度的准相图描述了环氧树脂/热塑性塑料体系的相分离机理,并利用光学显微镜对相分离演化过程进行了跟踪。相分离机理受控于环氧树脂与脂肪族聚碳酸酯的组成,在脂肪族聚碳酸酯浓度较低时,遵循成核生长,反之,旋节线降解机理。随脂肪族聚碳酸酯浓度增加,环氧树脂/脂肪族聚碳酸酯体系经历了分散相-双连续相-相反转结构的转变。增加热塑性塑料浓度、提高固化温度,环氧树脂孔径增大。
     3.对热塑性塑料的端羟基进行了环氧化反应,合成了环氧化脂肪族聚碳酸酯,并利用傅立叶红外光谱进行表征,其环氧值为6.8%。
     4.将环氧化脂肪族聚碳酸酯作为热塑性塑料,通过反应诱导相分离法制备了多孔聚合物材料,得到孔隙率较大的多孔结构。在环氧树脂/环氧化脂肪族聚碳酸酯体系中,当环氧化脂肪族聚碳酸酯浓度较低时,制得分散较为均匀的多孔结构;随其浓度增加,孔径增大,分布变宽;在环氧化脂肪族聚碳酸酯浓度较高时,得到环氧微球,当环氧化脂肪族聚碳酸酯浓度介于两个临界浓度之间时,体系出现分层,上层和底层为分散孔结构,中间层为环氧微球。
     5.通过光学显微镜研究了环氧树脂/环氧化脂肪族聚碳酸酯在不同固化温度下的相分离过程。当环氧化脂肪族聚碳酸酯浓度为35wt%时,环氧树脂/环氧化脂肪族聚碳酸酯体系在不同固化温度下均遵循旋节线降解机理,且环氧化脂肪族聚碳酸酯以分散相分布在环氧基体中。随固化温度升高,体系中环氧化脂肪族聚碳酸酯的粒径增大。
Chemically induced phase separation is a method for preparing porous polymer. Before curing reaction, solvent or thermoplastic mixes with thermosets and arrives to a homogenous state. With the development of curing, the molecular weight of the thermosetting resin increases and makes the miscibility with solvent or thermoplastic bad, which induces phase separation. Phase structure evolves and coarses. The porous monolith is obtained by washing and drying the cured product or thermal degradation of thermoplastic. The method of preparation for porous materials compared with the traditional methods is simple and easy to operate; simultaneously can control the pore size and distribution. This paper follows the work:
     1. Macroporous monolith was prepared via chemically induced phase separation using diglycidyl ether of bisphenol A (DGEBA) as a monomer, 4,4'-diaminodiphenylmethane (DDM) as a curing agent, and epoxy soybean oil (ESO) as a solvent. The morphology of the cured systems after removal of ESO was examined using scanning electron microscopy, and the composition of epoxy precursors/solvent for phase inversion was determined. The phase separation mechanism was deduced from the optic microscopic images to be spinodal decomposition. The pore structure of the cured monolith was controlled by a competition between the rates of curing and phase separation. The ESO concentration, content of curing agent, and the curing temperature constituted the influencing factors on the porous morphology. The average pore size increased with increasing ESO concentration, increasing curing temperature, and decreasing content of curing agent.
     2. Porous monolith prepared with a thermoplastic polymer, polypropylene carbonate (PPC) via chemically induced phase separation was proposed. As DGEBA was cured with DDM, the system became phase separated having PPC particles dispersed in epoxy matrix. After PPC particles were removed by thermal degradation, a porous structure was obtained. The phase separation mechanism was determined by the initial composition and illustrated by a pseudo phase diagram. With low concentration of PPC, the system followed mechanism of nucleation growth; otherwise, spinodal decomposition. The intermediate and final morphologies of the system were studied using optical and scanning electron microscopy, respectively. With PPC concentration increase, the epoxy/PPC went though the change of the dispersed phase, co-continuous phase and phase separation. After 90 min of curing, the system became into solid and fixed. The pore size increased with increasing the concentration of PPC as well as raising the curing temperature.
     3. Hydroxy terminated polypropylene carbonate took part in epoxidation, and epoxied polypropylene carbonate was synthesized, which was characterized by Fourier transform infrared spectroscopy. The epoxy value of products was 6.8%.
     4. Porous structure of thermosetting monolith with large porosity was obtained by epoxied polypropylene carbonate via chemically induced phase separation. With low concentration of epoxied polypropylene carbonate, dispersed pore occurred. Increasing the concentration, pore diameter increased and distribution grew broader. Epoxy spheres appeared when epoxied polypropylene carbonate was in high concentration. Between the two critical concentrations, stratification occurred, which the upper and bottom layers were pore structure, and the middle layer was epoxy spheres.
     5. Chemically induced phase separation between epoxy resin and polypropylene carbonate under different curing temperatures was observed using opitial microscope. When the concentration of epoxied polypropylene carbonate was 35 wt%, the epoxy resin/epoxied polypropylene carbonate under curing temperatures all followed the mechanism of spinodal decomposition; simultaneously, epoxied polypropylene carbonate dispersed in epoxy resin. With increase of curing temperature, size of epoxied polypropylene carbonate increased.
引文
[1]刘培生.多孔材料引论[M].北京:清华大学出版社,2004.1
    [2]Gregg SJ, Sing KSW. Adsorption, Surface Area, and Porosity [M]. New York:Academic Press,1982.27
    [3]Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry,1985,57: 603-619
    [4]Gibson LJ, Ashby ME Cellular Solids:Structure and Properties,2nd [M]. Cambridge: Cambridge University Press,1997
    [5]朱震刚.金属泡沫材料研究[J].物理,1999,28:84-88
    [6]Nakajima H, Hyun SK, Ohashi K. Fabrication of porous copper by unidirectional solidification under hydrogen and its properties [J]. Colloids and Surfaces,2001,179: 209-214
    [7]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993.156-160
    [8]Montanaro L, Jorand Y, Fantozzi G. Ceramic foams by powder processing [J]. Journal of the European Ceramic Society,1998,18:1339-1350
    [9]Netteship I. Applications of porous ceramics [J]. Key Engineering Materials,1996, 122-124:305-324
    [10]Korolev, AA, Shiryaeva, VE. Macroporous polymeric monoliths as stationary phases in gas adsorption chromatography [J]. Polymer Science-Series A,2006,48:779-786
    [11]Jo YD, Ahn JH, Ihm SK. Hydrogenation of olefins over palladium(II) complexes supported on a modified macroporous polymer bead [J]. Polymer International,1997,44: 49-54
    [12]Evdokimov AN, Kirillov AG, Smirnov VA, Zaqorskii DL. Structural and selective properties of a new type of porous media:punch-track membranes and filters [J]. Colloid Journal of the Russian Academy of Sciences:Kolloidnyi Zhurnal,1995,57:866-868
    [13]Angeia SP, Thomas BH, Sarah CH, Robert GE. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds [J]. Biomaterials,2003,24: 481-489
    [14]Zhao C, Sun S. DNA-loaded Porous Polyethersulfone Particles for environmental applications Ⅰ. preparation [J]. Journal of Applied Polymer Science,2005,98:1668-1673
    [15]Betancor L, Lopez-Gallego F, Hidalgo A, Fuentes. Advantages of the pe-Immobilization of enzymes on porous supports for their entrapment in sol-gels [J]. Biomacromolecules, 2005,6:1027-1030
    [16]Matsuyama H, Yano H, Maki T. Formation of porous flat membrane by phase separation with supercritical CO2 [J]. Journal of Membrane Science,2001,194:157-163
    [17]Klempner D, Frisch KC. Handbook of Polymeric Foams and Foam Technology [M]. Hanser:Munich,1991.1
    [18]Shutov F. Bicellular Structure:a micro and macrocell concept for polymer foams [J]. Polymeric Materials:Science and Engineering,1992,204:514-515
    [19]Ramesh NS, Rasmussen DH, Cambell GA. Heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles. Part Ⅱ:experimental results and discussion [J]. Polymer Engineering and Science,1994,34:1698-1706
    [20]Even JR, Gregory DP. Emulsion-derived foams preparation, properties, and application [J]. MRS Bulletin,1994,19:29-33
    [21]Cameron NR. High internal phase emulsion templating as a route to well-defined porous polymers [J]. Polymer,2005,46:1439-1449
    [22]Ruckenstein E, Park JS. Stable concentrated emulsions as precursors for hydrophilic- hudrophobic polymer composites [J]. Polymer,1992,33:405-417
    [23]Qutubuddin S, Lin CS, Tajuddin Y. Novel polymeric composites from microemulsions [J]. Polymer,1994,35:4606-4610
    [24]Chieng TH, Gan LM, Chew CH, Nq SC. Microstructural control of porous polymeric materials via a microemulsion pathway using mixed nonpolymerizable and polymerizable anionic surfactants [J]. Langmuir,1996,12:319-324
    [25]Hedrick JL, Russell TP, Labdie J, Lucas M. High temperature nanofoams derived from semi-rigid polyimides [J]. Polymer,1995,36:2685-2697
    [26]Yanagishita H, Maejima C, Kitamoto D, Nakane T. Preparation of asymmetric polyimide membrane for water/ethanol separation in pervaporation by the phase inversion process [J]. Journal of Membrane Science,1994,86:231-240
    [27]Strathmann H, Kock K. Formation mechanism of phase inversion membranes [J]. desalination,1977,21:241-255
    [28]Svec, F, Frechet JMJ. Temperature, a simple and efficient tool for the control of pore size distribution in macroporous polymers [J]. Macromolecules,1995,28:7580-7584
    [29]Aubert JH, Clough RL. Low-density, microcellular polystyrene foams [J]. Polymer, 1985,26:2047-2054
    [30]Lal J, Bansil R. Light-scattering study of kinetics of spinodal decomposition in a polymer solution [J]. Macromolecules,1991,24:290-297
    [31]Song SW, Soane DS. Coarsening effects on microstructure formation in isopycnic polymer solutions and membranes produced via thermally induced phase separation [J]. Macromolecules,1994,27:6389-6397
    [32]Song SW, Torkelson JM. Microstructure formation and coarsening of polystyrene membranes via thermally induced phase separation (TIPS) [J]. Polymer Preprints, Division of Polymer Chemistry,1993,34:496-497
    [33]Goel SK, Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide. Ⅰ:effect of pressure and temperature on nucleation [J]. Polymer Engineering and Science,1994,34:1137-1147
    [34]Girard-Reydet E, Pascault J. Bonnet A. A new class of epoxy thermosets [J]. Macromolecular Symposia,2003,197:309-322
    [35]Riew CK, Gillham JK. Rubber modified thermoset resins [J]. Advances in Chemistry Series,1984,208:372-380
    [36]Riew CK. Rubber toughed plastics [J]. Advances in Chemistry Series,1989,222
    [37]Riew CK, Kinloch AJ. Toughened plastics [J]. Advances in Chemistry Series,1992,233
    [38]Bagheri R, Pearson R. Toughened epoxy polymers:the role of rubber particle cavitation [J]. Polymeric Materials Science and Engineering,1993,70:15
    [39]Lazzeri A, Bucknall CB. Dilatational bands in rubber-toughened polymers [J]. Journal of Materials Science,1993,28:6799-6808
    [40]Dompas D, Groeninckx G. Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles:1. a criterion for internal rubber cavitation [J]. Polymer,1994,35:4743-4749
    [41]Guild FJ, Kinloch AJ. Modelling the properties of rubber-modified epoxy polymers. Materials Science,1995,30:1689-1697
    [42]Oian J, Pearson RA, Dimonie VL, El Aasser M. Epoxy polymers toughened with novel aatex particles [J]. Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering,1993,70:17
    [43]Bagheri R, Pearson RA. Use of microvoids to toughen polymers [J]. Polymer,1995,36: 4883-4885
    [44]Huang Y, Kinloch J. The toughness of epoxy polymers containing microvoids [J]. Polymer,1992,33:1330-1332
    [45]Kiefer J, Hilborn JG, Manson JAE, Leterrier Y. Macroporous epoxy networks via chemically induced phase separation [J]. Macromolecules,1996,29:4158-4160
    [46]Kiefer J, Hiborn JG. Chemically induced phase separation:a new technique for the synthesis of macroporous epoxy networks [J]. Polymer,1996,37:5715-5725
    [47]Garcia LA, Cara F, Dumon M. Pascault JP. Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer [J]. Macromolecules,2002,35:6291-6297
    [48]Garcia LA, Dumon M, Pascault JP. Porous epoxy thermosetting polymers obtained by a phase separation process in the presence of emulsifiers [J]. Macromolecular Symphosia, 2000,151:341-346
    [49]黎青,陈玲燕等.多孔材料的应用与发展[J].材料导报,1995,6:10-13
    [50]曹瑛.新型多孔材料应用的市场分析[J].工业技术经济,1996,15:102-104
    [51]童正明,张台维.多孔材料在油水分离装置中的应用[J].能源研究与信息,2004,20:116-120
    [52]汤慧萍,张正德.金属多孔材料发展现状[J].稀有金属材料与工程,1997,26:1-6
    [53]李海涛,朱锡,石勇.多孔性吸声材料的研究进展[J].材料科学与工程学报,2004,2:934-938
    [54]Roe RJ, Kuo CM. Effect of added block copolymer on phase-separation kinetics of a polymer blend.1. a light-scattering study [J]. Macromolecules 1990,23:4635-4640
    [55]Binder K, Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures [J]. The Journal of Chemcial Physics,1983,79:6387-6409
    [56]De Gennes PG. Dynamics of fluctuations and spinodal decomposition in polymer [J]. The Jounal of Chemical Physics,1983,72:4756-4763
    [57]Furukawa H. A dynamic scaling assumption for phase separation [J]. Advances in Physics,1985,34:703-750
    [58]Furukawa H. Asymptotic behavior of structure funetion at small wave numbers in late stage of phase separation [J]. Progress of Theoretical Physics Supplement,1989,99: 358-368
    [59]Ball RC, Essery RLH. Spinodal decomposition and pattern formation near surfaces [J]. Journal of Physics:Condensed Matter,1990,2:10303-10320
    [60]Chakrabarti A. Kinetics of domain growth and wetting in a model porous medium [J]. Physical Review Letters,1992,69:1548-1551
    [61]Puri S, Binder K. Surface-directed spinodal decomposition:phenomenology and numerical results [J]. Physical Review A,1992,46:R4487-R4489
    [62]Flory PJ. Principles of Polymer Chemistry [M]. Cornell University Press:New York,
    [63]Flory RJ. Thermodynamics of heterogeneous polymers and their solutions [J]. The Journal of chemcial physics,1944,12:425-438
    [64]Seott RJ. The thermodynamics of high polymer solutions. V. phase equilibria in the ternary System:polymer 1-polymer 2-solvent [J]. The Journal of Chemcial Physics,1949, 17:279-284
    [65]Lestriez B, Chapel JP, Gerard JF. Gradient interphase between reactive epoxy and glassy thermoplastic from dissolution process, reaction kinetics, and phase separation thermodynamics [J]. Macromolecules,2001,34:1204-1213
    [66]Giannotti MI, Foresti ML, Mondragon I, Galante MJ, Oyanguren PA. Reaction-induced phase separation in epoxy/polysulfone/poly(ether imide) systems:phase diagrams [J]. Journal of Polymer Science:Part B:Polymer Physics,2004,42:3953-3963
    [67]Lopez J, Rico M, Pena C, Montero B. Thermodynamic analysis of phase separation of a thermoplastic in the precursors of different epoxy-amine systems [J]. Macromolecular Symposium,2008,274:123-130
    [68]Chen JL, Chang FC. Phase separation process in poly(ε-caprolactone)-epoxy blends [J]. Macromolecules,1999,32:5348-5356
    [69]江明,高分子合金的物理化学[M].四川教育出版社:成都,1988
    [70]Ohoaga T, Chen WJ, Inoue T. Structure development by reaetion-induced phase separation polymer mixtures-computer-simulation of the spinodal decomposition under the non-isoquench depth [J]. Polymer,1994,35:3774-3781
    [71]Inoue T. Reaction-induced phase-decomposition in polymer blends [J]. Progress in Polymer Science,1995,20:119-153
    [72]Hohenberg PC, Halperin BI.Theory of dynamic critical phenomena [J]. Reviews of Mondern Physics,1977,49:435-479
    [73]Shinoda K, Hutchinson E. Pseudo-phase separation model for thermodynamic calcultations on micellar solutions [J]. The Journal of Physical Chemistry,1962,66: 577-582
    [74]Gunton, JD, Miguel MS, Sahni PS. Phase transitions and critical phenomena [M]. Academic Press:New York,1983
    [75]Bray AJ. Theory of phase-ordering kinetics [J]. Advances in Physics,1994,43:357-459
    [76]Kawasaki, K. Theory of early stage spinodal decomposition in fluids near the critical point. I. progress of theoretical physics,1977,57:826-839
    [77]Cahn JW. Phase separation by spinodal decomposition in isotropic systems [J]. Joumal of Chemical Physics,1965,42:93-99
    [78]Binder K, Stauffer D. Theory for the slowing down of the relaxation and spinodal decomposition of binary mixtures [J]. Physical Review Letters,1974,33:1006-1009
    [79]Ishii Y, Ryan AJ. Processing of Poly(2,6-dimethyl-1,4-phenylene ether) with epoxy resin 1. reaction-induced phase separation [J].. Macromolecules,2000,33:158-166
    [80]Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions [J]. Journal of Physics and Chemistry of Solids,1961,19:35-50
    [81]Siggia ED. Numerical study of small-scale intermittency in three-dimensional turbulence [J]. Journal of Fluid Mechanics,1981,107:375-406
    [82]Siggia ED. Late stages of spinodal decomposition in binary mixtures [J]. Physical Review A,1979,20:595-605
    [83]Doi M, Onuki A. Dynamic coupling between stress and composition in polymer solutions and blends [J]. Journal de Physique Ⅱ,1992,2:1631-1656
    [84]Taniguchi T, Onuki A. Network domain structure in viscoelastic phase separation [J]. Physical eview Letters,1996,77:4910-4913
    [85]Onuki A, Taniguchi T. Viscoelastic effects in early stage phase separation in polymeric systems [J]. Journal of Chemical Physics,1997,106:5761-5770
    [86]Tanaka H. Viscoelastic phase separation [J]. Journal of Physics-Condensed Matter,2000, 12:R207-R264
    [87]Tanaka H. Viscoelastic model of phase separation [J]. Physical Review E,1997,56: 4451-4462
    [88]Tanaka H. Araki T. Phase inversion during viscoelastic phase aeparation:eoles of bulk and shear relaxation moduli [J]. Physical Review Letters,1997,78:4966-4969
    [89]Tanaka H, Miura T. Critical anomaly of complex shear modulus in polymer solutions: viscoelastic suppression of order parameter fluctuation due to dynamic asymmetry [J]. Physical Review Letters,1993,71:2244-2247
    [90]Tanaka H. Critical dynamics and phase-separation kinetics in dynamically asymmetric binary fluids:new dynamic universality class for polymer mixtures or dynamic Crossover? [J]. The Journal of Chemical Physics,1994,100:5323-5337
    [91]de Gennes. Dynamics of fluctuations and spinodal decomposition in polymer blends [J]. The Journal of Chemical Physics,1980,72:4756-4763
    [92]Pincus PJ. Dynamics of fluctuations and spinodal decomposition in polymer blends. Ⅱ. The Journal of Chemical Physics,1981,75:1996-2000
    [93]Binder KJ. Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures [J]. The Journal of Chemical Physics,1983,79:6387-6409
    [94]Onuki A. Late stage spinodal decomposition in polymer mixtures [J]. The Journal of Chemical Physics,1986,85:1122-1125
    [95]Chang JY, Hong JL. Morphology and fracture toughness of poly(ether sulfone)-blended polycyanurates [J]. Polymer,2000,41:4513-4521
    [96]Harismendy I, Rio MD, Marieta C, Gavalda J, Gomez CM, Mondragon I. Dicyanate ester-polyetherimide semi-interpenetrating polymer networks. Ⅱ. effects of morphology on the fracture toughness and mechanical properties [J]. Journal of Applied Polymer Science,2001,80:2759-2767
    [97]Yu Y, Wang M, Gan W, Tao Q, Li S. Polymerization-induced viscoelastic phase separation in polyether sulfone-modified epoxy systems [J]. The Journal of Physical Chemistry B,2004,108:6208-6215
    [98]Poel GV, Goossens S, Goderis B, Groenickx G. Reaction induced phase separation in semicrystalline thermoplastic/epoxy resin blends [J]. Polymer,2005,46:10758-10771
    [99]Tanaka H. New coarsening mechanisms for spinodal decomposition having droplet pattern in binary fluid mixture:collision-induced collisions [J]. Physical Review Letters, 1994,72:1720-1723
    [100]Tanaka H, Araki T. Spontaneous double phase separation induced by rapid hydrodynamic coarsening in two-dimensional fluid mixtures [J]. Physical Review Letters,1998,81:389-392
    [101]Siggia ED. Late stages of spinodal decomposition in binary-mixtures [J]. Physical Review A,1979,20:595-605
    [102]Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions [J]. Journal of Physics and Chemistry of Solids,1961,19:35-50
    [103]Binder K, Stauffer D. Theory for slowing down of relaxation and spinodal decomposition of binary-mixtures [J]. Physical Review Letters,1974,33:1006-1009
    [104]Yainanaka K, Takagi Y, Inoue T. Reaction-induced phase-separation in rubber-modified epoxy-resins [J]. Polymer,1989,30:1839-1884
    [105]Ohnaga T, Chen WJ, Inoue T. Structure development by reaction-induced phase separationin polymer mixtures-computer-simulation of the spinodal decomposition under the non-isoquench depth [J]. Polymer,1994,35:3774-3781
    [106]Inoue T. Reaction-induced phase-decomposition in polymer blends [J]. Progress in Polymer Science,1995,20:119-153
    [107]Yamanaka K, Inoue T. Structure development in epoxy resin modified with Poly(ether sulphone) [J]. Polymer,1989,30:662-667
    [108]Yamanaka K, Takagi Y, Inoue T. Reaction-induced phase separation in rubber-modified epoxy resin [J]. Polymer,1989,30:1839-1844
    [109]Girard-Reydet E, Santeria H, Pascault JP, Keates P, Navard P, Thollet G, Vigier G. Reaction-induced phase separation mechanisms in modified thermosets [J]. Polymer, 1998,39:2269-2279
    [110]Oyanguren PA, Aizpurua B, Galante MJ, Riccardi CC, Cortazar OD, Mondragon I. Design of the utimate behavior of tetrafunctional epoxies modified with polysulfone by controlling microstructure development [J]. Journal of Polymer Science Part B:Polymer Physics,1999,37:2711-2725
    [111]Oyanguren PA, Galante MJ, Andromaque K, Frontini PM, Williams RJJ. Development of bicontinuous morphologies in polysulfone-epoxy blends [J]. Polymer,1999,40: 5249-5255
    [112]余英丰.热塑性树脂改性环氧体系的复杂相分离[D].上海:复旦大学,2000
    [113]Gan WJ, Yu YF, Wang MH, Tao QS, Li SJ. Viscoelastic effects on the late stages of phase separation in thermoplastics-thermoset blends [J]. Abstracts of Papers of the American Chemical Society,2003,225:U558-U559
    [114]Gan WJ, Yu YF, Wang MH, Tao QS, Li SJ.Viscoelastic effects on the phase separation in thermoplastics-modified epoxy resin [J]. Macromolecules,2003,36:7746-7751
    [115]Yu YF, Wang MH, Gan WJ, Tao QS, Li SJ. Polymerization-induced viscoelastic phase separation in polyethersulfone-modified epoxy systems [J]. Journal of Physical Chemistry B,2004,108:6208-6215
    [116]Tao QS, Gan WJ, Yu YF, Wang MH, Tang XL, Li SJ.Viscoelastic effects on the phase separation in thermoplastics modified cyanate ester resin [J]. Polymer,2004,5: 3505-3510
    [117]Wang MH, Yu YF, Wu XG, Li SJ. Polymerization induced phase separation in poly(ether imide)-modified epoxy resin cured with imidazole [J]. Polymer,2004,5:1253-1259
    [118]Tang XL, Zhang LX, Wang T, Li SJ.Studies on the viscoelastic phase separation in epoxy resin modified with polyethersulfone [J]. Acta Chimica Sinica,2005,63:321-326
    [119]Liu X, Yu YF, Li SJ. Viscoelastic phase separation in polyethersulfone modified bismaleimid resin [J]. European Polymer Journal,2006,42:835-842
    [120]Zhan GZ, Yu YF, Tang XL, Tao QS, Li SJ. Further study of the viscoelastic phase separation cyanate ester modified with poly(etherimide) [J]. Joumal of Polymer Science Part B:Polymer Physics,2006,44:517-523
    [121]Wang X, Okada M, Han CC. Viscoelastic phase separation induced by polymerization of n-butyl methacrylate in the presence of poly(dimethylsiloxane-co-diphenylsiloxane) [J]. Macromolecules,2006,168:5127-5132
    [122]Rong MZ, Zeng HM. Polycarbonate-epoxy semi-interpenetrating polymer network:2. phase separation and morphology [J]. Polymer,1997,38:269-277
    [123]Giannotti MI, Mondragon I, Galante MJ, Oyanguren A. Reaction-induced phase separation in epoxy/polysulfone/poly(ether imide) sysetems. Generated morphologies [J].
    Journal of Polymer Seicnce Polymerphysics Edition,2004,42:3964-3975
    [124]Chen CC, White JL. Compatibiling agents in polymer blends:interfacial tension, phase morphology, and mechanical properties [J]. Polymer Engineer Science,1993,33: 923-930
    [125]Gramespacher H, Meissner J. Melt Elongation and recovery of polymer blends, morphology, and infiuence of interfacial tension [J]. Journal of Rheology,1997,41: 27-44
    [126]Xie XM, Xiao TJ, Zhang ZM, Tanioka A.Effect of interfacial tension on the formation of the gradient morphology in polymer bends [J]. Journal of Colloid and Interface science, 1998,206:189-194
    [127]Kim H, Char K. Effect of phase separation on rheological properties during the curing of epoxy toughened with thermoplastic polymer [J]. Industrial and Engineering Research,2000,39:955-959
    [128]Inoue T. Reactfon-induced phase-decompositionin polymer blends [J]. Progress in polymer Science,1995,20:119-153
    [129]Ruseckaite RA, Hu LJ, Roccardi CC, Williams RJJ. Castor-oil-modified epoxy resins as model systems of rubber-modified thermosets.2:influence of cure conditions on morphologies generated [J]. Polymer International,1993,30:287-95
    [130]Kim BS, Chiba T, Inoue T. Morphology development via reaction-induced phase-separation in epoxy poly(Ether Sulfone) blends-morphology control using Poly(Ether Sulfone) with functional end-groups [J]. Polymer,1995,36:43-47
    [131]Hwang JW, Park SD, Cho K, Kim JK, Park CE, Oh TS. Toughening of cyanate ester resins with cyanated polysulfones [J]. Polymer,1997,38:1835-1843
    [132]Giannotti Ml, Foresti ML, Mondragon I, Galante MJ, Oyanguren PA. Reaction-induced phase separation in epoxy/polysulfone/poly(ether imide) systems.1.phase diagrams [J]. Journal of Polymer Science Part B:Polymer Physics,2004,42:3953-3963
    [133]Garcia FG, Soares BG, Williams RJJ. Poly(ethylene-co-vinyl acetate)-graft-poly(methyl methacrylatc)(EVA-graft-PMMA) as a modifier of epoxy resins [J]. Polymer Intemational,2002,51:1340-1347
    [134]Xu ZG, Zheng S. Reaction-induced microphase separation in epoxy thermosets containing poly(epsilon-caprolactone)-block-poly (n-butyl acry late) diblock copolymer [J]. Macromolecules,2007,40:548-2558
    [135]Galante MJ, Oyanguren PA, Andromaque K, Frontini PM, Williams RJJ. Blends of epoxy/anhydride thermosets with a high-molar-mass poly(methyl methacrylate) [J]. Polymer International,1999,48:642-648
    [136]Girard Reydet E, Vicard V, Pascault JP, Santeria H. Polyetherimide-modified epoxy networks:influence of cure conditions on morphology and mechanical properties [J]. Journal of Applied Polymer Science,1997,65:2433-2445
    [137]Cho JB, Hwang JW, Cho K, An JH, Park CE. Effects of morphology on toughening of tetrafunctional epoxy-resins with poly(ether imide) [J]. Polymer,1993,34:4832-4836
    [138]Zhang Jin, Guo Q, Fox BL. Study on thermoplastic-modified multifunctional epoxies: influence of heating rate on cure behaviour and phase separation [J]. Composites Science and Technology,2009,69:1172-1179
    [139]Martinez I, Martin MD, Eceza A, Oyanguren P, Mondragon I. Phase separation in polysulfone-modified epoxy mixtures. Relationships between curing conditions, molphology and ultimate behavior [J]. Polymer,2000,41:1027-1035
    [140]Murata K, Sachin J, Etori H, Anazawa T. Photopolymorization-induced phase separation in binary blends of photocurable/linear polymers [J]. Polymer,2002,43:2845-2859
    [141]Meynie L, Habrard A, Fenouillot F, Pascault JP. Limitation of the coalescence of evolutive droplets by the use of copolymers in a thermoplastic/thermoset blend [J]. Macromolecular Materials and Engineering,2005,290:906-911
    [142]Pearson RA, Yee AF. The preparation and morphology of PPO epoxy blends [J]. Journal of Applied Polymer Science,1993,48:1051-1060
    [143]Girard-Reydet E, Santeria H, Pascault JP. Use of block copolymers to control the morphologies and properties of thermoplastic/thermoset blends [J]. Polymer,1999,40: 1677-1687
    [144]Galante MJ, Borrajo J, Williams RJJ, Girard-Reydet E, Pascault JP. Double phase separation induced by polymerization internary blends of epoxies with polystyrene and poly(methyl methacrylate) [J]. Macromolecules,2001,34:2686-2694
    [145]Girard-Reydet E, Sevignon A, Pascault JP, Hoppe CE, Galante MJ, Oyanguren PA, Williams RJJ. Influence of the addition of polystyrene block-poly(methyl methacrylate) copolymer(PS-b-PMMA) on the morphologies generated by reaction-induced phase separation in PS/PMMA/epoxy blends [J]. Macromolecular Chemistry and Physics, 2002,203:947-952
    [146]Huo YL, Jiang XL, Zhang HD, Yang YL. Hydrodynamic effects on phase separation of binary mixtures with reversible chemical reaction [J]. Journal of Chemical Physics,2003, 118:9830-9837
    [147]Jansen BJP, Tamminga KY, Meijer HEH, Lemstra PJ. Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins [J]. Polymer,1999, 40:5601-5607
    [148]Kiefer J, Hilborn JG, Manson JAE, Leterrier Y. Macroporous epoxy networks via chemically induced phase separation [J]. Macromolecules,1996,29:4158-4160
    [149]Kiefer J, Hiborn JG. Chemically induced phase separation:a new technique for the synthesis of macroporous epoxy networks [J]. Polymer,1996,37:5715-5725
    [150]Garcia LA, Cara F, Dumon M. Pascault JP. Porous epoxy thermosets obtained by a polymerization-iduced phase separation process of a degradable thermoplastic polymer [J]. Macromolecules,2002,35:6291-6297
    [151]Garcia LA, Dumon, M, Pascault, JP. Porous epoxy thermosetting polymers obtained by a phase separation process in the presence of emulsifiers [J]. Macromolecular Symphosia, 2000,151:341-346
    [152]Safinia L, Mantalaris A, Bismarck A. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering [J]. Langmuir,2006,22:3235-3242
    [153]Nakanishi K, Amatani T, Yano S, Kodaira T. Multiscale templating of siloxane gels via polymerization-induced phase separation [J]. Chemistry of Materials,2008,20: 1108-1115
    [154]Zengshe L, Sevim Z. "Green" composites and nanocomposites from soybean oil [J]. Materials Science and Engineering,2008,483-484:708-711
    [155]Yang Y, Zhao J, Zhao Y, Wen L, Yuan X, Fan Y. Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching [J]. Journal of Applied Polymer Science,2008,109:1232-1241
    [156]Zhang H, Zhou J, Zhang X, Wang H, Zhong W, Du Q. High density polyethylene-grafted-maleic anhydride low-k porous films prepared via thermally induced phase separation [J]. European Polymer,2008,44:1095-1101
    [157]Lv R, Zhou J, Du Q, Wang H, Zhong W. Effects of postteatment on morphology and properties of poly(ethylene-co-vinyl alcohol) microporous hollow fiber via thermally induced phase separation [J]. Journal of Appllied Polymer Science,2007,104:4106-4112
    [158]Ratna D. Mechanical properties and morphology of epoxidized soyabean-oil-modified epoxy resin [J]. Polymer International,2001,50:179-184
    [159]Bussi P, Ishida H. Composition of the continuous phase in partially miscible blends of epoxy resin and epoxidized rubber by dynamic mechanical analysis [J]. Polymer,1994, 35:956-966
    [160]Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide with optically active propylene oxide [J]. Polymer Journal,1971,2:220-224
    [161]Inoue S, Konuma H, Tsuruta T. Synthesis and thermal degradation of carbon diox de-epoxide copolymer [J]. Applied Polymer Symposia,1975,26:257-267
    [162]Dixon DD, Ford ME, Mantell GJ. Thermal stabilization of poly(alkylene carbonate)s [J]. Journal of Polymer Science:Polymer Letters Edition,1980,18:131-134
    [163]Nguyen AM, Irgum K. Epoxy-based monoliths. A novel hydrophilic separation material for liquid chromatography of biomolecules [J]. Chemistry of Matererials,2006,18: 6308-6315
    [164]Park SS, An B, Ha CS. High-quality, Oriented and mesostructured organosilica monolith as a potential UV sensor [J]. Microporous and Mesoporous Matererial,2008,111: 367-378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700