用户名: 密码: 验证码:
超短强激光脉冲成丝间的相互作用对光丝传播过程及其非线性效应影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短强激光脉冲在空气介质中传播时,由于空气的非线性克尔自聚焦效应和等离子体的自散焦效应之间的动态平衡,将在空气中形成类似波导传输的光丝通道,具有能量稳定和单模光斑的优点。但是,由于实验条件以及环境的印象,光丝若想实现类似波导的远距离传输,需要非常高的激光功率和稳定的大气环境,这一因素大大限制了其应用的广泛性。近年来研究发现,光丝间的非线性强相互作用可用于调控光丝的传播过程,保持其能量稳定传输的同时有效增长其传播距离;另外,期间产生的三次谐波能量也将随之大幅提高。这对于强激光脉冲的长距离传输和紫外光源的开拓发展都将有着重要的实际应用意义。
     本论文以飞秒光丝为研究对象,针对光丝间的强相互作用,对光丝传播过程、三次谐波能量转化效率提高以及所产生的多维波导效应进行了详细研究。具体的工作可分为以下几个部分:
     1.将光丝间的强相互作用应用到对光丝传播距离的控制中,实现了飞秒光丝传输距离的有效延长和三次谐波能量转换效率的大幅提高(约两个数量级)。实验中,通过改变非共线光丝的夹角、强度对比度以及相对偏振关系等实验参数,可以有效调控三次谐波的能量转化过程。此外,这一技术也可应用于周期量级飞秒激光的成丝过程,有效实现宽带三次谐波能量的增强。这一结果对紫外波段周期量级飞秒激光脉冲的获得提供了新型有效的方法。
     2.通过调节光丝相互作用区域处的时间空间重合,获得了波长量级的等离子体通道阵列的形成。实验中,通过调节飞秒光丝间的非共线结构,可以有效调节等离子体通道芯径的大小及其空间分布,使其出现类似于光子晶体光纤的分布结构。该分布结构可用于引导更高峰值功率强脉冲激光的传播,为新型等离子体波导的实现奠定基础。
     3.利用飞秒光丝干涉诱导产生的自引导通道,形成具有光栅结构的周期性折射率分布,实现了一维和二维等离子体密度调制的动态光栅。实验中,通过改变相互作用的飞秒脉冲的偏振关系及强度对比,测量对应的光栅参数,获得了二次和三次谐波的衍射角及衍射能量的变化,最终确定了激光脉冲参数与动态光栅的对应关系,为后期动态光栅的实际应用奠定了基础。
Self-guided propagation of ultrashort intense laser pulses in air is demonstrated to induce filament channels with the advantage of energy-stability and high-quality beam profile due to the counterbalance between Kerr self-focusing and plasma-defocusing. However, filament can not be functioned as waveguide to keep energy propagate in a long distance due to the influence of experimental condition and environment. Therefore, the application of filament is limited by these factors. Recently, two-beam interaction is considerate as an efficient candidate process for the filament control to elongate the filament distance. In addition, the third harmonic generation is also enhanced. It will be beneficial to the laser long-distance propagation and the development of UV laser.
     With filament as the research object, this thesis is mainly focused on influence of the strong interaction between filaments on the filament propagation, enhancement of third harmonic energy conversion and the effect of multi-dimension waveguide. Mainly include the following:
     1. The filament control is achieved in the way of filament interaction to fulfill the elongation of filament and the two-order enhancement of third harmonic energy conversion. In the experiment, the process of third harmonic generation could be controlled by changing the noncollinear crossing angles, input intensity ratios, and input pulse polarizations. In addition, this technology can also be applied to the filamentation process of few-cycle pluses to fulfill the enhancement of broadband third harmonic. It provides a new and effective way to achieve the few-cycle femtosecond laser pulse in UV domain.
     2. The wavelength-scale periodic plasma waveguide array is achieved by adjusting the spatiotemporal overlap of laser pulse in the filament interaction region. The diameter and spatial distribution of plasma waveguide array can be adjusted by changing the non-collinear structure of incident filaments and creates the structure similar as that of photonic-crystal fiber. The results can be used to guide the laser pulse with high peak intensity and makes the foundation for the creation of novel plasma waveguides.
     3. Based on the formation of interference-assisted self-guide channel, the periodical refractive index distribution is formed in the interaction region and fulfills the 1-and 2-Dimensional plasma dynamic gratings in air. Experimentally, the parameters of grating and variation of energy diffraction of second and third harmonics is measured by changing the relative polarization and intensity ratio of the incidence pulses. Based on the results, we find the relation between the formation of dynamic gratings and the parameters of laser pulse and make the foundation for the practical application of dynamic grating.
引文
1. L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level", Science 303,1843 (2004).
    2. S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, C. C. Chirila, M. Lein, J. W. G. Tisch, and J. P. Marangos, "Probing proton dynamics in molecules on an attosecond time scale", Science 312,424 (2006).
    3. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. G. Muller, and P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation", Science 292,1689 (2001).
    4. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control", Opt. Lett.27,306 (2002).
    5. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun.56,219 (1985).
    6. T. Brabec and F. Krausz, "Intense few-cycle laser fields:Frontiers of nonlinear optics", Rev. Mod. Phys.72,545 (2000).
    7. F. Krausz, T. Brabec, M. Schnurer, and C. Spielmann, "Extreme nonlinear optics: Exploring matter to a few periods of light", Opt. Photon. News 9,46 (1998).
    8. A. Dubeitis, G. Jonusauskas, and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal", Opt. Commun.88,437 (1992).
    9. M. Nisoli, S. Stagira, S. De silvestri, O. Svelto, S. Satania, Z, Cheng, M. Lenzner, C. Spielmann, and F. Krausz, "A novel high energy pulse compression system:Generation of multigigawatt sub-5-fs pulses", Appl. Phys. B 65,189 (1997).
    10. M. Nisoli, S. De Silverstri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique", Appl. Phys. Lett.68,2793 (1996).
    11. M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Sil Vestri, and O. Svelto, Ultra-broadband continuum generation by hollow-fiber cascading", Appl. Phys. B 75,601 (2002).
    12. G. Sansone, G Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, "Mirror dispersion control of a hollow fiber supercontiuum", Appl. Phys. B 78,551 (2004).
    13. C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, "Optimal spectral broadening in hollow-fiber compressor systems", Appl. Phys. B 80,285 (2005).
    14. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulse below 5 fs", Opt. Lett.22,522 (1997).
    15. M. Hatayama, A. Suda, M. Nurhuda, K. Nagasaka, and K. Midorikawa, "Spatiotemproal dynamics of high-intensity femtosecond laser pulses propagation in argon", J. Opt. Soc. Am. B 20,603 (2003).
    16. D. Mikalauskas, A. Dubietis, and R. Danielius, "Observation of light filaments induced in air by visible picosecond laser pulses", Appl. Phys. B 75,899 (2002).
    17. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, "Observation of Temporal Solitons in Second-Harmonic Generation with Tilted Pulses", Phys. Rev. Lett.81,570 (1998).
    18. X. Liu, L. J. Qian, and F. W. Wise, "Generation of Optical Spatiotemporal Solitons", Phys. Rev. Lett.82,4631 (1999).
    19. S. Ashihara, T. Shimura, and K. Kuroda, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate", Appl. Phys. Lett.84,1055 (2004).
    20. X. Liu, L. J. Qian, and F. Wise, "High-energy pulse compression by use of negative phase shifts produced by the cascade c (2) c (2) nonlinearity", Opt. Lett. 24,1777(1999).
    21. C. R. Menyuk, R. Schiek, and L. Tomer, "Solitary waves due to X(2):X(2) cascading", J. Opt. Soc. Am. B 11,2434 (1994).
    22. F. Wise, L. Qian, and X. Liu, "Application of cascaded quadratic nonlinearities to femtosecond pulse generation", J. Nonlinear Opt. Phys. Master 11,317 (2002).
    23. H. Xu and H. P. Zeng, "Spontaneously generated walking X-shaped light bullets", Opt. Lett.32,1944 (2007).
    24. H. Xu and H. P. Zeng, "Elliptic X-shaped light bullets", Opt. Lett.32,820 (2007).
    25. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, "The propagation of powerful femtosecond laser pulses in optical media:physics, applications, and new challenges", Can. J. Phys.83,963 (2005).
    26. M. Protopapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers", Rep. Prog. Phys.60,389 (1997).
    27. A. Couairona, and A. Mysyrowiczb, "Femtosecond filamentation in transparent media", Phys. Rep.441,47 (2007).
    28. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Chen, H. Teng, Z. Y Wei, and Z. M. Sheng, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air", Phys. Rev. E 66,016406 (2002).
    29. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourn, "Self-channeling of high-peak-power femtosecond laser pulse in air", Opt. Lett.20,73 (1995).
    30. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin,O. G. Korsareva, and V. P. Kandidov, "Moving focus in the propagating of ultrashort laser in air", Opt. Lett. 22,304(1997).
    31. M. Mlejnek, E. M. Wright, and J. V. Moloney, "Dynamic spatial replenishment of femtosecond pulses propagating in air", Opt. Lett.23,382 (1998).
    32. G. Mechain, C. D'Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, "Length of plasma filaments created in air by a multiterawatt femtosecond laser", Opt. Commun. 247,171 (2005).
    33. L. Woste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronneberger, H. Schillinger, and R. Sauerbrey, "Femtosecond atmospheric lamp", Laser and Optoelektronik 29,51 (1997).
    34. A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, "Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas", Appl. Phys. B 73,287 (2001).
    35. W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Intensity clamping of a femtosecond laser pulse in condensed matter", Opt. Commun.202,189 (2002).
    36. J. Kasparian, R. Sauerbrey, and S. L. Chin, "The critical laser intensity of self-guided light filaments in air", Appl. Phys. B 71,877 (2000).
    37. E. Yablonovitch and N. Bloembergen, "Avalanche Ionization and the Limiting Diameter of Filaments Induced by Light Pulses in Transparent Media", Phys. Rev. Lett.29,907 (1972).
    38. B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, "Spatial mode cleaning by femtosecond filamentation in air", Opt. Lett.31,2601 (2006).
    39. S. L. Chin, F. Theberge, and W. Liu, "Filamentation nonlinear optics", Appl. Phys. B 86,477 (2007).
    40. V. P. Kandidov, O. G. Kosareva, and A. A. Koltuna, "Nonlinear-optical transformation of a high-power femtosecond laser pulse in air", Quantum Electron.33,69 (2003).
    41. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, "Optically turbulent femtosecond light guide in air", Phys. Rev. Lett.83,2938 (1999).
    42. G. Fibich and G. C. Papanicolaou, "Self-focusing in the presence of small time dispersion and nonparaxiality", Opt. Lett.22,1379 (1997).
    43. J. E. Rothenberg, "Space-time focusing:breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses", Opt. Lett. 17,1340(1992).
    44. J. K. Ranka and A. L. Gaeta, "Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses", Opt. Lett.23,534 (1998).
    45. V. I. Bespalov and V. I. Talanov, Sov. Phys. JETP Lett.3,307 (1966).
    46. Q. Luo, S. A. Hosseini, W. Liu, J.-F. Gravel, O. G. Kosareva, N. A. Panov, N. Akozbek, V. P. Kandidov, G. Roy, and S. L. Chin, "Effect of beam diameter on the propagation of intense femtosecond laser pulses", Appl. Phys. B 80,35 (2005).
    47. I. Golub, "Optical characteristics of supercontinuum generation", Opt. Lett.15, 305 (1990).
    48. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, "Conical emission from self-guided femtosecond pulses in air", Opt. Lett.21,62 (1996).
    49. V. P. Kandidov, O. G. Kosareva, A. Brodeur, and S. L. Chin, "State of the art of investigations into the filamentation of high-power subpicosecond laser pulses in gases", Atmos. Oceanic Opt.10,966 (1997).
    50. V. P. Kandidov, O. G. Kosareva, and S. A. Shlenov, "Spatiotemporal instability of an intense subpicosecond laser pulse in gases", Quant. Electron.27,443 (1997).
    51. Q. Xing, K. M. Yoo, and R. R. Alfano, "Conical emission by four-photon parametric generation by using femtosecond laser pulses", Appl. Opt.32,2087 (1993).
    52. G. G. Luther, A. C. Newell, J. V. Moloney, and E. M. Wright, "Short pulse conical emission and spectral broadening in normally dispersive media", Opt. Lett.19,789 (1994).
    53. D. Faccio, M. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, "Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses", Phys. Rev. Lett.96,193901 (2006).
    54. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas,O. Jedrkiewicz, and J. Trull,. "Nonlinear electromagnetic X-waves", Phys. Rev. Lett.90,170406 (2003).
    55. V. Tikhonenko, J. Christou, and B. Luther-Davies, "Three Dimensional Bright Spatial Soliton Collision and Fusion in a Saturable Nonlinear Medium", Phys. Rev. Lett.76,2698 (1996).
    56. W. Krolikowski and S. Holmstrom, "Fusion and birth of spatial solitons upon collision", Opt. Lett.22,369 (1997).
    57. M.-F. Shih, M. Segev, and G. Salamo, "Three-Dimensional Spiraling of Interacting Spatial Solitons", Phys. Rev. Lett.78,2551 (1997).
    58. T. T. Xi, X. Lu, and J. Zhang, "Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air", Phys. Rev. Lett.96,025003 (2006).
    59. B. Shim, S. E. Schrauth, C. J. Hensley, P. Hui, A. D. Slepkov, A. A. Ishaaya, L. T. Vuong, and A. L. Gaeta, "Controlled Interactions of Femtosecond Light Filaments in Air", CLEO2008, FTuV4 (2008).
    60. H. Cai, J. Wu, H. Li, X. S. Bai, and H. P. Zeng, "Elongation of femtosecond filament by molecular alignment in air", Opt. Express 17,21060 (2009).
    61. Y. Liu, A. Houard, B. Prade, S. Akturk, and A. Mysyrowicz, "Terahertz Radiation Source in Air Based on Bifilamentation of Femtosecond Laser Pulses", Phys. Rev. Lett.99,135002 (2007).
    62. A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, "Two-Beam Coupling between Filament-Forming Beams in Air", Phys. Rev. Lett.102,123902 (2009).
    63. K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, and J.-P. Wolf, "Long-distance remote laser-induced breakdown spectroscopy using filamentation in air", Appl. Phys. Lett.85,3977 (2004).
    64. G. Wu, W. X. Li, E. Wu, and H. P. Zeng, "Generation of correlated UV and visible rainbows", Opt. Express 18,1000 (2010).
    65. G. L. Kamta and A. D. Bandrauk, "High-order harmonic generation from two-center molecules:Time-profile analysis of nuclear contributions", Phys. Rev. A 70,011404(2004).
    66. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G Y. Yin, and S. E. Harris, "Generation of a Single-Cycle Optical Pulse", Phys. Rev. Lett.94,033904 (2005).
    67. C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, "Phase Matching of High-Order Harmonics in Hollow Waveguides", Phys. Rev. Lett.83,2187 (1999).
    68. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, "Coherent Soft X-ray Generation in the Water Window with Quasi-Phase Matching", Science 302,95 (2003).
    69. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric", Phys. Rev.127,1918 (1962).
    70. B. L. Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, and H. Pepin, "Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air", Phys. Plasmas 6,1615(1999).
    71. G. Mechain, A. Couairon, Y.-B. Andre, C. D'Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, "Long range self-channeling of infrared laser pulses in air:a new propagation regime without ionization", Appl. Phys. B 79,379 (2004).
    72. X. Yang, J. Wu, Y. Peng, Y. Q. Tong, P. F. Lu, L. E. Ding, Z. Z. Xu, and H. P. Zeng, "Plasma waveguide array induced by filament interaction", Opt. Lett.34, 3806 (2009).
    73. M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Woste, and J.-P. Wolf, "Kilometric-range nonlinear propagation of femtosecond laser pulses", Phys. Rev. E 69,036607 (2004).
    74. D. Comtois, C. Y. Chien, A. Desparoi, F. Genin, G. Jarry, T. W. Johnston, J.-C. Kieffer, B. L. Fontaine, F. Martin, R. Mawassi, H. Pepin, F. A. M. Rizk, F. Vidal, P. Couture, H. P. Mercure, C. Potvin, A. Bondiou-Clergerie, and I. Gallimber "Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse", Appl. Phys. Lett.76,819 (2000).
    75. R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Mejean, E. Salmon, J. Yu, J. Kasparian, G. Mechain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Woste, and J. P. Wolf, "Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions", Appl. Phys. Lett.85,23 (2004).
    76. A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, and P. Sprangle, "Direct characterization of self-guided femtosecond laser filaments in air", Appl. Opt. 44,1474 (2005).
    77. J. Yu, D. Mondelain, G Ange, R. Volk, S. Niedermeier, J. P. Wolf, J. Kasparian, and R. Sauerbrey, "Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air", Opt. Lett.26,533 (2001).
    78. S. Tzortzakis, G. Mechain, G Patalano, Y.-B. Andre, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G Beaudin, and P. Encrenaz, "Coherent subterahertz radiation from femtosecond infrared filaments in air", Opt. Lett.27,1944(2002).
    79. S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G Taft, M. M. Murnane, and H. C. Kapteyn, "16-fs,1-mJ ultraviolet pulses generated by third-harmonic conversion in air", Opt. Lett.21,665 (1996).
    80. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, "Third-Harmonic Generation and Self-Channeling in Air Using High-Power Femtosecond Laser Pulses", Phys. Rev. Lett.89,143901 (2002).
    81. C. W. Siders, N. C. Turner Ⅲ, M. C. Downer, A. Babine, A. Stepanov, and A. M. Sergeev, "Blueshifted third-harmonic generation and correlated self-guiding during ultrafast barrier suppression ionization of subatmospheric density noble gases", J. Opt. Soc. Am. B 13,330 (1996).
    82. H. R. Lange, A. Chiron, J.-F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, "High-Order Harmonic Generation and Quasiphase Matching in Xenon Using Self-Guided Femtosecond Pulses", Phys. Rev. Lett.81,1611 (1998).
    83. N. Kortsalioudakis, M. Tatarakis, N. Vakakis, S. D. Moustaizis, M. Franco, B. Prade, A. Mysyrowicz, N. A. Papadogiannis, A. Couairon, and S. Tzortzakis, "Enhanced harmonic conversion efficiency in the selfguided propagation of femtosecond ultraviolet laser pulses in argon", Appl. Phys. B 80,211 (2005).
    84. G Marcus, A. Zigler, and Z. Henis, "Third-harmonic generation at atmospheric pressure in methane by use of intense femtosecond pulses in the tight-focusing limit", J. Opt. Soc. Am. B 16,792 (1999).
    85. G. Mao, Y. Wu, and K. D. Singer, "Third harmonic generation in self-focused filaments in liquids", Opt. Express 15,4857 (2007).
    86. M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, "Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air", Appl.Phys.B85,531(2006).
    87. M. Kolesik, E. M. Wright, and J. V. Moloney, "Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes", Opt. Lett.32,2816 (2007).
    88. F. Theberge, N. Akozbek, W. Liu, J.-F. Gravel, and S. L. Chin, "Third-harmonic beam profile generated in atmospheric air using femtosecond laser pulses", Opt. Commun.245,399 (2005).
    89. F. Theberge, N. Akozbek, W. Liu, J. Filion, and S. L. Chin, "Conical emission and induced frequency shift of third-harmonic generation during ultrashort laser filamentation in air", Opt. Commun.276,298 (2007).
    90. Y. P. Chen, F. Theberge, O. Kosareva, N. Panov, V. P. Kandidov, and S. L. Chin, "Evolution and termination of a femtosecond laser filament in air", Opt. Lett.32, 3477 (2007).
    91. I. S. Golubtsov, V. P. Kandidov, and O. G. Kosareva, "Initial phase modulation of a high-power femtosecond laser pulse as a tool for controlling its filamentation and generation of a supercontinuum in air", Quant. Electron.33, 525 (2003).
    92. S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, "Self-compression by femtosecond pulse filamentation:Experiments versus numerical simulations", Phys. Rev. E 74, 056604 (2006).
    93. X. Xie, J. Xu, J. Dai, and X.-C. Zhang, "Enhancement of terahertz wave generation from laser induced plasma", Appl. Phys. Lett.90,141104 (2007).
    94. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, "Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air", Opt. Commun.181,123 (2000).
    95. N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography", Rev. Mod. Phys.74,145 (2002).
    96. F. Roser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, and J. Limpert, "131 W 220 fs fiber laser system", Opt. Lett.30,2754 (2005).
    97. T. Schreiber, C. K. Nielsen, B. Ortac, and J. Limpert, "Microjoule-level all-polarization-maintaining femtosecond fiber source", Opt. Lett.31,574 (2005).
    98. L. Shah and M. E. Fermann, "Micromachining with a 50 W,50 μJ, subpicosecond fiber laser system", Opt. Express 14,12546 (2006).
    99. P. Russell, "Photonic Crystal Fibers", Science 299,358 (2003).
    100. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in opticalwaveguides", Nature 390,143 (2003).
    101. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers", Science 301,1702 (2003).
    102. S.-Y. Chen, G. S. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, "Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse", Phys. Rev. Lett.80,2610 (1998).
    103. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, "The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air", Chem. Phys. 360,171 (2009).
    104. A. Becker, A. D. Bandrauk, and S. L. Chin, "S-matrix analysis of non-resonant multiphoton ionization of inner-valence electrons of the nitrogen molecule", Chem. Phys. Lett.343,345 (2001).
    105. R. W. B. Pearse and A. G. Gaydon, "The identification of molecular sepctra", Chapman and Hall, USA (1984).
    106. F. Martin, R. Mawassi, F. Vidal, I. Gallimberti, D. Comtois, H. Pepin, J. C. Kieffer, and H. P. Mercure, "Spectroscopic Study of Ultrashort Pulse Laser-Breakdown Plasmas in Air", Appl. Spectrosc.56,1444 (2002).
    107. D. G. Papazoglou and S. Tzortzakis, "In-line holography for the characterization of ultrafast laser filamentation in transparent media", Appl. Phys. Lett.75,601 (2002).
    108. M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, "Nonlinearity Management in Optics:Experiment, Theory, and Simulation", Phys. Rev. Lett. 97,033903 (2006).
    109. M. Centurion, Y. Pu, M. Tsang, and D. Psaltis, "Dynamics of filament formation in a Kerr medium", Phys. Rev. A 71,011863 (2005).
    110. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, "Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water", Opt. Lett.13,58 (2008).
    111. G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, "In-line digital holographic interferometry", Appl. Opt.37,6262 (1998).
    112. C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, and M. Velez, "Squarylium Dyes:Structural Factors Pertaining to the Negative Third-Order Nonlinear Optical Response", J. Am. Chem. Soc.117,2214 (1995).
    113. M. Centurion, Y. Pu, Z. W. Liu, D. Psaltis, and T. W. Hansch, "Holographic recording of laser-induced plasma", Opt. Lett.29,772 (2004).
    114. M. Centurion, Y. Pu, and D. Psaltis, "Holographic capture of femtosecond pulse propagation", J. Appl. Phys.100,063104 (2006).
    115. A. S. Davydov and N. I. Kislukha, "Solitary excitations in one-dimensional molecular chains", Phys. Status Solidi B 59,465 (1973).
    116. D. N. Christodoulides and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides", Opt. Lett.13,794 (1988).
    117. W. P. Su, J. R. Schieffer, and A. J. Heeger, "Solitons in polyacetylene", Phys. Rev. Lett.42,1968 (1979).
    118. A. Trombettoni and A. Smerzi, "Discrete solitons and breathers with dilute Bose-Einstein condensates", Phys. Rev. Lett.86,2353 (2001).
    119. F. Theberge, N. Akozbek, W. W. Liu, A. Becker, and S. L. Chin, "Tunable Ultrashort Laser Pulses Generated through Filamentation in Gases", Phys. Rev. Lett.97,023904 (2006).
    120. S. L. Chin, S. Petit, W. Liu, A. Iwasaki, M.-C. Nadeau, V. P. Kandidov, O. G. Kosareva, and K. Y. Andrianov, "Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air", Opt. Commun. 210,329 (2002).
    121. S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, S. L. Chin, O. G. Kosareva, N. A. Panov, N. Akozbek, and V. P. Kandidov, "Competition of multiple filaments during the propagation of intense femtosecond laser pulses", Phys. Rev. A 70, 033802 (2004).
    122. O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, "Can We Reach Very High Intensity in Air with Femtosecond PW Laser Pulses?", Laser Physics 19,1776 (2009).
    123. D. J. Spence and S. M. Hooker, "Investigation of a hydrogen plasma waveguide", Phys. Rev. E 63,015403 (2000).
    124. C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding", Nature 431, 538 (2004).
    125. J. P. Palastro, T. M. Antonsen, S. Morshed, A. G. York, and H. M. Milchberg, "Pulse propagation and electron acceleration in a corrugated plasma channel", Phys. Rev. E 77,036405 (2008).
    126. H. C. Kapteyn, M. M. Murnane, A. Szoke, and R. W. Falcone, "Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering", Opt. Lett.16,490 (1991).
    127. C. Thaury, F. Quere, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. d'Oliveira, P. Audebert, R. Marjoribanks, and Ph. Martin, "Plasma mirrors for ultrahigh-intensity optics", Nat. Phys.3,424 (2007).
    128. Y. Peng, X. Yang, H. P. Zeng, R. X. Li, and Z. Z. Xu, "Phase-matching control of high-order harmonic generation in a two-color laser field", Phys. Rev. A 76, 063823 (2007).
    129. Y. Peng and H. P. Zeng, "Pulse shaping to generate an xuv supercontinuum in the high-order harmonic plateau region", Phys. Rev. A 78,033821 (2008).
    130. H. P. Zeng, J. Wu, H. Xu, K. Wu, and E Wu, "Colored Conical Emission by Means of Second Harmonic Generation in a Quadratically Nonlinear Medium", Phys. Rev. Lett.92,143903 (2004).
    131. H. P. Zeng, J. Wu, H. Xu, and K. Wu, "Generation and Weak Beam Control of Two-Dimensional Multicolored Arrays in a Quadratic Nonlinear Medium", Phys. Rev. Lett.96,083902 (2006).
    132. T. Schneider and J. Reif, "Influence of an ultrafast transient refractive-index grating on nonlinear optical phenomena", Phys. Rev. A 65,023801 (2002).
    133. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, "Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications", Appl. Phys. Lett.94,251104 (2009).
    134. S. Juodkazis, E. Gaizauskas, V. Jarutis, J. Reif, S. Matsuo, and H. Misawa, "Optical third harmonic generation during femtosecond pulse diffraction in a Bragg grating", Appl. Phys.39,50 (2006).
    135. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, "Holographic data storage", Vol. 76 of Springer Series in Optical Sciences, Springer, New York (2000).
    136. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, "High density disk storage by multiplexed microhologramms", IEEE J. Selected Topics Quantum Electron. 4,840(1998).
    137. D. C. Meisel, M. Wegener, and K. Busch, "Three-dimensional photonic crystals by holographic lithography using the umbrella configuration:Symmetries and complete photonic band gaps", Phys. Rev. B 70,165104 (2004).
    138. A. Brignon and J.-P. Huignard, "Phase conjugated laser optics", John Wiley & Sons (2004).
    139. T. Riesbeck, E. Risse, and H. J. Eichler, "Pulsed solid-state laser systems with high brightness by fiber phase conjugation", Proc. SPIE 5120,494 (2003).
    140. H. J. Eichler, P. Giinter, and D. W. Pohl, "Laser-induced dynamic gratings", Springer-Verlag, Berlin (1986).
    141. A. von Jena and H. E. Lessing, "Coherent coupling effects in picosecond absorption experiments", Appl. Phys.19,131 (1979).
    142. T. Sjodin, H. Petek, and H.-L. Dai, "Ultrafast carrier dynamics in silicon:A twocolor transient reflection grating study on a (111) surface", Phys. Rev Lett. 81,5664 (1998).
    143. M. Sudzius, R. Aleksiejunas, K. Jarasiunas, D. Verstraeten, and J. C. Launay, "Investigation of nonequilibrium carrier transport in vanadium-doped CdTe and CdZnTe crystals using the time-resolved four-wave mixing technique", Semicond. Sci. Technol.18,367 (2003).
    144. P. F. Barker, J. H. Grinstead, and R. B. Miles, "Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings", Opt. Commun.168,177 (1999).
    145. M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings", J. Appl. Phys.90,3831 (2001).
    146. M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite. Threshold behavior and morphology", Appl. Phys. Lett.83,1331 (2003).
    147. X. Yang, J. Wu, Y. Peng, Y. Q. Tong, P. F. Lu, L. E. Ding, Z. Z. Xu, and H. P. Zeng, "Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air", Appl. Phys. Lett.95,111103 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700