用户名: 密码: 验证码:
漫射光化通量的二流四流混合近似算法求解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用二流近似方法解析求解源函数,最后获得四流近似的辐射强度,并把该方法应用到光化辐射通量的计算中。本文还对二流近似、四流近似、二流四流混合近似这三种算法的精度和效率进行比较,分析了在不同的太阳天顶角、大气光学厚度、地表反照率下,考虑分子、气溶胶、霾和云的漫射光化通量。主要结果如下:
     (1)对于守恒或者非守恒的瑞利散射大气,δ-二流四流混合近似算法的精度接近δ-四流近似的精度,并且比δ-二流近似的精度更高。
     (2)对于非吸收性气溶胶,当光学厚度τ1分别等于0.02、2.5、5的条件下,基于离散纵标的δ-二流四流混合近似算法的精度和δ-四流近似的算法的精度相当,在其他情况下,δ-四流近似的算法更好。并且基于离散纵标方案的δ-二流四流混合近似算法的精度要比基于爱丁顿、半球近似的δ-二流四流混合近似算法的精度更高。
     (3)对于本文给定的云模型C1和霾模型L的光化通量计算,基于离散纵标的δ-二流四流混合近似算法比基于爱丁顿、半球近似方案的δ-二流四流混合近似算法精度要高。
     (4)总体而言,对于漫射光化通量的计算,δ-二流近似的误差最大。而δ-四流近似在任何大气条件下都能得到可靠的结果。基于离散纵标的δ-二流四流混合近似算法的精度与δ-四流近似接近。从精度和效率两个方面考虑,基于离散纵标的δ-二流四流混合近似算法吸纳了二流近似精度速度快的优点和四流近似精度高的优点,它能在速度略低于二流近似的情况下达到接近四流近似的精度。因此它非常适用于光化通量的计算。
     (5)另外,本文还提出了一种新的处理漫射因子的拟合方案,通过与前人提出的方案相比,该方案具有较高的拟合精度;然后,本文将该拟合方案和前人提出的方案同时放入辐射传输模式中来计算大气加热率,结果表明:新方案的结果总体上优于前人的结果,尤其是对45 km以上的中间层大气。
Abstract: In this paper, theδ-two-and four-stream combination approximations, which use a source function from the two-stream approximations and evaluate intensities in the four-stream directions, are formulated for the calculation of diffuse actinic fluxes. The accuracy and efficiency of the three computational techniques, i.e., theδ-two-stream approximations, theδ-two- and four-stream combination approximations based on various two-stream approaches, and theδ-four-stream approximation, have been investigated. The diffuse actinic fluxes are examined by considering molecular, aerosol, haze and cloud scattering over a wide range of solar zenith angles, optical depths, and surface albedos. In addition, the following conclusions are mainly achieved:
     (1) In general, for a conservative or non-conservative Rayleigh scattering atmosphere, the accuracy of theδ-two- and four-stream combination approximations based on various two-stream approaches is close to that of theδ-four-stream approximation and much more accurate than that of theδ-two-stream approximations.
     (2) For non-absorbing aerosols, when the optical depthτ1 is equal to 0.02, 2.5, and 5, the accuracy of theδ-two- and four-stream combination approximation based on the quadrature scheme is similar to that of theδ-four-stream approximation. In other cases, theδ-four-stream approximation performs better. Hence theδ-two- and four-stream combination approximation based on the quadrature scheme is better than those based on the Eddington and hemispheric constant schemes.
     (3) For both Cloud C1 and Haze L, the accuracy ofδ-two- and four-stream combination approximation based on the Eddington hemispheric constant scheme is slightly better than or similar to that of theδ-two-stream approximation based on the Eddington and hemispheric constant schemes. In addition, theδ-two-and four-stream combination approximation based on the quadrature scheme is better than those based on the Eddington and hemispheric constant schemes.
     (4) We found that for the calculation of diffuse actinic fluxes, the errors in theδ-two-stream methods were largest. For theδ-four-stream approximation, reliable results were obtained under all conditions. The accuracy of theδ-two- and four-stream combination approximations based on the quadrature scheme was close to that of theδ-four-stream approximation.In view of their accuracy and computational efficiency, theδ-two- and four-stream combination method based on the quadrature scheme takes the advantages of the speed of the two-stream approximations and the accuracy of the four-stream approximation. Hence it is well-suited to diffuse actinic flux calculations.
     (5) The new scheme to deal with diffusivity factor, which is more precise in comparison with the previous studies, is presented. For diffusivity factor and the previous ones are put into a radiative transfer model to calculate the atmospheric heating rate. The results show that the new scheme is generally better than previous ones, especially in the upper atmosphere with a height of more than 45 km.
引文
[1]廖国男.大气辐射导论.北京:气象出版社, 2002.
    [2]石广玉.大气辐射学.北京:科学出版社, 2007.
    [3]杨文.地球大气中辐射传输与粒子光散射相互作用的研究,中国科学院寒区旱区环境与工程研究所, 2004.
    [4] Bohren C F, D R Huffman. Absorption and Scattering of Light by Small Particle. New York: John Wiley, 1983.
    [5] Van de Hulst H C. Multiple light scattering. New York: Academic Press, 1980.
    [6] Dave J. V., Subroutines for computing the Parameters of the Electromagnetic Radiation Scattered by a Sphere, Report 320-3237,IBM Scientific Center, Plao, Alto, Calif., 1968
    [7] Wiscombe W J. Improved Mie scattering algorithms. Appl. Opt., 1980, 19: 1505-1509.
    [8] Lentz W J. Generating Bessel Functions in Mie Scattering Calculation Using Continued Fractions. Appl. Opt., 1976, 15: 668-671.
    [9] S Wolf, N V voshchinnikov. Mie Scattering by ensembles of particles with very large size parameters. Computer Physics Communications, 2004, 162: 113-123.
    [10]张鹏.卫星测量反射太阳光反演气溶胶物理和光学特性的算法研究.中国科学院大气物理研究所博士论文, 1998.
    [11]张华等.现代数值预报业务中第三章的3.2.1节辐射过程(初稿).
    [12] Chou M D. Parameterization for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Climate, 1990, 3: 209–217.
    [13] Chou M D. A solar radiation model for use in climate studies. J. Atmos. Sci., 1992, 49: 762–772.
    [14] Chou M D, K T Lee. Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 1996, 53: 1203–1208.
    [15] Chou M D, etal. Parameterizations for Cloud Overlapping and Shortwave Single-Scattering. Journal of Climate. 1999, 11: 202–214.
    [16] Freidenreich S M, Ramaswamy V. A new multiple-band solar radiative parameterization for general circulation models. Journal of Geophysical Research, 1999, 104: 31389-31410.
    [17] Lacis A A, et al. A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. Journal of Geophysical Research, 1991, 96:9027-9063.
    [18] Qiang Fu, K N Liou. On the correlated k-distribution Method for Radiative Transfer in Nonhomogenecous Atmospheres. Journal of the Atmospheric Sciences, 1992, 49: 2139–2156.
    [19] Nakajima T, and M Tanaka. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 1986, 35: 13–21.
    [20] Nakajima T, et al. Modeling of the Radiative Process in an Atmospheric General Circulation Model. Applied Optics, 2000, 39(27): 4869-4878.
    [21] Morcrette J J. Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J. Geophys. Res., 1991, 96D: 9121-9132.
    [22] Shi Guangyu. An accurate calculation and representation of the infrared transmission function of the atmospheric constituents. Ph. D. dissertation, Tohoku Uni. Of Japan, 1981.
    [23]石广玉.大气辐射计算的吸收系数分布模式,大气科学, 1998(4) .
    [24]王标.气候模拟中的辐射传输模式.中国科学院大气物理研究所博士论文, 1996.
    [25] H. Zhang, et al. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. Journal of Geophysical Research, 2003, 108: P. ACL10.1-ACL10.13.
    [26] Zhang H, Shi G-Y, Nakajima T, et al. The effects of the choice of k-interval number on radiative calculations. Journal of Quantitative Spectroscopy & Radiative Transfer, 2006, 98: 31-43.
    [27] Zhang H, Suzuki T, Nakajima T, et al. The effects of band division on radiative calculations, Optical Engineering, 2006b,45 (1): 016002, doi: 10.1117/1.2160521.
    [28]卢鹏,大气辐射传输模式的比较及其应用.中国优秀硕士学位论文全文数据库, 2009 (09) .
    [29] Chou M.-D., and M. J. Suarez. An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 1994, 3: 85. [Available from NASA Goddard Space Flight Center, Greenbelt, MD 20771.].
    [30] Chou M-D, M J Suarez, et al. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate., 1998, 11: 202–214.
    [31] Lacis A A, and J E Hansen. A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 1974, (1), 118-133.
    [32] Morcrette J, Fouquart Y. On systematic errors in parametrized calculations of longwave radiation transfer. Quart. J. Roy. Meteor. Soc., 1985, 111: 691-708.
    [33] Fouquart, and Y, Bonnel B, Computation of solar heating of the Earth's atmosphere: a new parameterization Contributions to Atmospheric Physics. 1980, 53: 35-62.
    [34] Hu Y, K Stamnes. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 1993, 6: 728–742.
    [35] Fu Q, P Yang, and W B Sun. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models J. Climate, 1998 ,11: 2223–2237.
    [36] Clough S A, F X Kneizys, G P Anderson, et al. The updated LBLRTM_ver5.21, http://www.rtweb.aer.com/, 2000.
    [37] Ramanathan V, P Downey. A Nonisothermal Emissivity and Absorptivity Formulation for Water Vapor. J. Geophys. Res. Atmospheres, 1986, 91: 8649-8666.
    [38] Kiehl J T, B P Briegleb. A new parameterization of the absorptance due to the 15-mu m band system of carbon dioxide. J. Geophys. Res., 1991, 96: 9013-9019.
    [39] Kiehl J T, V Ramanathan. CO2 Radiative Parameterization used in Climate Models Comparison with Narrow band Models and with Laboratory Data. J. Geophys. Res. Atmospheres, 1983, 88: 5191-5202.
    [40] Collins W D, P J Rasch, et al. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, J. Geophys. Res., 2001, 106: 7313–7336.
    [41] Berger. Long term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 1978, 35 (12): 2362-2367.
    [42] Slingo A S. A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci. 1989, 46: 1419-1427.
    [43] Ebert E and J Curry. A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 1992, 97(D4): 3831-3836.
    [44] Schuster A. Radiation through a foggy atmosphere. Astrophysics J., 1905, 21 (1): 1-22.
    [45] Schwarzchild K. Equilibrium of the Sun’s atmosphere, Nachr. Ges. Wiss. Gottingen Math.-Phys. Klasse, 1906, 1: 41-53.
    [46] Maheu B, Letoulouzan J N, Gouesbet G. Four-flux models to solve the scattering transfer equation in terms of Loren-Mie parameters, Applied Optics, 1984, 23 (19) :3353-3362.
    [47] Chandrasekhar S. Radiative transfer. Oxford: Oxford Univ. Press, 1950: 149-182.
    [48] Lenoble J. Radiative transfer in scattering and absorbing atmospheres: Standard computational procedures. Hampton, Virginia: A. Deepak Publishing, 1985: 12-143.
    [49]邱金恒.一个改进的δ-Eddington近似.科学通报, 1998, 8: 1712-1716.
    [50] Li, J. and V. Ramaswamy. Four-stream spherical harmonic expansion approximation for solar radiative transfer. Journal of Atmospheric Science, 1996 ,53:, 1174-1186
    [51] Liou K N, Q Fu, T P Ackerman. A simple formulation for the delta-four-stream approximation for radiative transfer parameterization. J. Atmos. Sci., 1988, 45: 1940-1947.
    [52] Fu Q, K N Liou, M C Cribb, et al. Multiple Scattering Parameterization in Thermal Infrared Radiative Transfer. J. Atmos. Sci., 1997, 54: 2799–2812.
    [53] Meador W E, W R Weaver. Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 1980, 37: 630-643.
    [54] Toon O B, C P McKay, T P Ackerman. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 1989, 94: 6287–16301.
    [55] Davies R. Fast azimuthally dependent model of the reflection of solar radiation by plane-parallel clouds. Appl. Opt, 1980, 19: 250-255.
    [56] Randall DA, et al. Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom, New York, NY, USA: Cambridge University Press; 2007.
    [57] Joseph JH, Wiscombe WJ, Weinman JA. The delta Eddington approximation for radiative flux transfer. J. Atmos. Sci., 1976, 33: 2452–2459.
    [58] King M. D, Harshvardhan. Comparative accuracy of selected multiple scattering approximations. J. Atmos. Sci., 1986, 43: 784–801.
    [59] King M. D, Harshvardhan. Comparative accuracy of the albedo, transmission and absorption for selected radiative transfer approximations. NASA Reference Publication 1986, 1160, 41p.
    [60] Lu P, H Zhang, J N Li. A comparison of two-stream DISORT and Eddingtonradiative transfer schemes in a real atmospheric profile. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110: 129–138.
    [61] Liou K N. Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci., 1974, 31, 1473-1475.
    [62] Liou K N. A numerical experiment on Chandrasekhar’s disrete-ordinate method for radiative transfer: applications to cloudy and hazy atmospheres. J. Atmos. Sci., 1973, 30: 1303-1326.
    [63] Li J, V Ramaswamy. Four-Stream Spherical Harmonic Expansion Approximation for Solar Radiative Transfer. J. Atmos., Sci., 1996, 53(8): 1174-1186.
    [64] Cuzzi J N, T P Ackerman, and L C Helmle. The delta-four stream approximation for radiative flux transfer. J. Atmos. Sci., 1982, 39, 917-925.
    [65] Stamnes K, S C Tsay, W J Wiscombe, et al. Numerically stable algorithm for discrete ordinate method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 1988, 27: 2502–2509.
    [66] Yung Y L. Numerical method for calculating mean intensity in an inhomogeneous Rayleigh-scattering atmosphere. Journal of Quantitative Spectroscopy & Radiative Transfer, 1976, 16: 755-761.
    [67] Kylling A, K Stamnes, S C Tsay. A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media. J. Atmos. Chem.,1995, 21:115-150.
    [68] Garcia R D M,C E Siewert, Benchmark Results in Radiative Transfer. Transport Theor. Stat. Phys., 1985, 14: 437-483.
    [69]梁子长,金亚秋.一层非球形粒子散射的标量辐射传输迭代解的求逆,物理学报, 2002, 51(10): 2239-2244.
    [70]梁子长,金亚秋.非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法.物理学报, 2003, 52 (2): 247-255.
    [71]段民征,郭霞.辐射传输中的一个伪极限问题及其数学物理原理,物理学报, 2009, 58(2): 1353-1357.
    [72] Goody R M, Yung Y L. Atmospheric radiation: theoretical basis, Oxford: Oxford University Press, 1989.
    [73] Rodgers C D, Walshaw C D. The computation of infra-red cooling rate in planetary atmospheres. Quart. J. Roy. Met. Soc., 1966, 92, 67-92.
    [74]石广玉.计算9.6微米臭氧带冷却率的一种新方法.中国科学B, 1984, 4, 378-385.
    [75] Xu L, Shi G Y. An exact calculation of infrared cooling rate due to water vapor, Adv. Atoms. Sci., 1985, 2 (4): 531-541.
    [76]石广玉,曲燕妮.一种新的处理漫射辐射的近似方法.科学通报, 1985, 24, 1887-1890.
    [77] Zhang H, Shi G Y. An improved approach to diffuse radiation, J. Quant. Spectro .Radia. Trans., 2001, 70: 367-372.
    [78] McClatchey R A, Fenn R W, Selby J E A, Volz F E, Garing J S. Optical Properties of the Atmosphere 3rd ed.,AFCRL-72-0497, Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts, 1972.
    [79] Zhang H, Nakajima T, Shi GY, et al. An optimal approach to overlapping bands with correlated K distribution method and its application to radiative calculations. J. Geophys. Res., 2003, 108: 4641, doi: 10.1029/2002JD003358.
    [80] Zhang H, Shi G Y, Nakajima T, Suzuki T. The effects of the choice of the k-interval number on radiative calculations. J. Quant. Spectro. Radia. Trans., 2006, 98: 31-43.
    [81] Zhang H, Suzuki T, Nakajima T, Shi G Y, Zhang X Y, Liu Y., Effects of band division on radiative calculations, Opt. Eng., 2006, 45: DOI: 10.1117/12. 678837.
    [82]沈钟平,张华.影响地面太阳辐射及其谱分布的因子分析,太阳能学报, 2009, 30, 1389-1397.
    [83] Nakajima T, Tsukamoto M, Tsushima Y, Numaguti A, Kimura T. Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 2000, 39 (27): 4869-4878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700