用户名: 密码: 验证码:
水稻抗直穗病基因qSH-8精细定位及相关连锁分子标记和抗病种质资源开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上主要的粮食作物之一,在亚洲绝大多数的人口以水稻为主食,因此水稻生产安全是世界粮食安全的重要组成部分。美国的水稻总产量虽然不高但是其绝大部分用作出口,是世界第二大水稻出口商,因此美国水稻生产安全,从一定程度上对世界粮食安全有着重大的意义。美国主要的水稻病害包括:纹枯病、稻瘟病、直穗病、菌核病、叶鞘黑腐病、稻胡麻斑病、粒黑粉病、和立枯病。
     水稻直穗病是一种生理病害,在世界上多个国家和地区均有发生。感病时主要表现为不育以及颖壳扭曲呈“鹦鹉嘴”形状,在严重感病品种发病时可造成极大的产量损失。直穗病主要发生于美国南部,这里生产的水稻占全美水稻产量的90%以上,而这里的品种多为长粒型热带粳稻,对直穗病抗性普遍偏低,因此,直穗病对美国乃至全世界的水稻生产安全产生极大的威胁。目前最有效的直穗病防治方法为“放水干旱法”,该法需要在水稻田灌水以后一周将水抽干保持干旱直到水稻叶片出现干旱胁迫症状后重新灌水。所以该方法昂贵,对水资源会造成极大的浪费,且会在一定程度上影响水稻产量。抗病育种被认为是预防直穗病最为有效的方法,但是,由于直穗病真正的致病机理不明加上美国本土严重缺乏直穗病抗病种质资源,直到2000年为止抗病育种一直收效甚微。研究发现有许多因素可能造成直穗病,其中砷一直被认为是导致直穗病的重要因素。由于自然发生的直穗病的不稳定性,对直穗病直接进行鉴定十分困难,因此,早从80年代起,甲基砷酸钠除草剂(monosodium methanearsonate,MSMA)就在直穗病育种研究中被当作诱导剂使用。
     在本研究中,我们构建了两个重组自交系(recombinant inbred line, RIL) F9代群体和一个全球种质资源群体。两个RIL群体用于直穗病相关数量性状基因座(quantitative trait loci, QTL)定位,而全球种质资源群体和两个RIL共用于定位区间内标记与直穗病抗病性的关联性鉴定。结果概括如下:
     1.两个RIL群体连续两年在大田实验中利用MSMA诱导其直穗病发生并鉴定群体RIL抗病等级,其中一个群体的抗病亲本为Zhe733,感病亲本为R312,它们是从中国引进的籼稻品种,群体中共含有170个RIL,并用136个全基因组覆盖的SSR多态性标记对其进行基因型鉴定,标记多态性频率为26.1%:另一个群体抗病亲本为Jing185是
     来自中国的籼稻品种,感病亲本为长粒型粳稻品种Cocodrie是美国南部主要栽培品种之一,利用159个SSR多态性标记对群体中的91个RIL进行基因型鉴定,标记多态性频率为37.2%。
     2.采用连锁作图法对直穗病相关QTL进行初步定位以及进一步的精细定位。结果显示,在两个群体的8号染色体定位的QTL在两个群体中分别解释了46%和67%的直穗病抗病总变异,且两个QTL区间部分重合,证明这是一个直穗病主效QTL,命名为qSH-8。在Zhe733/R312群体中,利用7个区间内SSR多态性标记qSH-8的定位区间从1.0Mbp被缩小到340kb;继而又利用4个新开发的InDel标记将其定位区间最终缩小到290kb,位于RM22573和InDel27之间。
     3.根据Gramene数据库的信息,在qSH-8精细定位区间内共有36个候选基因,利用Geneinvestigator基因表达数据库查找对应36个候选基因从水稻开花早期到抽穗期蛋白表达水平变化的信息发现,LOC_08g10240,10340和10380三个蛋白在此期间蛋白表达水平发生明显的变化,且均为表达水平下调,其中LOC_08g10240和380均为功能未知的表达蛋白,LOC_08g10340为含OsFBX278-F-box结构域蛋白。
     4.在目标基因定位区间还发现了两个与直穗病抗病性紧密连锁的标记,其中一个为SSR标记AP3858-1,另一个为InDel11。全球种质资源群体共包含71个材料,且它们对直穗病均表现为抗病或者感病。利用AP3858-1和InDel11对它们进行基因型鉴定后,计算其表型-基因型吻合率并进行χ2独立性检验。结果显示,InDel11的表型-基因型吻合率(78%)略高于AP3858-1(76%),χ2独立性检验中,InDel11的P值小于0.0014,AP3858-1的P值小于0.0004,说明在两个标记与直穗病呈极显著相关关系。该结果证明AP3858-1和InDel11可以被用于直穗病抗病育种的分子标记辅助育种工作(marker-assisted selection, MAS)。
     5.在Cocodrie/Jingl85群体中发现了五个抗病自交系包括:RIL369、397、404、407、469和506,它们在AP3858和InDel11位点均表现为抗病亲本基因型,且分析发现它们与美国感病品种Cocodrie遗传相似度在50%以上且部分产量相关农艺性状与Cocodrie的差异不显著甚或更优,因此该五个自交系可作为优良直穗病抗病种质资源运用到美国感病品种改良育种当中。
     综上,本研究结果对探明水稻直穗病的遗传机理、指导其抗病育种有相当的意义,特别是在如今缺乏有效的对直穗病进行直接鉴定手段情况下,这些标记的发现对于指导该病的分子辅助育种具有极为现实的指导意义。
Rice(oryza sativa L.), is one of the most important food crops in the world. In Asia where has the largest population around the world, most pepole live here are feeded by rice, in this case, rice production security is important component of world food security. Rice growing in USA originated in South of Carolina state in1690. First rice produce record was in1895, at that time there was hundreds of thousands of hectares rice planting area. Then rice growing area kept increasing. Until now, it maintains in about1.2million hectares in USA. Rice produce area is distributed in California in west coast, and several states in Southern USA. Most of the varieties grown in USA are japonica, and according to USA market standard they were classified into three groups, including:long-grain rice, medium-grain rice and short-grain rice. The total rice production of USA is not very high, but most of rice produced here is for exportation, which made the USA as the world's second largest exporter, therefore, rice production security in USA is one of the important part of world food security. The major rice diseases happened in USA inculding:sheath blight, blast, sclerotinia, the leaf sheaths black rot, rice brown spot disease, kernel smut, blight and straighthead.
     Straighthead, a physiological disorder characterized by sterile florets and distorted spikelets, causes significant yield losses in rice, and occurs in many countries. Straighthead happens frequently in southen USA where about90%of USA rice is produced, however, most of rice varieties grown here are susceptible to straighthead. In this case, straighthead is a huge threat for rice production in USA and worldwide. The current control method of draining paddies early in the season stresses plants, is costly, and wastes water. Development of resistant cultivar is regarded as the most efficient way for its control. However, because of uncertain of straighthead causal factor and lacking of resistant germplasm, a little progress was made in resistant breeding until2000. Although a lot of factors were reported to involved in straighthead disorder by previous studies, arsenic is considered as the most important one. Straighthead is very difficult to be directly evaluated, because instability of heritance of nature straighthead. Since the1980s, the breeding community has used soil incorporation of As in the form of MSMA as a common practice for evaluating rice susceptibility to straighthead.
     In this study, two recombinant inbred line (RIL) F9populations were developed for linkage mapping and fine mapping of straighthead resistance gene. Result showed that:
     1) Two RIL F9populations were phenotyped over two years using monosodium methanearsonate (MSMA) to induce the symptoms. One population of170RILs was genotyped with136SSRs, polymorphsm frequency is26.1%, the other population of91RILs was genotyped with159SSRs, polymorphsm frequency is37.2%.
     2) We fine mapped a gene for straighthead resistance by linkage mapping and fine mapping. A major QTL qSH-8was identified in an overlapping region in both populations, and explained46%of total variation in one and67%in another population for straighthead resistance. qSH-8was fine mapped from1.0Mbp to340kb using7SSR markers and further mapped to290kb in a population between RM22573and InDel27using4InDel markers. A total of36putative genes were detected in this region.
     3) According to the information from Gramene data base, a total of36putative genes were found in the fine mapped region. According to the information from Geneinvestigator data base, protein expression level of the36putative genes at different rice growning stage was investigated. The result showed that:3putative genes, LOC_08g10240.10340and10380, their protein expression level were detected to decrease significantly.
     4) Two molecular markers, SSR AP3858-1and InDel11, were within the fine mapped region, and co-segregated with straighthead resistance in both RIL populations. Then we constructed a world germplasm collection which contian72accessions selected from USDA core collection for marker verification. These accessions were selected based on their representation of global diversity and diverse straighthead responses. The χ2test result showed that P value of two markers, InDel11and AP3858-1, were0.0014and0.0004, respectively; in InDel11,78%of the genotypes matching the phenotypes among those global accessions, and in AP3858-1was76%. These results demonstrated that AP3858-1and InDel11significantly associated with straighthead resistance and can be used for marker-assisted selection (MAS) for straighthead resistant cultivars, which is especially important because there is no effective way to directly evaluate straighthead resistance.
     5) Five straighthead resistance RILs from Cocodire/Jing185F9population, RIL369,397,404,407、469and506, which showed genotype of resistant parent at AP3858-1and InDel11loci. Furthermore, they were found to have more than50%of similarity with Cocodrie, moreover, some of their agronomic traits showed no significant differnce from Cocodrie or even better. In this case, these RILs can be used to improve straighthead resistance for susceptible varieties in southern USA.
引文
1. FAO. World rice statistics. (2002):Rome, FAO.
    2. Ramiah K. Statement of problems and means of increasing rice production, Plant Sciences.. (1959), Volume 49:281-286.
    3. Sun G, Zhou G. Potential water yield reduction due to forestation across China. Journal of Hydrology, (2006),328:548-558.
    4. Fehr WR. Principles of cultivar development. (1984), volume 2:488-489.
    5. Papademetriou MK, Dent FJ, Herath EM. Breeding Rice Yeild Gap in the Asia-Pacific Region. (2000), Rap Publication:84.
    6. Mackill DJ. Classifying japonica rice cultivars with RAPD markers. Crop Sci, (1995),35:889-894.
    7. Webb BD. Rice quality and grades. (1980), In:B. S. Luh (ed.), Rice:Production & Utilization:543-565. AVI Publishing Co Inc, Westport, CT, USA.
    8. McKenzie KS, Johnson CW, Tseng ST, Oster JJ, Brandon DM. Breeding improved rice cultivars for temperate regions—case study. Aust J Exp Agr, (1994),34:897-905.
    9. Gravois KA, McNew RW. Combining ability and heterosis in United States southern long-grain rice. Crop Sci, (1993),33:83-86.
    10. Bergman CJ, Bhattacharya KR, Ohtsubo K. Rice enduse quality analysis. (2004), In:E. T. Champagne (ed.), Rice Chemistry and Technology:415-472. American Association of Cereal Chemists, Inc., St. Paul. MN, USA.
    11.王志春.美国的水稻病害及防治.世界农业,(1999):36-37.
    12. Tisdale WH, Jenkins JM. Straighthead of rice and its control. USDA Farmers Bull, (1921):1212.
    13. Padwick GW. Manual of rice diseases. (1950), Commonwealth Mycological Institute, Kew.
    14. Atkins JG. Rice diseases of the Americas. USDA Agric Handb 448 US Gov Print Office:Washington, DC, (1974), pp:58-63.
    15. Dilday RH, Slaton NA, Gibbhons JW, Molenhouer KA, Yan WG. Straighthead of rice as influenced by arsenic and nitrogen. Res Ser Arkansas Agric Exp Station, (2000),476:201-214.
    16. Iwaki S, Kawai M, Ikemoto S. Studies on the salt injury in rice plant:VIII on the occurrence of deformation in the flower. Jpn J Crop Sci, (1955),24:82-84.
    17. Kataoka T, Matsuo K, Kon T, Komatsu Y. Factors of the occurrence of straighthead of rice plants: the occurrence of straighthead by the application of barley straws in paddy fields. Jpn J Crop Sci, (1983),52:349-354.
    18. Wilson CE, Jr., Slaton NA, Frizzell DL, Boothe DL, Ntamatungiro S. Tolerance of new rice cultivars to straighthead. In RJ Norman and J-F Meullenet (eds) BR Wells Rice Research Studies 2000 AR Agric Exp Sta (2001):UA, AR, pp 428-436.
    19. Yan W, Dilday RH, Tai TH, Gibbons JW, McNew RW, et al.. Differential Response of Rice Germplasm to Straighthead Induced by Arsenic. Crop Sci, (2005),45:1223-1228.
    20. Collier JS. Rice blight. Illinois Agric p 19 Exp Stn (1912):Circu lar 156.
    21. Linscombe SD, Jodari F, Bollich PK, Groth DE, White LM, et al.. Registration of 'Cocodrie' Rice. Crop Sci, (2000),40:294.
    22. Slaton N.'Cocodrie'-A Summary of Research and Management Recommendations. (2000a).
    23. Slaton NA, Wilson CE, Jr., Ntamatungiro S, Norman RJ, Boothe DL. Evaluation of new varieties to straighthead susceptibility. Res Ser Arkansas Agric Exp Station 2000, (2000b), NO.476 pp: 313-317.
    24. RTWG. Rice variety acreage tables. p 18-31 Proc 29th Conf Little Rock,AR Feb 24-27,2002, (2002).
    25. Wilson CE, Jr., Runsick SK, Mazzanti R. Trends in Arkansas rice production. In Norman RJ, Moldenhauer KAK (eds) BR Wells Rice Research Studies 2009 AR Agric Exp Sta, (2010):UA, AR, pp 11-21.
    26. Wilson CE, Jr., Cartwright R, Lorenz G, Stiles S. My rice field is no yeilding well, what happened? in 'Arkansas rice on Sep 8',, (2010), UA CES http://arkansasrice.blogspot.com/20100901archive.html.
    27. Wilson CE, Jr., Cartwright R, Scott tiles B. Managing for straighthead starts early. In 'Arkansas rice on May 11',, (2010), UA CES http://arkansasrice.blogspot.com/2010/05/managing-for-straighthead-starts-early.html.
    28. Cunha JMA, Baptista JE. Estudo da branca do arroz. I. Combated a doenca. Agronomia lusit, (1958), 20:17-64.
    29. Weerapat P. Straighthead disease of rice suspected in southern Thailand. IRRN, (1979),4:6-7.
    30. Takeoka Y, Tsutsui Y, Matsuo K. Morphogenetic alterations of spiklets on a straighthead panicle in rice. Crop Sci, (1990),59:785-791.
    31. Dunn BW, Batte GD, Dunn TS, Subasinghe R, Williams RL. Nitrogen fertiliser alleviates the disorder straighthead in Australian rice. Aust J Exp Agr, (2006),46:1077-1083.
    32. Yan WG, Correa F, Marin A, Marassi J, Li X, et al.. Comparative study on induced straighthead in the U.S. with natural straighthead in Argentina. Proc 33rd Rice Technical Working Group conference Feb, (2010):22-25,2010, Biloxi, MS.
    33. Hopenhayn C. Arsenic in drinking water:impact on human health. Elements, (2006),2:103-107.
    34. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, et al.. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect, (2000),108: 393-397.
    35. Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem, (2002),17:517-568.
    36. Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasmin A. Straighthead disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environmental and Experimental Botany, (2008), 62:54-59.
    37. Azizur Rahman M, Mamunur Rahman M, Hasegawa H. Arsenic-Induced Straighthead:An Impending Threat to Sustainable Rice Production in South and South-East Asia! Bulletin of Environmental Contamination and Toxicology, (2010):1-5.
    38. Agrama HA, Yan W. Genetic diversity and relatedness of rice cultivars resistant to straighthead disorder. Plant Breeding, (2010),129:304-312.
    39. Rasamivelona A, Kenneth AG, Robert HD. Heritability and genotype x environment interactions for straighthead in rice. Crop Sci, (1995),35:1365-1368.
    40. Wilson CE, Jr., Runsick SK. Trends in Arkansas rice production. BR Wells Rice Research Studies 2007 University of Arkansas, AR Agri Exp Sta Res Ser, (2008),560:11-20.
    41. Atkins JG, Jr,, Beachell HM, Crane LE. Testing and breeding rice varieties for resistance to straighthead. Int Rice Comm News, (1957),7:12-14.
    42. Dilday RH. Contribution of ancestral lines in the development of new cultivars of rice. Crop Sci, (1990),30:905-911.
    43. Yan WG, Rutger JN, Moldenhauer KAK, Gibbons JW. Straighthead-resistant germplasm introduced from China. In Norman RJ, Meullenet JF (eds) BR Wells Rice Research Studies 2001 (2002), AR. Agric. Exp. Sta.:UA, AR pp 359-368.
    44. Iwamoto R. Straighthead of rice plants effected by functional abnormality of thiol-compound metabolism. Mem Tokyo Univ Agric, (1969),13:62-80.
    45. Belefant-Miller H, Tony B. Distribution of arsenic and other minerals in rice plants affected by natural straighthead. Agron J, (2007),99:1675-1681.
    46. Yan W, Agrama HA, Slaton NA, Gibbons JW. Soil and Plant Minerals Associated with Rice Straighthead Disorder Induced by Arsenic. Agron J, (2008),100:1655-1661.
    47. Baba I, Inada K, Tajima K. Mineral nutrition and physiological diseases. (1965):p.173-195. In Mineral nutrition of the rice plant. Johns Hopkins Press, Baltimore, MD.
    48. Ou SH. Straighthead. (1985):p.369. In Rice diseases.362nd ed. Commonwealth Mycological Inst., Kew, Surrey, UK.
    49. Evatt NS, Atkins JG. Chemical control of straighthead in rice. Rice J, (1957),60(5):26-27,32.
    50. Joshi MM, Ibrahim IKA, Hollis JP. Hydrogen sulfide:Effects on the physiology of rice plants and relation to straighthead disease. Phytopathology, (1975),65:1165-1170.
    51. Karim AQMB, Vlamis J. Micronutrient defi ciency symptoms of rice grown in nutrient culture solutions. Plant Soil, (1962),16:347-360.
    52. Ricardo CPP, Cunha JMAE. Study of branca:A physiological disease of rice II. Relation between the soil redox potential and the disease:Action of cupper sulfate. Agron Lusit, (1968),29(1):57-97.
    53. Marschner H. Mineral nutrition of higher plants.2nd ed, Academic Press, London, (1995).
    54. Todd EH, Beachell HM. Straighthead of rice as influenced by varieties and irrigation practices. Rice J, (1954),57(6):20-22.
    55. Hirata H. Absorption and metabolism of potassium. (1995):p.383-390. In T. Matsuo et al. (ed.) Science of the rice plant. Vol.382. Food and Agric. Policy Res. Center, Tokyo.
    56. Obata H. Physiological functions of micro essential elements. (1995):p.402-412. In T. Matsuo et al. (ed.) Science of the rice plant. Vol.402. Food and Agriculture Policy Res. Center, Tokyo.
    57. Garg OK, Sharma AN, G.R.S.S. K. Effect of boron on the pollen vitality and yield of rice plants (Oryza sativa L. var. Jaya). Plant Soil (1979),52:591-594.
    58. Takeoka Y, Shimizu M, Wada T. Panicles. (1993):p.295-338. In J. Matsuo and K. Hoshikawa (ed.) Science of the rice plant. Vol. I. Food and Agriculture Policy Res. Center, Tokyo.
    59. Adair CR, Bollich CN, Bowman DH, Jodon NE, Johnston TH, et al.. Rice breeding and testing methods in the United States. Rice in the United States:Varieties and production USDA Agric Handb 289 US Gov Print Office, (1973):Washington, DC, pp 47.
    60. Jones JW, Jenkins JM, Wyche RH, Nelson M. Rice culture in the southern states. USDA Farmers'Bull, (1938):1808.
    61. Rahman MA, Rahman MM, Miah MAM, Khaled HM. Influence of soil arsenic concentrations on rice (Oryza sativa L.). Subtrop Agric Res Dev, (2004),2 (3).
    62. Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol, (2002),36:961-968.
    63. Meharg AA, Rahman MM. Arsenic contamination of Bangladesh paddy field soils:implication for rice contribution to arsenic consumption. Environ Sci Technol, (2003),37 (2):224-234.
    64. Rahman MA, Hasegawa H, Mahfuzur Rahman M, Mazid Miah MA, Tasmin A. Arsenic accumulation in rice (Oryza sativa L.):Human exposure through food chain. Ecotoxicol Environ Saf, (2008), 69:317-324.
    65. Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MAM, et al.. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere, (2007),67:1072-1079.
    66. Wells BR, Gilmour JT. Sterility in rice cultivars as influenced by MSMA rate and water management. Agron J, (1977),69:451-454.
    67. Gilmour JT, Wells BR. Residual effects of MSMA on sterility in rice cultivars. Agron J, (1980),72: 1066-1067.
    68. Baker RS, Barrentine WL, Bowman DH, Hawthorne WL, Pettiet JV. Crop response and arsenic uptake following soil incorporation of MSMA. Weed Sci, (1976),24:322-326.
    69. Schweizer EE. Toxicity of MSMA soil residues to cotton and rotational crops. Weeds, (1967),15: 72-76.
    70. Horton DK, Frans RE, Cothren T. MSMA-induced straighthead in rice (Oryza sativa) and effect upon metabolism and yield. Weed Sci, (1983),31:648-651.
    71. Frans R, Horton D, Burdette L. Influence of MSMA on straighthead, arsenic uptake and growth response in rice. Res Ser Arkansas Agric Exp Station, (1988),302:1-12 Arkansas Agric. Exp. Station.
    72. Xie B. Evaluation of resistance to straighthead disease in rice (Oryza sativa L.). PhD diss (Diss abstr SB191R5X541993) University of Arkansas, Fayetteville, (1993).
    73. Yan WG, Rutger JN, Bockelman HE, Tai TH. Germplasm accessions resistant to straighthead in the USDA rice core collection. In Norman RJ, Meullenet JF, Moldenhauer KAK (eds) BR Wells Rice Research Studies 2003, (2004), AR. Agric. Exp. Sta.:UA, AR, pp 97-102.
    74. Agrama HA, Yan WG. Association mapping of straighthead disorder induced by arsenic in Oryza sativa. Plant Breeding, (2009),128:551-558.
    75. Frankel OH, Brown AHD. Current plant genetic resources-a critical appraisal. In:Chopra VL, Joshi BC, Sharma RP and Bansal HC (eds), Genetics:new frontiers Vol IV, (1984):Oxford & IBH Publ. Co., New Delhi, pp. p.1-13.
    76. Li Z, Zhang H, Zeng Y, Yang Z, Shen S, et al.. Studies on sampling schemes for the establishment of core collection of rice landraces in Yunnan, China. Genet Resour Crop Evol, (2002),49:67-74.
    77. Frankel OH, A.H.D. B. Plant genetic resources today:A critical appraisal. (1984):p.249-257. In J.H.W. Holden and J.T. Williams (ed.) Crop genetic resources:Conservation and evaluation. George Allen and Unwin, London.
    78. Brown AHD. Core collections:A practical approach to genetic resources management. Genome, (1989),31:818-824.
    79. Yan WG, Rutger JN, Bryant RJ, Bockelman HE, Fjellstrom RG, et al.. Development and evaluation of a core subset of the USDA rice (Oryza sativa L.) germplasm collection. Crop Sci, (2007),47: 869-878.
    80. Liu X, Zheng Z, Tan Z, Li Z, He C, et al.. QTL mapping for controlling anthesis-silking interval based on RIL population in maize. African Journal of Biotechnology, (2010),9(7):pp.950-955.
    81. Andaya VC, Tai TH. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet, (2006),113:467-475.
    82. Kim M, Ha B-K, Jun T-H, Hwang E-Y, Van K, et al.. Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx 2) in soybean. Euphytica, (2004),135:169-177.
    83. Hua W, Liu Z, Zhu J, Xie C, Yang T, et al.. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, (2009),119:223-230.
    84. Mccord PH, Sosinski BR, Haynes KG, Clough ME, Craig YC. Linkage mapping and QTL analysis of agronomic traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Crop Sci, (2010), 51:771-785.
    85. Doerge R. Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews, (2002),3:43-52.
    86. He P, Li JZ, Zheng XW, Shen LS, Lu CF, et al.. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross. Crop Science, (2001),41:1240-1246.
    87. Broman KW. The Genomes of Recombinant Inbred Lines. Genetics, (2005),169:1133-1146.
    88. Ferreira A, Silva MFd, Silva LdCe, Cruz CD. Estimating the effects of population size and type on the accuracy of genetic maps. (2006).
    89. Daniel AP. Design and construction of recombinant inbred lines. Quantitative Trait Loci (QTL): Methods and Protocols, Methods in Molecular Biology, (2012),871:31-39.
    90. Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW. Gene mapping with recombinant inbreds in maize. Genetics, (1988),118:519-526.
    91. Burr B, Burr FA. Recombinat inbreds for molecular mapping in maize:Theoretical and practical considerations. Trends Gent, (1991),7:55-60.
    92. Darvasi A, Weinreb A, Minke V, Weller JI, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, (1993),134:943-951.
    93. Sirithunya P, Tragoonrung S, Vanavichit A, Pa-In N, Vongsaprom C, et al.. Quantitative Trait Loci Associated with Leaf and Neck Blast Resistance in Recombinant Inbred Line Population of Rice (Oryza Sativa). DNA Research, (2002),9:79-88.
    94. Channamallikarjuna V, Sonah H, Prasad M, Rao GJN, Chand S, et al.. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breeding, (2010),25: 155-166.
    95. Andaya CB, Tai TH. Fine mapping of the rice low phytic acid (Lpa1) locus. TAG, (2005),111:489-495.
    96. Wang C, Ulloa M, Roberts P. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rknl) in Acala NemX cotton (Gossypium hirsutum L.). TAG, (2006),112:770-777.
    97. Bai X, Luo L, Yan W, Kovi Mallikarjuna R, Zhan W, et al.. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BioMed Central,(2010).
    98.王麟.分子标记辅助选择及其在水稻育种中的应用与展望.黑龙江农业科学,(2009),1:140-143.
    99.王殉朝,李平,王世全,周开达.水稻分子标记辅助育种及其前景.细胞生物学杂志,(2003),25(5):287-292.
    100.杨景华,王士伟,刘训言,杨加付,张明方.高等植物功能性分子标记的开发与利用。.中国农业科学,(2008),41(11):3429-3436.
    101.陈志伟,官华忠,吴为人,周元昌,韩庆典.稻瘟病抗性基因Pi-1连锁SSR标记的筛选和应用。陈志伟福建农林大学学报(自然科学版),(2005)),34(1):74-77.
    102. Leila GA, Prabhu AS, Pereira PAA, Silva GB. Marker-assisted selection for the rice blast resistance gene Pi-ar in a backcross population. Crop Breeding and Applied Biotechnology, (2010),10: 23-31.
    103. Basavaraj S, Singh V, Singh A, Singh A, Singh A, et al.. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Molecular Breeding, (2010),26:293-305.
    104.罗彦长,王守海,李成荃,王德正,吴爽,等.应用分子标记辅助选择培育抗稻白叶枯病光敏核不育系3418S。作物学报,(2002),9(3):402-407.
    105. Andersen JR, Lubberstedt T. Functional markers in plant. Trends Plant Sci, (2003),8:554-560.
    106. lyer-Pascuzzi AS, McCouch SR. Functional markers for xa-5 mediated resistance in rice(Oryza sativa, L.). Mol Breeding, (2007),19:291-296.
    107. Ramkumar G, Srinivasarao K, Madhan Mohan K, Sudarshan I, Sivaranjani AKP, et al.. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54 (Pikh). Mol Breeding, (2011),27:129-135.
    108. Yan WG, Agrama HA, Jia M, Fjellstrom R, McClung A. Geographic description of genetic diversity and relationships in the USDA rice world collection. Crop Sci, (2010),50:2406-2417.
    109. Hulbert SH, Bennetzen JL. Recombination at the Rp1 locus of maize. Mol Gen Genet, (1991),226: 377-382.
    110. Nelson JC. QGENE:Software for marker-based genomic analysis and breeding. Mol Breeding, (1997),3:239-245.
    111. Paterson AH, DeVerna JW, Lanini B, Tanksley SD. Fine Mapping of Quantitative Trait Loci Using Selected Overlapping Recombinant Chromosomes, in an Interspecies Cross of Tomato. Genetics, (1990),124:735-742.
    112. Zhang J, Zhu Y-G, Zeng D-L, Cheng W-D, Oian Q, et al.. Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytologist, (2008),177:350-356.
    113. USEPA. Arsenic Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Rollinsford, NH Final Performance Evaluation Report, (2009):USEPA Contract 68-C-00-185 Task Order 0037.
    114. Somenahally AC, Hollister EB, Loeppert RH, Yan W, Gentry TJ. Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biology & Biochemistry, (2011a),43:1220-1228.
    115. Somenahally AC, Hollister EB, Yan W, Gentry TJ, Loeppert RH. Water Management Impacts on Arsenic Speciation and Iron-Reducing Bacteria in Contrasting Rice-Rhizosphere Compartments. Environ Sci Technol, (2011b),45:8328-8335.
    116. Hua B, Yan W, Wang J, Deng B, Yang J. Arsenic Accumulation in Rice Grains:Effects of Cultivars and Water Management Practices. Environ Eng Sci, (2011),28.
    117. Pillai TR, Yan W, Agrama HA, James WD, Ibrahim AMH, et al.. Total Grain-arsenic And Arsenic-species Concentrations In Diverse Rice Cultivars Under Flooded Conditions. Crop Sci, (2010), 50:2065-2075.
    118. Norton GJ, Islam MR, Duan G, Lei M, Zhu Y, et al.. Arsenic Shoot-Grain Relationships in Field Grown Rice Cultivars. Environ Sci Technol, (2010),44:1471-1477.
    119. Ahmed Z, Panaullah G, Gauch H, McCouch S, Tyagi W, et al.. Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil, (2011),338: 367-382.
    120. Mackill DJ, Mckenzie KS. Origin and characteristic of U.S. rice cultivars. Rice:Origin, History, Technology and production, (2002), pp:87.
    121. Liu J, Liu X, Dai L, Wang G. Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants. Journal of Genetics and Genomics, (2007),34:765-776.
    122. Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangla JL. Arabidopsis RIN4 negatively regulates disease resistance medidated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpml. Plant Cell, (2004),16:2822-2835.
    123. Martin GB, Bogdanove AJ, Sessa G. Understanding the function of plant disease resistance proteins. Annu Rev Plant Biol, (2003),54:23-61.
    124. Dai L, Wu J, Li X, Wang X, Liu X, et al.. Genomic structure and evolution of the Pi2/9 locus in wild rice species. TAG, (2010),121:295-309.
    125. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, et al.. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice. Genetics, (2006),172:1901-1914.
    126. Vergne E, Ballini E, Marques S, Sidi Mammar B, Droc G, et al.. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. New Phytologist, (2007),174:159-171.
    127. Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, (2003),132:530-543.
    128. Dardick C, Chen J, Richter T, Shu O, Ronald P. The rice kinase database:A phylogenomic database for the rice kinome. Plant Physiol, (2006),143:579-586.
    129. Clark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, (1993),119:397-418.
    130. Martin GB, Brpmmonschenkel SH, Chunwongse J, Frary A, Ganal MW, et al.. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, (1993),262: 1432-1436.
    131. Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, et al.. A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21. Science, (1995),270:1804-1806.
    132. Sun X, Cao Y, Yang Z, Xu C, Li X, et al.. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, (2004),37:517-527.
    133. Chen XW, Shang JJ, Chen DX, Lei CL, Zou Y, et al.. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, (2006),46:794-804.
    134. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, et al.. The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA, (2002),99:9328-9333.
    135. Edward TK, Michele P. The F-box protein family. Genome Biology, (2000),5:3002.
    136. Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature, (2005),435:441-445.
    137. Leister D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends in Genetics, (2004),20:116-122.
    138. Zhou B, Dolan M, Sakai H, Wang G-L. The Genomic Dynamics and Evolutionary Mechanism of the Pi2/9 Locus in Rice. Molecular Plant-Microbe Interactions, (2007),20:63-71.
    139. Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, (2003),2003:809-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700