用户名: 密码: 验证码:
中国地区气溶胶光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国气溶胶光学厚度(AOD)和太阳辐射长期以来的分布与变化特征,以及如何从宽带太阳辐射反演气溶胶光学厚度是本文的研究重点。目前,我国气溶胶光学厚度的长期资料仍然相对缺乏,这使得至今对我国气溶胶光学厚度近几十年的分布与变化仍然不是很清楚。基于这些问题,本文针对我国常规辐射观测站探测的太阳总辐射和散射辐射历史资料建立了一个气溶胶光学厚度的反演方法,利用该方法反演获得了我国50多个台站1961~1990年的气溶胶光学厚度数据。通过对这些光学厚度数据和太阳辐射数据的分析研究,主要得到以下一些结论:
     本文首先建立了一个总辐射准确度的评估方法,并采用所反演的太阳常数(E_(O,P))对WRR的偏差来评估该准确度,进而应用这一方法对北京等7个台站2000—2004年的总辐射资料准确度进行了评估。结果表明,可用于评估的辐射资料越多,越有利于平滑气溶胶、水汽含量和地表反照率的非系统(随机)误差所引起的评估误差,评估结果越合理。7个站的E_(O,P)对WRR的最大偏差为7.33%,97.78%的E_(O,P)值的偏差小于5%,总平均E_(O,P)对WRR偏差只有-1.15%。因此,当μ_0≥0.7时,这些台站的晴天总辐射资料的不确定度估计为5%。
     对我国50多个台站近40年的太阳辐射观测资料进行统计分析,结果表明:1961~1990年全国平均总辐射、直接辐射年总量呈显著下降,年下降值分别为-24.81、-21.67MJ·m~(-2),6~8月为下降最快的月份,11、12月下降最慢;散射辐射总体变化趋势不显著。总辐射和直接辐射在东部下降较西部明显,东北和西南地区下降不显著;而散射辐射在东部站点呈增加的偏多,西部站点下降的偏多。90年代以来,总辐射年总量有增加趋势,全国平均比80年代平均增加105.6 MJ·m~(-2)。本文还利用一个基于总云量的晴空因子计算了晴空下太阳辐射日曝辐量的变化,结果表明,1961~1990年间直接辐射下降趋势快于总辐射,而散射辐射为显著增加趋势。
     基于水平面太阳直接辐射对气溶胶的敏感性,本文建立了一个从总辐射和散射辐射日曝辐量反演气溶胶光学厚度的方法。对该方法的误差分析表明:本文提出的“等效”瞬时太阳天顶角模型的不确定性引起的AOD反演误差平均为3.66%;AOD日变化对单日反演结果有较大影响,对长期结果的平均值影响不显著;当散射辐射的订正误差≤20%时,AOD反演偏差≤4%。与AERONET的对比验证表明:晴空下,两者相关系数超过0.95,平均偏差约0.02;云甄别方法计算的多年平均AOD与AERONET产品较吻合,计算的北京站2002-2005年总平均AOD与AERONET相差0.01。
     对本文方法反演的50多个台站1961~1990年的0.75μm对流层AOD数据进行统计分析,结果表明:我国AOD分布受地形影响显著,存在四川盆地、南疆盆地高值区和青藏高原低值区,1961~1990年平均AOD四川盆地为0.649,南疆盆地为0.411,青藏高原为0.125。1961~1990年,四川盆地光学厚度增加最显著,平均每十年增加0.16;南疆盆地光学厚度增长相对缓慢,平均每十年增加0.03;青藏高原为光学厚度增加最缓慢的地区,平均每十年增加0.01;全国平均AOD每十年增加0.05。全国平均AOD春季最高,夏季次之,冬季最小;气溶胶光学厚度的低、高值区分别对应于能见度的高、低值区,能见度的分布与光学厚度分布体现了较好的吻合,能见度在东经105°以东站点主要为下降,以西站点多数为上升。
     对北京等14个一级辐射站1961~2005年对流层AOD、气溶胶标高和太阳辐射的分析表明:其中11个站AOD显著增长,年增加值0.001~0.082/a;12个站气溶胶标高呈增长趋势,年增长0.004~0.049kin;14站平均AOD和气溶胶标高的年变化为0.0029和0.018km;1961~2005年太阳总辐射和直接辐射总体呈下降趋势,但90年代以来,7个站点的总辐射和6个站点的直接辐射有增加趋势。
Variation and distribution characteristics of aerosol optical depth (AOD) and solar radiation in China, and the AOD retrieval method from broadband solar radiation were main goals in this paper. Due to be short of long term data of AOD, the temporal and spatial variations of AOD were still unclear in China. Base on the above problems, some works were carried out in this paper.
     A method of accuracy estimation for GSR (Global solar radiation) measurements was proposed for Chinese meteorological observatories firstly. Then it was applied to evaluating accuracies of GSR data at seven observatories in China, which were Shenyang, Ejinaqi, Beijing, Wulumuqi, Geermu, Shanghai and Guangzhou. The results showed that the uncertainty of GSR data in these observatories was usually better than 5% in clear days withμ0≥0.7.
     The variation characteristics of solar radiations at 50 meteorological observatories in China during 1961~2000 were analyzed, the results showed that the yearly insolations of global and direct solar radiations appeared obviously descend trends with annual decreases of -24.81 and -21.67MJ·m~(-2), respectively, but the diffuse radiation had no remarkable trend. The descending of global and direct solar radiations was distinct in eastern part and western part of China, while that in northeastern and southwestern part was not. Diffuse radiations for most stations in eastern part showed an increasing trend, while most stations in western part decreasing. Compared with 1980s, the averaged GSR insolation in 1990s increased about 105. 6 MJ·m~(-2). We calculated the solar radiations under clear sky using a clear index based on cloud cover, the results showed that direct radiation reduced more quickly than GSR, but diffuse radiation showed a remarkable increasing trend.
     Based on the sensibility of horizontal direct solar radiation to aerosol, a new retrieval method for aerosol optical depth (AOD) was developed using daily insolations of global and diffuse solar radiations. With a error analysis using radiative transfer models, the results showed that the mean value of AOD retrieving errors due to instability of the "equivalent" model of instantaneous solar zenith angle was 3.66%; errors of AOD diurnal variation had little influence on the mean value for a relatively long period; the AOD retrieving error was less than 4 % when the error of diffuse solar radiation revision was less than 20%. A comparison between AODs retrieved from this method and the AERONET showed a good agreement with correlation coefficient of 0.95 and mean bias error of 0.02 in clear days. The seasonal and yearly mean values of AOD showed a good consistent with those from AERONET.
     Using the above retrieval method, the data of tropospheric AOD at 0.75μm wavelength were retrieved for 50 meteorological stations within the period of 1961-1990. The results showed that the distribution of AOD influenced mostly by topography in China. There are two high value regions of Sichuan Basin and South-Xinjiang Basin and a low value region of Qinhai-Tibet plateau. The decennary increment of AOD averaged from all stations was 0.05. As to mean values, the maximum was in Sichuan Basin of 0.649, and the second maximum in South-Xinjiang Basin of 0.411, while the minimum was in Qinhai-Tibet plateau of 0.125. As to seasonal mean, AOD in spring had the highest value, and then in summer, while the minimum was in winter. The distribution of surface visibility, which was consistent with that of AOD, showed a decreasing trend in the East and a increasing tend in the West of China.
     The variation characteristics of tropospheric AOD and aerosol scaling heights (ASH) for 14 first-grade radiation stations were analyzed detailedly. The results showed that the increasing trends of AOD were found in 11 stations whose annual increments were between 0.001 and 0.082 and of ASH were found in 12 stations whose annual increments were between 0.004 and 0.049km. As to average values from all 14 stations, the annual increment of AOD and ASH was 0.0029 and 0.018km, respectively.
引文
[1]章澄昌,周文贤,大气气溶胶教程.北京:气象出版社.1995.
    [2]Erickson Iii D.J.,R.J.Oglesby,S.Marshall.Climate response to indirect anthropogenic sulfate forcing.Geophysical Research Letters,1995.22(15):2017-2020.
    [3]Boucher O.,T.L.Anderson.General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry.J.Geophys.Res,1995.100(26):26117-26134.
    [4]Sokolik I.N.,O.B.Toon.Direct radiative forcing by anthropogenic airborne mineral aerosols.Nature,1996.381(6584):681-683.
    [5]Erickson D.J.,R.J.Oglesby,S.Marshall.Climate response to indirect anthropogenic sulfate forcing.Geophysical Research Letters,1995.22(15):2017-2020.
    [6]Toon O.B.ATMOSPHERIC SCIENCE:How Pollution Suppresses Rain.Science,2000.287(5459):1763.
    [7]付培健,王世红,陈长和.探讨气候变化的新热点:大气气溶胶的气候效应.地球科学进展,1998.13(4):387-392.
    [8]Charlson R.J.,S.E.Schwartz,J.M.Hales,et al.Climate Forcing by Anthropogenic Aerosols.Science,1992.255(5043):423-430.
    [9]D'Almeida G.A.,P.Koepke,E.P.Shettle,Atmospheric Aerosols:Global Climatology and Radiative Characteristics.1991:A.Deepak Publishing.
    [10]IPCC,Third Assessment Report,Climate Change 2001:The Scientific Basis.2001,New York:Cambridge University Press.
    [11]IPCC,Fourth Assessment Report,Climate Change 2007-The Physical Scientific Basis.2007,New York:Cambridge University Press.
    [12]Rasool S.I.,S.H.Schneider.Atmospheric Carbon Dioxide and Aerosols:Effects of Large Increases on Global Climate.Science,1971.173(3992):138.
    [13] Twomey S. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of the Atmospheric Sciences, 1977. 34(7): 1149-1152.
    
    [14] Twohy C.H., P.A. Durkee, B.J. Huebert, et al. Effects of Aerosol Particles on the Microphysics of Coastal Stratiform Clouds. Journal of Climate, 1995. 8(4): 773-783.
    
    [15] Albrecht B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 1989. 245(4923): 1227-1230.
    
    [16] Rosenfeld D. Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science, 2000. 287(5459): 1793.
    
    [17] Lohmann U.,J. Feichter. Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophysical Research Letters, 2001. 28(1): 159-161.
    
    [18] Eck T.F., B.N. Holben, J.S. Reid, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research, 1999.104(D24): 31333-31350.
    
    [19] Dubovik O., B. Holben, T.F. Eck, et al. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. Journal of the Atmospheric Sciences, 2002. 59(3): 590-608.
    
    [20] Kim D.H., B.J. Sohn, T. Nakajima, et al. Aerosol optical properties over east Asia determined from ground-based sky radiation measurements. J. Geophys. Res, 2004. 109:D02209.
    
    [21] Hansen J.E.,A.A. Lacis. Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change. Nature, 1990. 346(6286): 713-719.
    
    [22] Hansen J., W. Rossow, B. Carlson, et al. Low-cost long-term monitoring of global climate forcings and feedbacks. Climatic Change, 1995. 31(2): 247-271.
    
    [23] Hansen J., M. Sato,R. Ruedy. Radiative forcing and climate response. J. Geophys. Res, 1997. 102(D6): 6831?864.
    
    [24] Remer L.A., S. Gasso, D.A. Hegg, et al. Urban/industrial aerosol: Ground-based Sun/sky radiometer and airborne in situ measurements. J. Geophys. Res, 1997. 102(16): 16849-16859.
    [25]Ackerman T.P.,O.B.Toon.Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles.Applied Optics,1981.20(20):3661-3668.
    [26]Jacobson M.Z.Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols.Journal of Geophysical Research,2001.106(D2):1551-1568.
    [27]Satheesh S.K.,K.Krishna Moorthy.Radiative effects of natural aerosols:A review.Atmospheric Environment,2005.39(11):2089-2110.
    [28]Huebert B.J.,T.Bates,P.B.Russell,et al.An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts.J.Geophys.Res,2003.108(D23):8633.
    [29]Li Z.,X.Xia,M.Cribb,et al.Aerosol optical properties and their radiative effects in northern China.J.Geophys.Res,2007.112(22).
    [30]Qiu J.h.Theoretical Analysis of Retrieving Atmospheric Columnar Mie Optical Depth from Downward Total Solar Radiative Flux Advance in Atmospheric Sciences,1989.6(3):313-323.
    [31]Qiu J.h.A Method to Determine Atmospheric Aerosol Optical Depth Using Total Direct Solar Radiation.Journal of the Atmospheric Sciences,1998.55:744-757.
    [32]Qiu J.h.Broadband extinction method to determine atmospheric aerosol optical properties.Tellus,2001.53B(1):72-82.
    [33]Qiu J.h.Broadband Extinction Method to Determine Aerosol Optical Depth from Accumulated Direct Solar Radiation.Journal of Applied Meteorology,2003.42:1611-1625.
    [34]Qiu J.h.,L.q.Yang.Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994.Atmospheric Environment,2000.34(4):603-609.
    [35]杜萍,钱泽雨,陈长和.利用太阳辐射资料反演宽频上的气溶胶光学厚度.高原气象,2002.21(1):79-84.
    [36]罗云峰,李维亮,周秀骥.20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析.气象学报,2001.59(1):77-87.
    [37]罗云峰,吕达仁,李维亮,等.近30年来中国地区大气气溶胶光学厚度的变化特征.科学通报,2000.45(5):549-554.
    [38]罗云峰,吕达仁,周秀骥,等.30年来我国大气气溶胶光学厚度平均分布特征分析.大气科学,2002.26(6):721-730.
    [39]邱金桓.从全波段太阳直射辐射确定大气气溶胶光学厚度 Ⅰ:理论.大气科学,1995.19(4):385-394.
    [40]邱金桓.大气气溶胶光学厚度的宽带消光遥感方法及其应用.遥感学报,1997.1(1):15-23.
    [41]邱金桓,潘继东,杨理权,等.中国10个地方大气气溶胶1980-1994年间变化特征研究.大气科学,1997.21(6):725-733.
    [42]邱金桓,杨景梅,潘继东.从全波段太阳直射辐射确定大气气溶胶光学厚度-Ⅱ:实验研究.大气科学,1995.19(5):586-596.
    [43]邱金桓,杨理权.从宽带太阳直接辐射小时或日曝辐量反演气溶胶光学厚度研究.大气科学,2002.26(4):449-458.
    [44]宗雪梅,邱金桓,王普才.宽带消光法反演气溶胶光学厚度与AERONET北京站探测结果的对比研究.大气科学,2005.29(4):645-653.
    [45]宗雪梅,邱金桓,王普才.近10年中国16个台站大气气溶胶光学厚度的变化特征分析.气候与环境研究,2005.10(2):201-208.
    [46]查良松.我国地面太阳辐射量的时空变化研究.地理科学,1996(03):41-46.
    [47]陈万隆,许萍,刘克利,等.我国地面太阳总辐射的若干统计特征.南京气象学院学报,1988(01):116-122.
    [48]李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究.应用气象学报,1998(01):25-32.
    [49]王炳忠,刘庚山.我国气溶胶浑浊状况再研究.太阳能学报,1992.13(1):79-85.
    [50]Che H.Z.,G.Y.Shi,X.Y.Zhang,et al.Analysis of 40 years of solar radiation data from China,1961-2000.Geophysical Research Letter,2005.32(3):L06803.
    [51]Gueymard C.A.Turbidity Determination from Broadband Irradiance Measurements:A Detailed Multicoefficient Approach.Journal of Applied Meteorology,1998.37:414-435.
    [52]Unsworth M.H.,J.L.Monteith.Aerosol and solar radiation in Britain.Quarterly Journal of the Royal Meteorological Society,1972.98(418):778-797.
    [53]Molineaux B.,P.Ineichen,N.O'Neill.Equivalence of pyrheliometric and monochromatic aerosol optical depths at a single key wavelength.Applied Optics,1998.37(30):7008-7018.
    [54]Holben B.N.,Y.J.Kaufman,T.F.Eck,et al.AERONET-A federated instrument network and data archive for aerosol characterization.Remote Sensing of Environment,1998.66(1):1-16.
    [55]延吴,矫梅燕,毕宝贵,等.国内外气溶胶观测网络发展进展及相关科学计划.气象科学,2006.26(001):110-117.
    [56]王跃思,辛金元,李占清,等.中国地区大气气溶胶光学厚度与Angstrom 参数联网观测(2004-08-2004-12).环境科学,2006.27(9):1703-1711.
    [57]Xin J.,Y.Wang,Z.Li,et al.AOD and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005.J.Geophys.Res,2007.112.
    [58]赵柏林,王强,毛节泰,等.光学遥感大气气溶胶和水汽的研究.中国科学(B辑),1983.10:951-962.
    [59]毛节泰,王强,赵柏林.大气透明度光谱和浑浊度的观测.气象学报,1983.41(3):322-331.
    [60]王栋梁,邱金桓.塔克拉玛干沙漠春季大气气溶胶光学特性研究.大气科学,1988.12(1):75-81.
    [61]Jun C.,W.Zhien,H.Jiecai,et al.Variability of aerosol optical properties over Hefei during September 1993 to September 1994.Acta Meteorologica Sinica,1996.10(1):81-95.
    [62]张军华,刘莉.地基多波段遥感西藏当雄地区气溶胶光学特性.大气科学,2000.24(004):549-558.
    [63]张文煜,辛金元,袁九毅,等.腾格里沙漠气溶胶光学厚度多波段遥感研 究.高原气象,2003.22(006):613-617.
    [64]Xia X.,H.Chen,P.Goloub,et al.A compilation of aerosol optical properties and calculation of direct radiative forcing over an urban region in northern China.Journal of Geophysical Research,2007.112(D12).
    [65]张军华,王美华.多波段光度计遥感气溶胶误差分析及订正.大气科学,2000.24(006):855-859.
    [66]李放,吕达仁.利用消光谱反演气溶胶复折射率的一种新方法及其应用.遥感技术与应用,1995.10(002):1-8.
    [67]吕达仁,周秀骥,邱金桓.消光-小角散射综合遥感气溶胶分布的原理与数值实验.中国科学,1981.12:1516-1524.
    [68]邱金桓,汪宏七,周秀骥,等.消光.小角散射法遥感气溶胶谱分布的实验研究.大气科学,1983.7(1):33-41.
    [69]牛生杰,孙继明.贺兰山地区大气气溶胶光学特征研究.高原气象,2001.20(003):298-301.
    [70]Xia X.A.,H.B.Chen,P.C.Wang,et al.Variation of column-integrated aerosol properties in a Chinese urban region.J.Geophys.Res,2006.111.
    [71]周秀骥,李维亮,罗云峰.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学,1998.22(004):418-427.
    [72]吕达仁.我国大气物理研究进展.物理,1999.28(011):654-661.
    [73]周诗健,陶丽君,朱文琴.几种激光探测大气消光系数方法的比较.大气科学,1981.5(4):444-448.
    [74]孙景群.激光遥测在气消光系数的误差分析.气象学报,1989.47(003):332-336.
    [75]吕达仁,魏重,林海.低层大气消光系数分布的激光探测.大气科学,1977.3:199-205.
    [76]孙景群,激光大气遥感.1986,北京:科学出版社:269.
    [77]吕达仁,魏重,张健国.激光探测能见度的实验研究.大气科学,1976.1:55-61.
    [78]赵燕曾,陶丽君,郝南军.激光探测斜视能见度的初步实验.大气科学,1980.4(2):168-175.
    [79]邱金桓,黄其荣,赵红.激光探测机场斜视跑道视程的实验研究.大气科学,1988.12(3):291-300.
    [80]邱金桓,赵燕曾,汪宏七.激光探测沙暴过程中的气溶胶消光系数分布.大气科学,1984.8(2):205-210.
    [81]邱金桓,孙金辉.沙尘暴的光学遥感及分析.大气科学,1994.18(001):1-10.
    [82]孙金辉,邱金恒,夏其.激光探测平流层气溶胶层后向散射系数分布.大气科学,1986.10(4):431-436.
    [83]孙金辉,夏其林.激光雷达探测南极平流层云.南极研究,1995.7(001):44-49
    [84]Shu Y.,Z.Xiuji.A theoretical study of multi-wavelength lidar exploration of optical properties of atmospheric aerosols.Advances in Atmospheric Sciences,1986.3(1):23-38.
    [85]邱金桓,郑斯平.北京地区对流层中上部云和气溶胶的激光雷达探测.大气科学,2003.27(001):1-7.
    [86]周军,岳古明.大气气溶胶光学特性激光雷达探测.量子电子学报,1998.15(002):140-148.
    [87]白宇波,田杜耕一.拉萨上空大气气溶胶光学特性的激光雷达探测.大气科学,2000.24(004):559-567.
    [88]Carlson T N,Wending P.Reflected radiance measured by NOAA-3 AVHRR as a function of optical depth for Saharan dust.J Appl Meteoro,1977.16:1368-1371.
    [89]Rao C.R.N.,L.L.Stowe,E.P.Mcelain.Remote sensing of aerosols over the oceans using AVHRR data Theory,practice and applications.International Journal of Remote Sensing,1989.10(4):743-749.
    [90]Herman J.R.,P.K.Bhartia,O.Torres,et al.Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data.Journal of Geophysical Research,1997.102(D14):16911-16922.
    [91]Veefkind J.P.,G.de Leeuw,P.A.Durkee.Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX.Geophys.Res.Lett,1998.25(16):3135-3138.
    [92]Veefkind J.P.,G.de Leeuw,P.A.Durkee,et al.Aerosol optical depth retrieval using ATSR-2 and AVHRR data during TARFOX. Journal of Geophysical Research, 1999. 104(D2): 2253-2260.
    
    [93] Goloub P., D. Tanre, J.L. Deuze, et al. Validation of the first algorithm applied for deriving the aerosolproperties over the ocean using the POLDER/ADEOS measurements. Geoscience and Remote Sensing, IEEE Transactions on, 1999. 37(3 Part 2): 1586-1596.
    
    [94] Gordon H.R.,M. Wang. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied Optics, 1994. 33(3): 443-452.
    
    [95] King M.D., Y. J. Kaufman, W.P. Menzel, et al. Remote sensing of cloud, aerosol, and water vapor properties fromthe moderate resolution imaging spectrometer (MODIS). Geoscience and Remote Sensing, IEEE Transactions on, 1992. 30(1): 2-27.
    
    [96] Kaufman Y.J., D. Tanr, L.A. Remer, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res, 1997. 102(17): 05177.
    
    [97] Ichoku C., D.A. Chu, S. Mattoo, et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett, 2002. 29(12): 8006.
    
    [98] Chu D.A., Y.J. Kaufman, C. Ichoku, et al. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett, 2002. 29(12): 8007.
    
    [99] Remer L.A., D. Tanr, Y.J. Kaufman, et al. Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett, 2002. 29(12): 8008.
    
    [100] Diner D.J., J.C. Beckert, T.H. Reilly, et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument descriptionand experiment overview. Geoscience and Remote Sensing, IEEE Transactions on, 1998. 36(4): 1072-1087.
    
    [101] Hoeller R., A. Higurashi, T. Nakajima, et al. Retrieval of aerosol optical thickness and single-scattering albedo over land from GLI. Proceedings of the Japanese Conference on Remote Sensing, 2003. 35: 7-10.
    
    [102] Nakajima T.,T. Endoh. others (7 parsons) 1999: Early phase analysis of OCTS radiance data for aerosol remote sensing. IEEE Transactions on Geoscience and Remote Sensing.37(2):1575-1585.
    [103]Travis L.D.Remote sensing of aerosols with the earth-observing scanning polarimeter.Proceedings of SPIE,2005.154(1992).
    [104]Spinhirne J.D.,S.P.Palm,W.D.Hart,et al.Cloud and aerosol measurements from GLAS:Overview and initial results.Geophys.Res.Lett,2005.32:023507.
    [105]Winker D.M.,J.Pelon,M.P.McCormick.PICASSO-CENA:aerosol and cloud observations from combined lidar and passive instruments.Proceedings of the 20th International Laser Radar Conference:39-42.
    [106]赵柏林,俞小鼎.海上大气气溶胶的卫星遥感研究.科学通报,1986.31:1645-1649.
    [107]Zhou M.,Z.Chen,R.Huang,et al.Effects of two dust storms on solar radiation in the Beijing-Tianjin area.Geophysical Research Letters,1994.21(24):2697-2700.
    [108]刘广员,孙毅义.大气气溶胶光学厚度的卫星双通道遥感方法.南京气象学院学报,1998.21(003):321-327.
    [109]韩志刚,草地上空对流层气溶胶特性的卫星偏振遥感--正问题模式系统和反演初步实验.2000,中国科学院大气物理研究所.
    [110]李正强,赵凤生,赵崴,等.黄海海域气溶胶光学厚度测量研究.量子电子学报,2003.20(005):635-640.
    [111]张军华,斯召俊.GMS卫星遥感中国地区气溶胶光学厚度.大气科学,2003.27(001):23-35.
    [112]毛节泰,李成才.MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比.应用气象学报,2002.13(1):127-135.
    [113]李成才,毛节泰,刘启汉.利用MODIS遥感大气气溶胶及气溶胶产品的应用.北京大学学报(自然科学版),2003.39(z1):108-117.
    [114]李成才,毛节泰,刘启汉.用MODIS遥感资料分析四川盆地气溶胶光学厚度时空分布特征.应用气象学报,2003.14(1):1-7.
    [115]李成才,毛节泰,A.K.HonLau,等.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染.大气科学,2003.27(5):869-880.
    [116]李晓静,刘玉洁,邱红,等.利用MODIS资料反演北京及其周边地区气溶胶光学厚度的方法研究.气象学报,2003.61(005):580-591.
    [117]唐家奎,薛勇,虞统,等.MODIS陆地气溶胶遥感反演-利用TERRA 和AQUA双星MODIS数据协同反演算法.中国科学D辑,2005.35(5):474-481.
    [118]夏祥鳌.全球陆地上空MODIS气溶胶光学厚度显著偏高.科学通报,2006.51(19):2297-2303.
    [119]王莉莉,辛金元,王跃思,等.CSHNET观测网评估MODIS气溶胶产品在中国区域的适用性.科学通报,2007.52(4):477-486.
    [120]Kiehl J.T.,B.P.Briegleb.The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing.Science,1993.260(5106):311-314.
    [121]Kiehl J.T.CLIMATE CHANGE:Enhanced:Solving the Aerosol Puzzle.Science,1999.283(5406):1273.
    [122]Textor C.,M.Schulz,S.Guibert,et al.Analysis and quantification of the diversities of aerosol life cycles within AeroCom.Atmos.Chem.Phys,2006.6:1777-1813.
    [123]Penner J.E.,S.Y.Zhang,C.C.Chuang.Soot and smoke aerosol may not warm climate.J.Geophys.Res,2003.108(21):4657.
    [124]Penner J.E.,S.Y.Zhang,M.Chin,et al.A Comparison of Model-and Satellite-Derived Aerosol Optical Depth and Reflectivity.Journal of the Atmospheric Sciences,2002.59(3):441-460.
    [125]Mishchenko M.,J.Penner,D.Anderson.Global Aerosol Climatology Project.Journal of the Atmospheric Sciences,2002.59(3):249-249.
    [126]Kinne S.,M.Schulz,C.Textor,et al.An AeroCom initial assessment-optical properties in aerosol component modules of global models.Atmos.Chem.Phys,2006.6:1815-1834.
    [127]Chen Y.,J.E.Penner.Uncertainty analysis for estimates of the first indirect aerosol effect.Atmospheric Chemistry and Physics,2005.5(11):2935-2948.
    [128]Textor C.,M.Schulz,S.Guibert,et al.The effect of harmonized emissions on aerosol properties in global models-an AeroCom experiment.Atmos.Chem.Phys, 2007.7:4489-4501.
    [129]Rotstayn L.D.,Y.Liu.A smaller global estimate of the second indirect aerosol effect.Geophys.Res.Lett,2005.32:1-4.
    [130]Steiner A.L.,W.L.Chameides.Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration.Tellus B,2005.57(5):404-411.
    [131]Zhao T.L.,S.L.Gong,X.Y.Zhang,et al.Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001:Implications for trans-Pacific transport.J.Geophys.Res,2003.108(D23):8665-8672.
    [132]Xiaohui S.,X.Xiangde,Z.Shengjun,et al.Analysis to significant climate change in aerosol influence domain of Beijing and its peripheral areas by EOF mode.Science in China(Series D),2005.48(4):246-275.
    [133]Hong W.,S.H.I.Guangyu,L.I.Shuyan,et al.The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol.大气科学进展(英文版),2006.23(3):431-441.
    [134]吴涧,符淙斌,蒋维楣,等.东亚地区矿物尘气溶胶直接辐射强迫的初步模拟研究.
    [135]Qian Y.,L.R.Leung,S.J.Ghan,et al.Effects of increasing aerosol on regional climate change in China:Observation and modeling.Tellus B,2003.55:914-934.
    [136]尹宏,大气辐射学基础.1993,北京:气象出版社:92-96.
    [137]张瑛,高庆先.硫酸盐碳黑气溶胶辐射效应的研究.应用气象学报,1997.8(A00):87-91.
    [138]张立盛,石广玉.硫酸盐和烟尘气溶胶辐射特性及辐射强迫的模拟估算.大气科学,2001.25(002):231-242.
    [139]吴涧,蒋维楣,刘红年,等.硫酸盐气溶胶直接和间接辐射气候效应的模拟研究.环境科学学报,2002.22(2):129-134.
    [140]夏祥鳌,王明星.气溶胶吸收及气候效应研究的新进展.地球科学进展,2004.19(004):630-635.
    [1]Martin W,Hans G,Andreas R,et al.From Dimming to Brightening:Decadal Changes in Solar Radiation at Earth's Surface.Science,2005,308:847-850.
    [2]Pinker R T,Zhang B,Dutton E G.Do Satellites Detect Trends in Surface Solar Radiation?.Science,2005,308:850-854.
    [3]Che H Z,Shi G Y,Zhang X Y,et al.Analysis of 40 years of solar radiation data from China,1961-2000.Geophys.Res.Lett.,2005,32,L06803,doi:10.1029/2004GL022322.
    [4]Qiu Jinhuan.Cloud optical thickness retrievals from ground-based pyranometer measurements.J.Geophys.Res.,2006,111,D22206,doi:10.1029/2005JD006792.
    [5]Qiu Jinhuan,Yang Liquan,Zhang Xiaoye.Characteristics of imaginary part and single scattering albedo of urban aerosol in northern China.TELLUS,2004,53B:72-82.
    [6]Zhang Y L,Qin B Q,then W M.Analysis of 40 year records of solar radiation data in Shanghai,Nanjing and Hangzhou in eastern China,Theor.Appl.Climatol.,2004,78:217-227.
    [7]WMO.Radiation commission of IAMAP meeting of experts on aerosol and their climate effects.World Meteorological Organization Rep.WCP55,1983:28-30.
    [8]中国气象局.气象辐射观测方法。北京:气象出版社,1996:1-165.
    [9]王炳忠.太阳辐射能的测量与标准.北京:科学出版社,1993:327-334.
    [10]Qiu Jinhuan.Theoretical analysis of retrieving atmospheric column Mie optical depth from downward total solar radiative flux.Adv.Atmos.Sci.,1989,6:313-323.
    [11]Moody E G,King M D,Platnick S,et al.Spatially complete global spectral surface albedos:Value-added datasets derived from Terra MODIS land products.IEEE Trans.Geosci.Remote Sens.,2005,43:144-158.
    [12]Qiu Jinhuan.Broadband extinction method to determine atmospheric aerosol optical properties.Tellus,2001,53B:72-82.
    [13]Qiu Jinhuan.Broadband extinction method to determine aerosol optical depth from accumulated solar direct radiation.J.Appl.,Meteo.,2003,42:1611-1623.
    [14]杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究.大气科学,2002,26:9-22。
    [15]Qiu Jinhuan.Absorption properties of urban/suburban aerosols in China.Adv.Atmos.Sci.,2008,25,1-10.
    [16]邱金桓,许潇锋,杨景梅.我国北京等7个气象台站太阳总辐射观测资料的准确度评估研究,应用气象学报,2008,19(3)。
    [1]陆渝蓉,高国栋.物理气候学.北京:气象出版社,1987:134-152.
    [2]翁笃鸣.试论总辐射的气候学计算方法.气象学报,1964(03):304-315.
    [3]Z.Jin,W.Yezheng,Y.Gang.General formula for estimation of monthly average daily global solar radiation in China.Energy Conversion and Management,2005.46(2):257-268.
    [4]Z.Jin,W.Yezheng,Y.Gang.Estimation of daily diffuse solar radiation in China.Renewable Energy,2004.29(9):1537-1548.
    [5]R.Chen,E.Kang,S.Lu,et al.New methods to estimate global radiation based on meteorological data in China.Energy Conversion and Management,2006.47(18-19):2991-2998.
    [6]R.Chen,K.Ersi,J.Yang,et al.Validation of five global radiation models with measured daily data in China.Energy Conversion and Management,2004.45(11-12):1759-1769.
    [7]李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究.应用气象学报,1998(01):25-32.
    [8]张雪芬,陈东,付祥健,等.河南省近40年太阳辐射变化规律及其成因探讨. 气象,1999(03):22-26.
    [9]H.Z.Che,G.Y.Shi,X.Y.Zhang,et al.Analysis of 40 years of solar radiation data from China,1961-2000.Geophysical Research Letter,2005.32(3):L06803.
    [10]陈志华,石广玉,车慧正.近40a来新疆地区太阳辐射状况研究.干旱区地理,2005(06):734-739.
    [11]杨胜朋,王可丽,吕世华.近40年来中国大陆总辐射的演变特征.太阳能学报,2007.28(3):227-232.
    [12]X.W.Li,X.J.Zhou,W.L.Li.The cooling of Sichuan province in recent 40 years and its probable mechanisms.Acta Meteorologica Sinica,1995.9(1):57-68.
    [13]M.I.Mishchenko,I.V.Geogdzhayev,W.B.Rossow,et al.Long-Term Satellite Record Reveals Likely Recent Aerosol Trend.Science,2007.315(5818):1543.
    [14]邱金桓.从全波段太阳直射辐射确定大气气溶胶光学厚度 Ⅰ:理论.大气科学,1995.19(4):385-394.
    [1]毛节泰,张军华,王美华.中国大气气溶胶研究综述.气象学报,2002,60(5):625-634.
    [2]Holben B N,Kaufman Y J,Eck T F,et al.Aeronet-a Federated Instrument Network and Data Archive for Aerosol Characterization.Remote Sens.Environ.,1998,66(1):1-16.
    [3]王雨,傅云飞.利用MODIS卫星资料对中国中东部和印度次大陆气溶胶特性的分析.气候与环境研究,2007,12(2):137-146.
    [4]Stothers R B.Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions:Pyrheliometric Period,1881-1960.J.Geophys.Res.,1996,101(D2):3901-3920.
    [5]Linke F.Transmissions-Koeffizient Und Trubungsfaktor.Beitr.Phys.Atmos.,1922,10:91-103.
    [6]Angstrom A.On the Atmospheric Transmission of Sun Radiation and on Dust in the Air.Geografiska Annaler,1929,11:156-166.
    [7]Schuepp W.Die Bestimmung Der Komponenten Der Atmospharischen Trubung Aus Aktinometermessungen.Arch.Meteor.Geoph.Biokl.,1949,B1:257-346.
    [8]Unsworth M H,Monteith J L.Aerosol and Solar Radiation in Britain.Quart.J.Roy.Meteor.Soc.,1972,98(418):778-797.
    [9]邱金桓.从全波段太阳直射辐射确定大气气溶胶光学厚度Ⅰ:理论.大气科学,1995,19(4):385-394.
    [10]Gueymard C A.Turbidity Determination from Broadband Irradiance Measurements:A Detailed Multicoefficient Approach.J.Appl.Meteor.,1998,37:414-435.
    [11]Molineaux B,Ineichen P,O'neill N.Equivalence of Pyrheliometric and Monochromatic Aerosol Optical Depths at a Single Key Wavelenth.Appl.Opt.,1998,37(30):7008-7018.
    [12]Qiu J H.A Method to Determine Atmospheric Aerosol Optical Depth Using Total Direct Solar Radiation.J.Atmos.Sci.,1998,55:744-757.
    [13]Qiu J H.Broadband Extinction Method to Determine Atmospheric Aerosol Optical Properties.Tellus,2001,53B(1):72-82.
    [14]Qiu J H.Broadband Extinction Method to Determine Aerosol Optical Depth from Accumulated Direct Solar Radiation.J.Appl.Meteor.,2003,42:1611-1625.
    [15]Qiu J H,Yang L Q.Variation Characteristics of Atmospheric Aerosol Optical Depths and Visibility in North China During 1980-1994.Atmos.Environ.,2000,34(4):603-609.
    [16]邱金桓.宽带太阳漫射辐射法反演辐射加权平均的气溶胶一次散射反照率研究.大气科学,2006.30(5):767-777.
    [17]罗云峰,吕达仁,李维亮,等.近30年来中国地区大气气溶胶光学厚度的变化特征.科学通报,2000,45(5):549-554.
    [18]Yunfeng L,Daren L,Xiuji Z,et al.Characteristics of the Spatial Distribution and Yearly Variation of Aerosol Optical Depth over China in Last 30 Years.J.Geophys.Res.,2001,106(D13):14501-14514.
    [19]罗云峰,吕达仁,周秀骥,等.30年来我国大气气溶胶光学厚度平均分布特征分析.大气科学,2002,26(6):721-730.
    [20]宗雪梅,邱金桓,王普才.宽带消光法反演气溶胶光学厚度与AERONET 北京站探测结果的对比研究.大气科学,2005,29(4):645-653.
    [21]宗雪梅,邱金桓,王普才.近10年中国16个台站大气气溶胶光学厚度的变化特征分析.气候与环境研究,2005,10(2):201-208.
    [22]Berk A,Anderson G P,Bernstein L S,et al.Modtran 4 Radiative Transfer Modeling for Atmospheric Correction.Proceedings of SPIE,1999,3756:348-353.
    [23]杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究.大气科学,2002,26(1):9-22.
    [24]Ricchiazzi P,Yang S,Gautier C,et al.SBDART:A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere.Bull.Amer.Meteor.Soc.,1998,79(10):2101-2114.
    [25]中国气象局.气象辐射观测方法.北京:气象出版社,1996:29-32.
    [26]Chu D A,Kaufman Y J,Ichoku C,et al.Validation of Modis Aerosol Optical Depth Retrieval over Land.Geophys.Res.Lett.,2002,29(12):8007.
    [1]Gueymard C.A.Turbidity Determination from Broadband Irradiance Measurements:A Detailed Multicoefficient Approach.Journal of Applied Meteorology,1998.37:414-435.
    [2]Molineaux B.,P.Ineichen,N.O'Neill.Equivalence of pyrheliometric and monochromatic aerosol optical depths at a single key wavelength.Applied Optics,1998.37(30):7008-7018.
    [3]Qiu J.h.Theoretical Analysis of Retrieving Atmospheric Columnar Mie Optical Depth from Downward Total Solar Radiative Flux Advance in Atmospheric Sciences,1989.6(3):313-323.
    [4]Unsworth M.H.,J.L.Monteith.Aerosol and solar radiation in Britain.Quarterly Journal of the Royal Meteorological Society,1972.98(418):778-797.
    [5]罗云峰,吕达仁,李维亮,等.近30年来中国地区大气气溶胶光学厚度的变化特征.科学通报,2000.45(5):549-554.
    [6]赵柏林,张凡菲.我国气气溶胶光学厚度的特征.气象学报,1986.44(2):235-241.
    [7]王炳忠,刘庚山.我国气溶胶浑浊状况再研究.太阳能学报,1992.13(1):79-85.
    [8]邱金桓,潘继东,杨理权,等.中国10个地方大气气溶胶1980-1994年间变化特征研究.大气科学,1997.21(6):725-733.
    [9]刘毅,周明煜.北京及近中国海春季沙尘气溶胶浓度变规律的研究.环境科学学报,1999.19(006):642-647.
    [10]李刚,季国良.中国西北地区大气气溶胶散射光学厚度分析.高原气象,2001.20(003):283-290.
    [11]牛生杰,章澄昌.贺兰山地区沙尘暴若干问题的观测研究.气象学报,2001.59(002):196-205.
    [12]罗云峰,吕达仁,周秀骥,等.30年来我国大气气溶胶光学厚度平均分布特征分析.大气科学,2002.26(6):721-730.
    [13]张文煜,辛金元,袁九毅,等.腾格里沙漠气溶胶光学厚度多波段遥感研究.高原气象,2003.22(006):613-617.
    [14]李成才,刘启汉.用MODIS遥感资料分析四川盆地气溶胶光学厚度时空分布特征.应用气象学报,2003.14(001):1-7.
    [15]李成才,毛节泰,刘启汉.利用Modis遥感大气气溶胶及气溶胶产品的应用.北京大学学报(自然科学版),2003(S1).
    [16]李成才,毛节泰,刘启汉,等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征.科学通报,2003.48(19):2094-2100.
    [17]Xin J.,Y.Wang,Z.Li,et al.Aerosol optical depth(AOD)and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005.J.Geophys.Res,2007.112.
    [18]周自江,章国材.中国北方的典型强沙尘暴事件(1954-2002年).科学通报,2003.48(11):1224-1228.
    [19]李成才,毛节泰,刘启汉.用MODIS遥感资料分析四川盆地气溶胶光学厚度时空分布特征.应用气象学报,2003.14(1):1-7.
    [20]Li X.W.,Z.X.J.,L.W.L.The cooling of Sichuan province in recent 40 years and its probable mechanisms.Acta Meteorologica Sinica,1995.9(1):57-68.
    [21]钱正安,宋敏红.近50年来中国北方沙尘暴的分布及变化趋势分析.中国沙漠,2002.22(002):106-111.
    [22]Qiu J.h.,X.m.Zong,X.y.Zhang.A study of the scaling height ofthe tropospheric aerosol and its extinction coefficient profile.Journal of Aerosol Science,2005.36(3):361-371.
    [1]周自江,章国材.中国北方的典型强沙尘暴事件(1954-2002年).科学通报,2003.48(11):1224-1228.
    [2]李霞,陈勇航,胡秀清,等.乌鲁木齐大气气溶胶的光学特性分析.中国环境科学,2005.25:22-25.
    [3]Qiu J.h.,L.q.Yang.Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994.Atmospheric Environment,2000.34(4):603-609.
    [4]宗雪梅,邱金桓,王普才.近10年中国16个台站大气气溶胶光学厚度的变化特征分析.气候与环境研究,2005.10(2):201-208.
    [5]Wild M.,H.Gilgen,A.Roesch,等.From Dimming to Brightening:Decadal Changes in Solar Radiation at Earth's Surface.Science,2005.308(5723):847-850.
    [6]邱金桓,潘继东,杨理权,等.中国10个地方大气气溶胶1980-1994年间变化特征研究.大气科学,1997.21(6):725-733.
    [7]Xin J.,Y.Wang,Z.Li,等.AOD and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005.J.Geophys.Res,2007.112.
    [8]邱金桓,杨理权.从宽带太阳直接辐射小时或日曝辐量反演气溶胶光学厚度研究.大气科学,2002.26(4):449-458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700