用户名: 密码: 验证码:
中国主要流域盆地的风化剥蚀作用与大气CO_2的消耗及其影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石的风化剥蚀作用是研究物质地球化学循环和全球气候变化的重要环节之一。论文的主要研究内容包括3大部分,其一通过数理统计方法利用河水主要化学组成去追溯流域发生的化学风化反应,探讨不同岩性、大气降水、人类活动因素、大气CO_2等因素对河水中溶解质的相对贡献率,进而估算流域盆地的化学风化率及岩石化学风化所消耗的大气CO_2量;其二通过河流沉积物主要元素组成来探讨流域岩石的化学风化强度,揭示流域盆地中碳酸盐类、硅酸盐类化学风化的相对强度,并根据质量平衡原理估算机械剥蚀率;其三从宏观上利用离子径流模数与化学风化率、输沙模数与机械剥蚀率之间的关系汇总了中国主要流域盆地的化学风化率和机械剥蚀率,结合流域盆地的综合岩性、气候、地貌、植被、人文活动等相关影响因子的量化数值,建立中国主要河流的输沙模式,阐述自然因素及人为活动诱因对中国主要流域盆地风化剥蚀率的影响程度,最后对定量化结果进行了客观分析与评价。
     1 河水化学、化学风化率和岩石风化的大气CO_2消耗量
     利用Gibbs图分析得到趋于“大气降水控制”类型的河流-东江和赣江。利用大气降水的控制面积和流域的蒸发蒸腾F因子,计算得到大气降水对东江河水中Cl~-的最大输送量,将Cl~-作为参照元素,通过海盐校正方法估算得到大气降水对东江、赣江河水溶解质载荷的总贡献率分别为4.94%和5.09%,由此对于受大气降水影响较为显著的东江和赣江,大气降水对河水溶解质的总贡献率仅为5.0%左右,中国绝大多数河流矿化度很高,大气降水对河水溶解质的相对贡献率更低,可忽略不计。初步探讨了长江干流人类活动对河水中溶解质的输入贡献率,发现河水离子中仅SO_4~(2-)表现出20-40%人为来源的输入率,占长江干流河水溶解质总量的约2-3%,与长江流域广泛发生的酸雨密切相关。
     黄河流域蒸发盐类和碳酸盐类风化溶解较强,对河水的贡献率均很高且平分秋色,而硅酸盐类化学风化对黄河河水的贡献很微弱。长江干流主要发生了碳酸盐类的化学风化尤其是白云岩的溶解,碳酸盐类对河水溶解质的贡献率占主导地位(达到近50%),蒸发盐类和硅酸盐类风化的贡献率较弱。珠江流域3条主要支流的化学风化过程存在明显差异,西江和北江流基本以碳酸盐类溶解为主,而东江河水扣除大气降水的来源外,溶解质基本出自硅酸盐类的风化。总体而言,中国主要流域盆地大部分以碳酸盐类的风化溶解为主,其对河水溶解质的平均贡献率介于30-60%之间,而硅酸盐类和蒸发盐类风化通常较微弱,对河水溶解质
    
    中国土要流域盆地的风化剥蚀作用与人气CO:的消耗及其影响因子研究
    的贡献率分别为。一20%和10一30%,大气CO:对河水溶解质载荷的总体贡献率约
    占30%。
     扣除大气降水、人类活动、大气CO:等非岩石风化来源的物质后得到了中国
    17个主要流域盆地较为准确的化学风化率数值。对这17个主要流域盆地的化学
    风化率与其离子径流模数的相关统计发现两者之间存在着非常显著的正相关关
    系,且两者之间的平均比值为1.40,反映了河水中共计约30%的溶解载荷来自于
    大气CO:或降水等非岩石风化来源,这与对中国主要河流溶解质载荷来源分析
    得到大气CO:对河水溶解质的平均贡献率在30%左右完全吻合,由此利用离子
    径流模数除以140近似地估算得到了中国所有主要流域盆地较为准确的化学风
    化率数据,其化学风化率值分布在10.65一168.0t/k mZ.yr范围。
     中国主要流域盆地岩石化学风化的年均大气CO:消耗量1375.91x109mol(占
    世界岩石风化年均消耗co:总量的6.55%)、转移的碳量为1.65又107t碳,其中碳
    酸盐和硅酸盐类化学风化消耗的大气CO:量分别占85%和15%。中国主要流域
    盆地岩石化学风化的大气CO:消耗率通常较高,而且中国主要流域盆地整体上
    碳酸盐类的风化溶解对河水化学的影响程度明显强于硅酸盐类,这是中国主要流
    域盆地较为突出的特征。
    2沉积物地球化学与化学风化进程和机械剥蚀率
     化学风化指数与化学风化率属于表征化学风化作用意义不同的函数,前者为
    相对概念反映流域岩石在原岩基础上己发生淋溶作用的深度,主要受到了气候因
    子的深刻影响(中国流域沉积物化学风化指数由北到南呈有规则的递增序列,气
    候因子对风化进程的影响掩盖了岩性的巨大差异),而化学风化率含义是指单位
    流域面积岩石风化淋溶产生的离子绝对总量。但2者又紧密联系,文中引入综合
    岩性和岩石化学风化响应度的概念,反映出流域岩石整体对岩石风化的反应和敏
    感程度。研究发现综合岩性整体上控制了中国主要流域盆地化学风化率的大小,
    但化学风化率一定程度上也受制于流域岩石的化学风化进程。
     西江和北江沉积物中易溶元素风化淋溶强烈,Ca消耗最为强烈,流域内碳酸
    盐类化学风化程度较之硅酸盐类强烈。西江和北江流域岩石的相对化学风化指数
    分别达到了1.71和1.91,且沉积物中Al加a摩尔丰度平均比值分别为黄河的2.10
    倍和长江的5.92倍。相比而言,西江和北江流域岩石的整体化学风化进程、2大
    类岩性的化学风化程度均较之长江、黄河流域强烈的多。3条支流的硅酸盐类化
    学风化作用已达到了?
The atmospheric CO_(2) consumed by rock weathering is long been recognized as providing a major loss of carbon and decreasing atmospheric CO_(2). The 0.28xl0~_(9)t carbon derived from atmospheric CO_(2) is transferred from atmosphere and biosphere to the ocean by surface rock weathering processes. In order to monitor the quality of the river, it is also important to understand the natural flux of dissolved ions. So far, most studies on water chemistry in China had focused on water quality and dissolved flux, scarce literatures could be used to understand the sources of solute load and CO_(2) consumption budget in China. However, many scholars had attempted to fill in the gap in our knowledge of atmospheric CO_(2) wastage by rock weathering and tried to link water chemistry with weathering reactions in the major world watersheds.
    In fact, as a very important part of material geochemistry cycle, chemical weathering and mechanical denudation plays a crucial role in affecting and changing the surface continent deeply. The global rivers transported the dissolved loads of about 4.0X10~(9)t and solid fluxes of 15.5X10~(9)t mainly derived from chemical weathering and mechanical denudation into the ocean yearly. In addition, the water and soil lost correlative with weathering and erosion had threatened seriously the production and living along the valleys at present.
    In this paper, newly compiled data on the major rivers of China were used to calculate the relative contribution rates of precipitation, main lithologies and atmospheric CO_(2) according to the dissolved loads by principal components and correlative analysis. New estimates of carbonate and silicate weathering fluxes and associated with CO_(2) consumption budget were given in the major drainage basins of China where previous information was indeed limited. An attempt was also made to calculate chemical weathering rates of silicates and carbonates per unit area. The paper focused on consumption of atmospheric CO_(2) through rock weathering and weathering reactions what were attributable for dissolved loads in the major basins of
    
    
    
    
    China.
    Generally, dissolved loads were preferentially considered to evaluate chemical weathering relative to river-borne particulate/sediment because they are directly from source rock weathering. However, local differences in lithlology and human activities or precipitation might participate in and disturb the processes. Many studies had attempted to characterize chemical weathering process by focusing on geochemisty of river particulate and sediment.
    The sediment geochemistry may reflect and compare with the carbonates and silicates weathering degree by introducing the chemical index of alteration (CIA) and new sediment index of variation (SIV) and elemental molar abundance ratio of the sediment. The one main objective of this study would provide and compare the relative weathering intensities of silicates and carbonates with the different basins. For the mass balance equations, the average mechanical denudation rates would be estimated based on chemical weathering rates for the major basins of China.
    Finally, the first detailed compilation on fluvial transport model of solid was established based on data from a variety of sources for the typical major rivers of China. The relationship between the chemical weathering and physical denudation rates and possible controlling parameters were also explored. A combined effect of climate, relief, integrated lithology, vegetation and cultivated area seemed to explain the variability of modern chemical weathering and mechanical denudation rates.
    Samples and analysis methods
    Hundreds of water samples from the upper reaches to lower reaches of the rivers were collected and stored in acid-washed polypropylene bottles from 1997 to 2001 in major watersheds of China. After collection, all samples were filtered in time through 0.45 um acetate fibrous filters. The analytical procedure for water analysis included conventional flame atomic absorption spectrophotometry (AAS) for Ca,
引文
1.白站国。地貌条件与土壤侵蚀关系的定量研究-以窟野河流域为例。陕西师范大学学报(自然科学版),1992,20(2):63-66。
    2.柴社立,蔡晶,赵孟军。吉林东部花岗岩风化的地球化学。长春地质学院学报(自然科学版),1993,23(3):273-278。
    3.陈静生,陈梅,谢贵柏。海南岛台湾岛河流水化学比较研究。地理学报,1992,47(5):403-409。
    4.陈静生,陈梅。海南岛河流主要离子化学特征和起源。热带海洋,1992,12(3):272-281。
    5.陈静生,关文荣,夏星辉等。长江干流近三十年来水质探析。环境化学,1998,17(1):8-13。
    6.陈静生,关文荣,夏星辉等。长江中、上游水质变化趋势与环境酸化关心初探。环境科学学报,1998,18(3):265-270。
    7.陈静生,何大伟。珠江水系河水主要离子化学特征及成因。北京大学学报(自然科学版),1999,35(6):786-793。
    8.陈静生,洪松,王立新等。中国东部河流颗粒物的地球化学性质,地理学报,2000,55(4):417-427。
    9.陈静生,李荷碧,夏星辉等。近30年来黄河水质变化趋势及原因分析。环境化学,2000,19(2):97-101。
    10.陈静生,王飞越,陈江麟。论小于<63μm粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究。环境科学学报,1994,14(4):419-425。
    11.陈静生,王飞越,程成旗。中国东部主要河流颗粒物的元素组成。北京大学学报(自然科学版),1996,32(2):206-214。
    12.陈静生,夏星辉,蔡绪贻。川贵地区长江干支流河水主要离子含量变化趋势及分析。中国环境科学,1998,18(2):131-135。
    13.陈静生,夏星辉,洪松。长江水质酸化与黄河水质浓化趋势及成因探讨,中国工程科学,2000,2(3):54-58。
    14.陈静生,夏星辉,张利田等。长江、黄河、松花江的60-90年代水质变化趋势与社会经济发展的关系。环境科学学报,1999,19(5):500-505。
    15.陈静生,谢贵柏,李远辉。海南岛现代剥蚀作用及其与台湾岛和夏威夷群岛的比较。第四纪研究,1991(2):289-299。
    16.陈静生,郑春江,高广生等。中国东部主要河流中悬浮物及底泥的环境地球化学基本特征。地理科学,1986,6(4):323-331。
    17.陈静生。陆地水水质全球变化研究进展。地球科学进展,1992,7(4):72-76。
    18.陈骏,杨杰东,李春雷。大陆风化与全球气候变化。地球科学进展,2001,16(3):399-405。
    19.陈启明,仇玉芹,陈邦林等。长江口悬浮物和沉积物的物相分析。华东师范大学学报(自然科学版),2001,(1):77-83。
    20.陈则实主编。中国海湾志(14分册)。1998,北京:海洋出版社。
    21.程天文,赵楚年。我国沿岸入海河川径流量与输沙量的估算。地理学报,1984,39(4):418-427。
    22.邓伟。长江河源区水化学基本特征的研究。地理科学,1988,8(4):363-369。
    23.董祖德。浙江省河流水化学特征分析和评价。浙江水利科技,1990,(3):1-9。
    24.国家环境保护局,中国环境科学研究院。我国酸沉降时空分布规律的研究(研究报告)。1995,10-80。
    25.过常龄。黄河流域河流水化学特征初步分析。地理研究,1987,6(3):65-73。
    26.韩贵琳,刘丛强。贵州乌江水系的水文地球化学研究。中国岩溶,2000,19(1):35-43。
    
    
    27.郝吉明,谢绍东,段雷等著。酸沉降临界负荷及其应用。2001,北京:清华大学出版社。
    28.何大明,汤奇成等著。中国国际河流。2000,北京:科学出版社。
    29.胡细英。赣江流域水文地理特征及影响经济发展的研究。江西师范大学学报(自然科学版),1993,17(1):66-71。
    30.乐嘉祥,王德春。中国河流水化学特征。地理学报,1963,29(1):2-12。
    31.黎彤,袁怀雨,吴胜昔。中国花岗岩类和世界花岗岩类平均化学成分的对比研究。大地构造与成矿学,1998,22(1):29-34。
    32.李晶莹,张经。样品量对河流沉积物组成分析结果的影响。中国环境监测,2002,18(5):10-12。
    33.李景保。洞庭湖水系离子径流与化学剥蚀的研究。地理科学,1989,9(3):242-251。
    34.李香萍,杨吉山,陈中原。长江流域水沙输移特征。华东师范大学学报(自然科学版),2001,4:88-95。
    35.刘嘉麒,William C K和吴国平。中国丽江内陆降水背景值研究。中国环境科学,1993,13(4):246-251。
    36.刘曙光,杨守业,丁坚等。亚洲入海河流输沙量的区域性变化规律。海洋通报,2000,19(5):32-40。
    37.刘祥栋,刑文洁,王立萍,曲玲。山东省河流水化学特征分布与评价。山东水利科技,1997,(4):27-30。
    38.陆渝蓉编著。地球水环境学。2001,南京:南京大学出版社,62-67。
    39.齐立文,王文兴。我国低纬度、亚热带地区的降水化学及其雨水酸化趋势分析。环境科学研究,1995,8(1):12-20。
    40.秦建华,潘桂棠,杜谷。新生代构造抬升对地表化学风化和全球气候变化的影响。地学前缘,2000,7(4):517-524。
    41.屈翠辉,郑建勋,杨绍晋。黄河、长江、珠江下游控制站悬浮物的化学组成及其制约因素的研究,科学通报,1984,1063-1066。
    42.全文哲,冯少英,陆小安。广州市酸雨现状与发展趋势研究。上海环境科学,1992,11(1):20-23。
    43.全文哲等。广州地区酸雨分布状况与发展趋势。广州环境科学,1992,7(1):11-18。
    44.沈焕庭,朱建荣。论我国海岸带陆海相互作用研究。海洋通报,1999,18(6):11-17。
    45.盛承禹等。中国气候总论。1986,北京:科学出版社。
    46.水利部水文司。中国水文志。1997,北京:中国水利水电出版社。
    47.汤奇成,熊怡等。中国河流水文。1998,北京:科学出版社。
    48。唐桂刚,白乃彬。应用遗传神经网络方法分析我国降水化学数据。环境科学学报,2000,20(5):542-547。
    49.唐克丽,王斌科,郑粉梨等。黄土高原人类活动对土壤侵蚀的影响。人民黄河,1994,2:13-16。
    50.田均良,李雅琦,陈代中。中国黄土元素背景值分异规律研究。环境科学学报,1991,11(3):253-262。
    51.田均良,李雅琦,黄义瑞等。黄土高原土壤元素含量及其地域分异规律。水土保持学报,1992,6(1):77-83。
    52.汪晋三,黄新华,程国佩编著。水化学与水污染。1990,广州:中山大学出版社。
    53.王腊春,陈晓玲,储同庆。黄河、长江泥沙特征对比分析。地理研究,1997,16(4):71-79。
    54.王美蓉。华南地区高山酸沉降化学研究。环境科学学报,1992,12(1):37-47。
    55.王胜华,张辉香,王远梅。韩江上游乌坡河流域植被与输沙量的关系。珠江水利水电信
    
    息,1993,(3):17-20。
    56.王云,魏复盛等。土壤环境元素化学。1995,北京:中国环境科学出版社。
    57.魏复盛,陈静生,吴燕玉等。中国土壤环境背景值研究。环境科学,1991,12(4):12-19。
    58.文启忠,刁桂仪,潘景瑜等。黄土高原黄土的平均化学成分与地壳克拉克值的类比。土壤学报,1996,33(3):225-231。
    59.邬建中,黄爱珠。珠江水系天然水化学特征。人民珠江,1989,(2):14-18。
    60.吴明清,文启忠,潘景瑜,刁桂仪。黄河中游地区马兰黄土主要化学成分的再研究。自然科学进展,1996,6(1):80-85。
    61.夏星辉,张利田,陈静生等。岩性和气候条件对长江水系河水主要离子化学的影响。北京大学学报(自然科学版),2000,36(2):246-252。
    62.刑大韦,张玉芳,粟晓玲等。中国多沙性河流的洪水灾害及其防御对策。西北水资源与工程,1998,9(2):1-8。
    63.许炳雄。广州市东郊的降水监测及其理化特征。环境科学研究,1991,4(5):50-54。
    64.许炯心。长江上游干支流的水沙变化及其与森林破坏的关系。水利学报,2000,1:72-80。
    65.许炯心。黄土高原高含沙水流形成的自然地理因素。地理学报,1999,54(4):318-325。
    66.许越先。中国入海离子径流量的初步估算及其影响因素分析。地理科学,1984,4(3):213-217。
    67.许志信,赵萌梨。水土流失与植被保护。内蒙古草业,2000,000(1):1-6。
    68.杨守业,李从先,李徐生等。长江下游下蜀黄土化学风化的地球化学研究。地球化学,2001,30(4):402-406。
    69.杨守业,李从先。长江与黄河沉积物元素组成及地质背景。海洋地质与第四纪地质,1999,19(2):19-26。
    70.杨守业,李从先。长江与黄河现代沉积物元素组成及其示踪作用。自然科学进展,1999,9(10):930-937。
    71.杨守业,刘曙光,李从先。亚洲入海河流的化学通量及其控制因素。海洋通报,2000,19(4):22-28。
    72.杨永泰,苏伍根,毛文锋。珠江三角洲降水化学成分的区域特征分析。重庆环境科学,1996,18(2):5-9。
    73.姚小红,崔平,高会旺等。沿海地区海盐和大气污染物反应的致酸作用。环境科学,1998,17(4):320-325。
    74.叶青超等。黄河流域环境演变与水沙运行规律研究。1994,济南:山东科学技术出版社。
    75.于霞。长江大通站溶解硅25年变化特征统计分析。曲阜师范大学学报(自然科学版),2001,27(3):98-102。
    76.喻林主编。水质监测分析方法标准务实手册(1-4)。2002,北京:中国环境科学出版社。
    77.张朝生,章申,王立军等。长江与黄河沉积物金属元素地球化学特征及其比较。地理学报,1998,53(4):314-322。
    78.张朝生,章申,王立军等。若干典型岩性区域沉积物金属元素地球化学特征比较研究。环境科学学报,1998,18(2):172-176。
    79.张家诚。中国气候总论。1991,北京:气象出版社。
    80.张家诚主编。地学基本数据手册。1985,北京:海洋出版社。
    81.张立成,董文江,王李平。长江水系河水的地球化学特征。地理学报,1992,47(3):220-232。
    82.张立成,董文江。我国东部河水的化学地理研究。地理研究,1990,9(2):67-75。
    83.张立成,赵桂久,董文江。湘江水系河水的地理化学特征的研究。地理学报,1987,42(3):243-251。
    
    
    84.张立诚,佘中盛,章申等。长江水系环境化学元素系列专著(2):水环境化学元素研究。1996,北京:中国环境科学出版社。
    85.张利田,陈静生。我国河水主要离子组成与区域自然条件的关系。地理科学,2000,20(3):236-240。
    86.张利田。珠江水系河水离子三角组分图分析。中山大学学报(自然科学版),2000,39(3):102-105。
    87.张利田。珠江水系河水离子总量空间自相关特征。中山大学学报(自然科学版),2000,39(1):101-104。
    88.张利田。珠江水系河水离子总量区域分布特征及其与流域自然条件的关系。中山大学学报(自然科学版),1999,38(5):104-108。
    89.张群英,林峰,李迅等。中国东南沿海地区河流中的主要化学组分及其入海通量。海洋学报,1985,7(5):561-566。
    90.张欣。东亚酸沉降中国网湿沉降分析研究。中国环境监测,2001,17(3):15-18。
    91.赵沛伦,申献辰,夏军等。泥沙对黄河水质影响及重点河段水污染控制。郑州:黄河水利出版社,1998,12-14。
    92.朱道清编。中国水系大辞典。1993,青岛:青岛出版社。
    93. Ahmad T, Khanna P P, Chakrapani G J, et al. Geochemistry characteristics of water and sediment of the Indus river, Trans-Himalaya, India: constraints on weathering and erosion. Journal of Asian Earth Sciences, 1998, 16(2-3): 333-346.
    94. Alnert F. Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. American Journal of Science, 1970, 268: 243-263.
    95. Aragues L A and Froehlich K. Stable isotope composition of precipitation over Southeast Asia. Journal of Geophysical Research, 1998, 103(D22): 28721-28742.
    96. Bain D C, Roe M J, Duthie D M L, et al. The influence of mineralogy on weathering rates and processes in an acid-sensitive granitic catchment. Applied Geochemistry, 2001, 16:931-937.
    97. Bartarya S K. Hydrochemistry and rock weathering in a sub-tropical Lesser Himalayan river in Kumaun, India. Journal of Hydrology, 1993, 146:149-174.
    98. Berner R A, Lassaga A C and Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 1983, 284: 1183-1192.
    99. Berner R A. The rise of plants and their effect on weathering and atmospheric CO_2. Science, 1997, 276: 544-546.
    100. Blum J D. The effect of Late Genozoic Glaciation and tectonic uplift on silicate weathering rates and the marine ~(87)Sr/~(86)Sr record. Tectonic Uplift and Climate Change. Plenum Publishing Corporation: New York and London, 1997, 259-288.
    101. Blush G J S and Kump L R. Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 1994, 58(10): 2341-2359.
    102. Boeglin J L and Probst J L. Physical and chemical weathering rates and CO_2 consumption in a tropical lateritic environment: the Upper Niger basin. Chemical Geology, 1998, 148:137-156.
    103. Bouchard M and Jolicoeur S. Chemical weathering studies in relation to geomorphological research in southeastern Canada. Geomorphology, 2000, 32: 213-238.
    104. Brady P V and Carroll S A. Direct effects of CO_2 and temperature on silicate weathering: possible implications for climate control. Geochimica et Cosmochimica Acta, 1994, 58(8): 1853-1856.
    105. Brady P V. The effect of silicate weathering on global temperature and atmospheric CO_2.
    
    Journal of Geophysical Research, 1991,96(811) : 18101-18106.
    106. Canfield D E. The geochemistry of river participate from the continental USA: major elements. Geochimica et Cosmochimica Acta, 1997, 61: 3349-3365.
    107. Chakpapani G J and Subramanian V. Factors controlling sediment discharge in the Mahanadi River Basin, India. Journal of Hydrology, 1990, 117:169-185.
    108. Chen J S, Li Y H, et al. Physical and chemical denudation of the river drainage areas in China. Kexue Tongbao, 1985, 30(6) : 791-796.
    109. Chen Z Y, Li J F, Shen H T, et al. Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology, 2001, 41: 77-91.
    110. Chigira M and Oyama T. Mechanism and effect of chemical weathering of sedimentary rocks. Engineering Geology, 1999, 55: 3-14.
    111. Cronan C S, Piampiano J T, Patterson H H, et al. Influence of land use and hydrology on exports of carbon and nitrogen in a Marine river basin. Journal of Environmental Quality, 1999,28:953-961.
    112. Darmody R G, Thorn C E, Harder R L, et al. Weathering implications of water chemistry in an arctic-alpine environment, northern Sweden. Geomorphology, 2000, 34: 89-100.
    113. Datta D K and Subramanian V. Nature of solute loads in the rivers of the Bengal drainage basin, Bangladesh. Journal of Hydrology, 1997, 198: 196-208.
    114. Dekov V M, Araujo F, Grieken R V, et al. Chemical composition of sediments and suspended matter from the Cauvery and Brahmaputra rivers (India). The Science of the Total Environment, 1998, 212: 89-105.
    115. Dissanayake C B and Rupasinghe. Environmental impact of mining, erosion and sedimentation in Srilanka. International Journal Environmental Studies, 1996, 51: 35-50.
    116. Drever J I and Zobrist J. Chemical weathering of silicate rocks as a function of elevation in the southern Swess Alps. Geochimica et Cosmochimica Acta, 1992, 56: 3209-3216.
    117. Duan L, Hao J M, Xie S D, et al. Critical loads of acidity for surface waters in China. The Science of the Total Environment, 2000, 246:1-10.
    118. Dupre B, Gallardet J, Rousseau D, et al. Major and trace elements of river-borne material: The Congo Basin. Geochimica et Cosmochimica Acta, 1996, 60(8) : 1301-1321.
    119. Edmond J M, Palmer M R, Measures C I, et al. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil, Geochimica et Cosmochimica Acta, 1995, 59(16) : 3301-3325.
    120. Gaillardet J, Dupre B and Allegre, C J. A global geochemical mass budget applied to the Congo Basin Rivers: Erosion rates and continental crust composition. Geochimica et Cosmochimica Acta, 1995, 59: 3469-3485.
    121. Gaillardet J, Dupre B, Allegre C J, et al. Chemical and physical denudation in the Amazon River Basin. Chemical Geology, 1997, 142: 141-173.
    122. Gaillardet J, Dupre B, Allegre C J, et al. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 1999, 63: 4037-4051.
    123. Gaillardet J, Dupre B, Lourat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999, 159: 3-30.
    124. Galy A, Lanard G F. Weathering processes in the Ganges-Brahmaputra basin and the river alkalinity budget. Chemical Geology, 1999, 159: 31-60.
    125. Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed
    
    by studies in East China. Geochimica et Cosmochimica Acta, 1998, 62(11) : 1959-1975.
    126. Gibbs R J. Machanisms controlling world water chemistry. Science, 1970, 170: 1088-1090.
    127. Gislason S E, Arnorsson S and Armannsson H. Chemical weathering of basalt in Southwest Iceland: effects of runoff age of rocks and vegetative/glacial cover. American Journal of Science, 1996,296:837-907.
    128. Grasby S E, Hutcheon I. Chemical dynamics and weathering rates of a carbonate basin Bow River, southern Alberta. Applied Geochemistry, 2000, 15: 67-77.
    129. Grosbois C, Negrel P, Fouillac C, et al. Dissolved load of the Loire River: chemical and isotopic characterization. Chemical Geology, 2000, 170: 179-201.
    130. Harris N, Bickle M, Chapman H, et al. The significance of Himalayan rivers for silicate weathering rates: evidence from the Kosi tributary. Chemical Geology, 1998,144: 205-220.
    131. Hay W W. Detrial sediment fluxes from continents to oceans. Chemical Geology, 1998, 145: 287-323.
    132. Hobzova M, Jakes P and Mihaljevic M. Major element geochemistry of recent sediments from the Flaje basin. Applied Geochemistry, 2001, 16: 271-279.
    133. Horowitz A J, Rinella F, Lamothe P, et al. Variations in suspended sediment and associated trace element concentrations in selected riverine cross sections. Environment Science and Technology, 1990,24: 1313-1320.
    134. Horton T W, Chamberlain C P and Fantle M. Chemical weathering and lithologic controls of water chemistry in a high-elevation river system, Clark's Fork of the Yellowstone River, Wyoming and Montana. Water Resource Research, 1999, 35(5) : 1645-1655.
    135. Hu M H, Stallard R F, Edmond J M. Major ion chemistry of some large Chinese rivers. Nature, 1982, 298: 550-553.
    136. Huh Y, Tsio M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochimica et Cosmochimica Acta, 1998,62: 1657-1676.
    137. Huh Y, Tsio M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of Eastern Siberia:III. Tributaries of the Lena and Anabar draining the basement trrrain of the Siberian Craton and the Trans-Baikal Highlands. Geochimica et Cosmochimica Acta, 1999, 63: 967-987.
    138. Jackson T A and Keller W D A. A comparative study of the role lichens and "inorganic" processes in the chemical weathering of recent Hawaiian Lava flows. American Journal of Science, 1970,269:446-466.
    139. Jansen J M L and Painter R B. Predicting sediment yield from climate and topography. Journal of Hydrology, 1974,21:371-380.
    140. Katz, Bricker O P and Kennedy M M. Chemical mass-balance relationships selected ions in precipitation and stream water, Catoctin Mountains, Maryland. American Journal of Science, 1995,285:931-962.
    141. Knoll M A and James W C. Effect of the advent and diversification of vascular and plants on mineral weathering through geologic time. Geology, 1987, 15:1099-1102.
    142. Land M, Ingri J and Ohlander B. Past and present weathering rates in northern Sweden. Applied Geochemistry, 1999, 14: 761-774.
    143. Larssen T and Carmichael G R. Acid rain and acidification in China: the importance of base cation deposition. Environmental Pollution, 2000, 110: 89-102.
    144. Lasaga A C, Soler J M, Ganor J, et al. Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta, 1994, 58: 2361-2386.
    
    
    145. Li Y H, Teraoka H, Yang T S, et al. The elemental composition of suspended particles from the Yellow and Yangtze River. Geochimica et Cosmochimica Acta, 1984, 48: 1561-1564.
    146. Louvat P and Allegre C J. Riverine erosion rates on Sao Migual volcanic island, Azores archipelago. Chemistry Geology, 1998, 148: 177-200.
    147. Ludwig W and Amiotte-Suchet P, Munhoven G, et al. Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global and Planetary Change, 1998, 16-17: 107-120.
    148. Ludwig W and Probst J L. River sediment discharge to the ocean: Present-day controls and global budgets. American Journal of Science, 1998, 298: 265-295.
    149. Markich S J and Brown P L. Relative importance of natural and anthropogenic influnces on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. The Science of the Total Environment, 1998, 217: 201-230.
    150. Martin J M and Meybeck M. Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 1979, 7: 173-206.
    151. Martin J.M and Whitfield M. Significance of the river input of chemical elements to the sea. In: Trace metals in sea water (Wong B, et al.). Plenum Publishing Corporation: New York and London, 1983,265-296.
    152. Mast M A, Drever J I and Baron J. Chemical weathering in the Loch Vale Watershed, Rocky Mountain National Park, Colorado. Water Resources Research, 1990, 26(12) : 2971-2978.
    153. Meade R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 1982, 90: 235-252.
    154. Meybeck M. Atmospheric inputs and river transport of dissolved substances. Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships. Proceedings of the Humburg Symposium: IAHS Publ, 1983, 173-191.
    155. Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 1987, 287: 401-428.
    156. Meybeck M. Total mineral dissolved transport by world major rivers. Hydrological-Sciences-Bulletin-des. Sciences Hydrologiques, 1976, XXI26: 265-282.
    157. Middelburg J J, Weijden C H V and Woittiez J R W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of Granitic Rocks. Chemical Geology, 1988,68:253-273.
    158. Miller W R and Drever J I. Chemical weathering and related controls on surface water chemistry in the Absaroka Mountains, Wyoming. Geochimica et Cosmochimica Acta, 1977, 41:1693-1702.
    159. Milliman J D and Meade R H. World-wide delivery of river sediment to the ocean. Journal of Geology, 1983,91: 1-21.
    160. Milliman J D and Syvitski J P M. Geomorphic/Tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 1992, 100: 525-544.
    161. Milliman J D, Qin Y S, Ren M E, et al. Man's influence on the erosion and transport of sediment by Asian rivers: The Yellow River, example. Journal of Geology, 1987, 95: 751-762.
    162. Millot R, Gaillardet J, Dupre B, et al. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth and Planetary Science, 2002, 196: 83-98.
    163. Nakaganu Y and Iwatsubo G. Water chemistry in a number of mountainous streams of east
    
    Asia. Journal of Hydrology, 2000, 240: 118-130.
    164. Neal C, Robson A J, Wass P, et al. Major, minor, trace element and suspended sediment variations in the River Derwent. The Science of the Total Environment, 1998, 210/211: 163-172.
    165. Negrel P, Allegre C J, Dupre B, et al. Erosion sources determined by inversion of major and trace ratios and strontium isotopic rations in river water: The Congo Basin Case. Earth and Planetary Science Letters, 1993,120: 59-76.
    166. Nesbitt H W, Markovics G and Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 1980, 44:1659-1666.
    167. Nesbitt H W, Young G M. Early proterozoic climates and plate motions inferred from major element chemistry of lutite. Nature, 1982, 299: 715-717.
    168. O'Brien A K, Rice K C, Bricker O P, et al. Use of geochemical mass balance modeling to evaluate the role of weathering in determining stream chemistry in five mid-Atlantic watersheds on different lithologies. Hydrological Processes, 1997, 11: 719-744.
    169. Picouet C, Dupre B, Orange D, et al. Major and trace element geochemistry in the upper Niger river (Mali): physical and chemical weathering rates and CO2 consumption. Chemical Geology, 2002, 185:93-124.
    170. Pinet P and Souriau M. Continental erosion and large-scale relief. Tectonics, 1988, 7(3) : 563-582.
    171. Probst J L and Bazerbachi A. Transports en solution et en suspension par la Garonne superieure: Strasbourg, Science Geologiques, Bulletin, 1986, 39: 79-98.
    172. Probst J L and P Amiotte-Suchet. Fluvial suspended sediment transport and mechanical erosion in the Maghreb (North Africa). Hydrological Science Journal, 1992, 37:621-637.
    173. Puckett L J and Bricker O P. Factors controlling the major ion chemistry of streams in the Blue Ridge Valley and Bidge Physiographic provinces of Virginia and Maryland. Hydrological Processes, 1992, 6:79-98.
    174. Qu C H, Chen C Z, Yang J R, et al. Geochemistry of dissolved and particulate elements in major river of China. Estuaries, 1993, 16(3A): 475-487.
    175. Qu C H, Yan Y E. Chemical composition and factors controlling suspended matter in three major rivers. The Science of the Total Environment, 1990, 97/98: 335-346.
    176. Qu C H, Yang J R, Chen C Z. Potential mobilies of elements in suspended matter in major rivers of China. Water, air and soil pollution, 1991, 57/58: 467-478.
    177. Robert A B. The rise of plants and their effect on weathering and atmospheric CO2. Sciences, 1998, 276:544-546.
    178. Roger A K, Ronald L B, George R F, et al. Effect of land use changes on sediment transport in Goodwin reek. Water Resource Research, 1996, 32(10) : 3189-3196.
    179. Roy S, Gaillardet J and Allegre C J. Geochemistry of the dissolved and suspended loads of the Seine river, France: anthropogenic input, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 1999,63(9) : 1277-1292.
    180. Sarin M M and Krishnaswami S. Major ion chemistry of the Ganga-Brahmaputra river systems, India. Nature, 1984, 312:538-541.
    181. Sarin M M, Krishnaswami S and Dilli K, et al. Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochmica Acta, 1989, 53: 997-1009.
    
    
    182. Schroeder P A, Melear N D, West L T, et al. Meta-gabbro weathering in the Georgia Piedmont, USA: implications for global silicate weathering rates. Chemical Geology, 2000, 163: 235-245.
    183. Schwartzman D W and Volk T. Biotic enhancement of weathering and the habitability of Earth. Nature, 1989, 340: 457-459.
    184. Sharma A and Rajamani V. Major elements, REE, and other trace element behavior in amphibolite weathering under semiarid conditions in Southern India. Journal of Geology, 2000, 108:487-496.
    185. Shen H T, et al. Change of the discharge and sediment flux to estuary in Changjiang River. In: Health of the Yellow Sea, Hong, G.H., J. Zhang, and B.K. Park (Eds.), Seoul: the Earth Love Publication Association, 1998, 129-148.
    186. Stallard R F and Edmond J M. Geochemistry of the Amazon-1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 1981, 86(C10) : 9844-9858.
    187. Stallard R F and Edmond J M. Geochemistry of the Amazon-2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 1983, 88(C14) : 9671-9688.
    188. Stallard R F and Edmond J M. Geochemistry of the Amazon-3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 1987, 92(C8) : 8293-8302.
    189. Stephen E G and Hulcheon I. Chemical dynamics and weathering rates of a carbonate basin Bow River, Southern Alberta. Applied Chemistry, 2000, 15: 67-77.
    190. Suchet P S and Probst J L. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks. Tells, 1995, 47B: 273-280.
    191. Suchet P S and Probst J L. Modeling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins. Chemical Geology, 1993, 107:205-210.
    192. Summerfield M A and Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research, 1994, 99(B7) : 13871-13883.
    193. Tucker G E and Slingerland R. Drainage basin responses to climate change. Water Resources Research, 1997, 33(8) : 2031-2047.
    194. Turk J T, Taylor H E, Ingersoll G P, et al. Major-ion chemistry of the Rocky Mountain snowpack, USA. Atmospheric Environment, 2001, 35: 3957-3966.
    195. Varekamp J C and Thomas. Volcanic and anthropogenic contributions to global weathering budgets. Journal of Geochemical Exploration, 1998, 62:149-159.
    196. Velbel M A. Geochemical mass balance and weathering rates in forested watersheds of the Southern Blue Ridge. American Journal of Science, 1995, 285: 904-930.
    197. Velbel M A. Temperature dependence of silicate weathering in nature: How strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming? Geology, 1993,21: 1059-1062.
    198. Viers J, Dupre B, Braun J J, et al. Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments. Chemical Geology, 2000, 169: 211-241.
    199. Vital H and Stattegger K. Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology, 2000, 168: 151-168.
    
    
    200. White A F and Blum A E. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 1995,59(9) : 1729-1747.
    201. White A F, Blum A E and Schulz M S. Chemical weathering in a tropical watershed Luquillo Mountains, Purto Rico-long-term versus short-term weathering fluxes. Geochimica et Cosmochimica Acta, 1998, 62(2) : 209-226.
    202. White A F, Blum A E, Bullen T D, et al. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochimica et Cosmochimica Acta, 1999, 63(19/20) : 3277-3291.
    203. White A F, Bullen T D, Vivit D V, et al. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, 1999, 63(13/14) : 1939-1953.
    204. Zektser I S and Loaiciga H A.张立摘译。全球水文循环中地下水流动研究的回顾与展望。珠江水利水电信息, 1994, (2) : 51-60。
    205. Zhang C S, Wang L J. Multi-element geochemistry of sediments from the Pearl River system, China. Applied geochemistry, 2001,16 (9-10) : 1251-1259.
    206. Zhang J, Huang W W, Letolle R, et al. Major element chemistry of the Huanghe, China-Weathering processes and chemical fluxes. Journal of Hydrology, 1995, 168: 173-203.
    207. Zhang J, Huang W W, Liu M G, et al. Drainage basin weathering and major element transport of the large Chinese rivers (Huanghe and Changjiang). Journal of Geophysical Research, 1990, 95(C8) : 13277-13288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700